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Abstract

We obtained the gene microarray data from Alizadeh and Yoshimoto to compare modified imputa-

tion techniques. 10%, 20%, 25% and 30% missing data was introduced randomly into the complete

portions of the data sets and after imputing we computed a normalized Frobenius norm and the

correlation between the imputed data set and the complete data set. K-nearest neighbors, princi-

pal components analysis and normal distribution based imputation were considered. We sought

improvements by modifying current techniques; in particular we found that imputing a microarray

and its transpose and taking the average of the results may yield improvements; we call this method

bi-directional imputation. For methods which require a covariance matrix when there are more

variables than observations we used a shrinkage estimator.
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1. Introduction

Microarrays have become increasingly prominent and useful in modern medicine due to

technological advances. One type of microarray is a DNA microarray, it is made by creat-

ing thousands of tiny wells in a glass or nylon slide (McLachlan 2004) and placing small

amounts of single stranded DNA, called probes, in these wells (Liew, 2011). These types

of slides can contain about 10,000 different probes per square centimeter (Glick 1994) and

the selection of probes is fundamental to the design of experiment.

For analysis, two tissues are generally needed: a test tissue to be analyzed, and a healthy

tissue for baseline comparison. mRNA is extracted from both tissues and reverse tran-

scribed to cDNA which is then labeled with fluorescent dyes–for example, the healthy

tissue may be labeled with green dye (Cy3) and the test tissue sample may be labeled

with a red dye (Cy5). The labeled cDNA samples are mixed together and washed over the

microarray probes where cDNA fragments will bind to their complementary probes, see

figures 1 and 2.

A laser scanner can then read the color intensity at each well and determine the rela-

tive expression of cDNA strands which yields information regarding gene expression. For

example, a certain probe may appear yellow which indicates that equal amounts of red and

green are present indicating no difference in gene expression. On the other hand, another

probe may appear green which indicates that the test tissue does not express the gene related

to this cDNA.

A microarray may be visualized as an n × P array A, where n is the number of genes

and P is the number of samples whose gene expression is being observed. For instance,

row n may be a gene related to a BRCA1 breast cancer tissue and column p may be cDNA

derived from a patient’s breast cancer tissue; if data shows high red intensity at location

(n,p) it may indicate that the patient produces breast cancer type 1 susceptibility protein.

Like any experiment, microarray procedures may contain portions of unusable data.

This data is typically introduced during the laser scanning portion of the microarray pro-

cess depicted in figure 3. Missing data may be a result of dust particles, scratches on the
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Figure 1: Hybridization of single stranded DNA on a microarray chip. (Wikipedia 2013)

Figure 2: Schema illustrating creation of a microarray for analyzing cancer tissue.

(Wikipedia 2013)

slides, machine error, poor image resolution or image corruption (Wang 2006). In partic-

ular, element (n,p) of the microarray may be missing or an outlier–the question becomes:

how to impute this value? There are several approaches considered in the literature, among

the most popular are K-nearest neighbors, principal components analysis (PCA) and nor-

mal distribution based imputation. The K-nearest neighbor algorithm is the most common

imputation technique and estimates a missing value (n,p) by finding the K-nearest genes to

gene n and averaging their pth components together as an estimation for (n,p). Nearness is

usually determined by the Euclidean metric, but other distances like the Manhattan distance

may be used. Additionally, a weighted average may be employed to give more weight to

closer neighbors and less to distant neighbors. The K-nearest neighbors approach is easy to

implement but can be negatively affected by outliers, does not utilize additional informa-
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tion in the data like the covariance structure and obtaining the optimal number of neighbors

is not trivial.

Figure 3: Scheme for obtaining a gene microarray from a tissue sample. The scan-

ning stage is where most error is introduced, and consequently unusable data is created

(Wikipedia 2013).

Principal components imputation is an iterative technique that utilizes the covariance

structure of the microarray. The following procedure outlines the principal components

based imputation approach:

1. Mean imputation is used to impute missing values

2. Sample covariance, S is calculated

3. Form a matrix V that consists of columns that correspond to the largest K eigenvalues

of S

4. Obtain the predicted value of a row, say gene x, by V V TxT

5. If convergence criterion is not met, return to step 2 and repeat

Unlike kNN the PCA based approach utilizes the covariance structure of the data, but

it can be computationally expensive because it is iterative, and determining the number of

principal components is not trivial.

Another imputation technique is a distribution based approach. Most commonly, data

are assumed to be distributed according to the multivariate normal distribution; the follow-

ing procedure is used to impute missing values:

1. Obtain the maximum likelihood estimates for the mean and covariance matrix,

2. For x = (xobs, xmiss) impute xmiss by a draw from the conditional distribution of

xmiss given xobs with the current mean and covariance parameter estimates,

where xobs is the observed part of row (gene) x and xmiss is the missing part of row x. This

method works well if the distribution is known and can be easily drawn from, but outliers

can have adverse effects in the performance of the method.

To handle outliers Branden and Verboven proposed the following technique which they

call ”Robust Imputation” (Branden 2009).

1. Start with completely observed data and remove a percentage of outliers using the

method of Stahel and Donoho (Stahel 1981), (Donoho 1982), (Hubert 2005)

2. Compute the mean and covariance based on the data obtained in step 1,

3. Use the multivariate normal imputation to impute a set of data with the least amount

of missing data
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4. Re-evaluate and remove outliers and update the mean and covariance

5. Fill in another set of incomplete cases and return to step 4.

The robust imputation technique works well for normally distributed data and is robust

to outliers but like principal components analysis it is computationally expensive, and ad

hoc parameters like the percentage of outliers need to be determined. Further, genes that

have outlying expression values are simply thrown out of the data analysis.

Throughout the literature the variables in a microarray experiment are considered to be

the tissues. This is reasonable because there are many more genes than tissues in an exper-

iment. As such, imputation methods like K-nearest neighbors find the K nearest genes, not

the K nearest tissues for imputation. However, it is reasonable to view genes as variables,

albeit with relatively few observations, and for a method like K-nearest neighbors impute

values by finding the K-nearest tissues. On the other hand, for methods like principal com-

ponents analysis that require a covariance matrix, we are faced with the N << p problem.

Raychaudhuri et. al. write:

”A PCA analysis of DNA microarray data can consider the genes as variables

or the experiments as variables or both. When genes are variables, the analysis

creates a set of principal gene components that indicate the features of genes

that best explain the experimental responses they produce. When experiments

are the variables, the analysis creates a set of principal experiment components

that indicate the features of the experimental conditions that best explain the

gene behaviors they elicit. When both experiments and genes are analyzed

together, there is a combination of these affects, the utility of which remains to

be explored” (Raychaudhuri 2013).

In this paper we outline an approach to utilizing both genes and tissues as variables for

imputation purposes–we call this method bidirectional imputation. The methodology is as

follows:

1. Impute the data using genes as rows and tissues as columns,

2. Impute the data using tissues as rows and genes as columns,

3. Impute missing values using a (weighted) average of (1) and (2).

We note that the implementation of bi-directional kNN is straightforward but to imple-

ment methods that require a covariance matrix we encounter the N << p problem (many

more variables than observations) where sample covariances are non-positive definite. To

overcome the N << p issue we propose using a shrinkage estimator for the covariance

(Schaefer 2005.

2. Methods

We obtained the Alizadeh (2317 genes by 65 tissues) (Alizadeh 2000) and Yoshimoto (4380

genes by 24 tissues) (Yoshimoto 2002) data sets considered by Branden and Verboven

(Branden 2009). These data sets were imported into the R statistical environment and

incomplete rows were removed. For each dataset, missing values were introduced randomly

and the values were imputed using K-nearest neighbors, bi-directional K-nearest neighbors,

principle components, bi-directional principle components, the robust imputation technique

considered by Branden and Verboven (Branden 2009) and the bi-directional version of
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robust imputation. The outliers determined in robust imputation were removed across the

whole spectrum of data techniques since the methods of Stahel and Donoho do not require

the imputation technique be normal distribution based. In order for the robust imputation

technique to function we kept 5 percent of the columns and 5 percent of the rows entirely

complete.

The amount of missing data introduced was 10%, 20%, 25% and 30% of the total data

size. The number of nearest neighbors was chosen with cross validation from the R ”im-

putation” package. To minimize computational time the number of nearest neighbors was

only determined once and the result was used for all iterations, the number of principal

components was chosen to be 3 and for the robust imputation technique α = .9 (see Bran-

den 2009). The scheme was repeated 25 times for a given missing percentage, introducing

the missing data randomly at each iteration.

Methods were compared in several ways. We utilized a modified Frobenius norm given

in equation 1, computed the correlation between imputed and actual values and we plotted

the imputed data points against the actual data points. If we let A represent the original

data set, and I represent the imputed data set, then the computed relative Frobenius error is

given by equation 1 and the averaged correlations are given by equation 2:

Relative Frobenius Error =

25
∑

j=1

(‖A− I‖F /‖A‖F )j

25
(1)

Correlation Metric =

25
∑

j=1

cor(A, I)j

25
(2)

Where j is the simulation number and ‖A‖F =
√

∑

i,j a
2

ij . These metrics are essentially

the same ones used by Branden and Verboven.

The code used to perform bi-directional kNN is presented in figure 4, and the code used

to perform bi-directional PCA is presented in figure 5. In lines 6 and 7 of the code in figure

4, rows without missing data are identified and used to retain the complete portion of the

dataset. In lines 8 and 9 the dimensions of the data are obtained. In lines 12 through 15

missing data is introduced at some percentage (here it is shown at 5%). In lines 18 and

19 the number of nearest genes and tissues are chosen respectively. In line 22 the data

is imputed with tissues as variables, while in line 25 the data is imputed with genes as

variables. Finally, in line 28 the imputation results are averaged together. We note that

the methodology is simple to employ, which makes it particularly nice. If a technique

requires a covariance, then when performing the imputation of the transpose we first find

the shrinkage estimate of the covariance matrix and use this in the technique.

Figure 5 shows how to implement a technique that requires a covariance matrix. The

code used before line 17 in 5 is the same as the code in figure 4. At line 17 the number

of principal components is set for both the microarray and its transpose. Then, in line

22 mean imputation is used to impute missing values so that a covariance matrix can be

calculated in line 23. At this point, principal components analysis is used to impute the

microarray (line 26). Lines 29 and 30 show the use of the cov.shrink() function found in

R’s ’corpcor’ package to get an estimate of the transposed data’s covariance matrix. Next,

in line 30 principal components analysis is used to impute the transposed microarray with

the shrinkage estimate obtained before. Finally, the imputations are averaged in line 36.
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Figure 4: Sample bi-directional imputation with kNN.

Figure 5: Sample bi-directional imputation with principal components analysis.

3. Results and Calculations

Imputed data from each technique was compared to the complete data using the methods

outlined above. The results for the Alizadeh and Yoshimoto datasets are presented below.

In figure 6 a comparison of kNN using the standard imputation, transpose imputation and

bi-directional imputation are shown according to the comparisons outlined in the meth-

ods section. Similarly, figures 7 and 8 compare the PCA and robust imputation methods

respectively. For Yoshimoto’s data only the kNN and PCA methods were compared and

these results are shown in figures 9 and 10 respectively. Finally, we summarize the com-

parison between all bi-directional methods on Alizadeh’s data in figure 11.
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Figure 6: Results from imputing Alizadeh data with kNN.

Figure 7: Results from imputing Alizadeh data with PCA.

4. Discussion and Conclusions

The results show us that bi-directional imputation may yield an improvement to the stan-

dard imputation methods. To begin, the modified Frobenius norm for the bi-directional

methods is almost as small as the standard imputation, if not smaller, in all cases and tends

to be smaller with more missing data. Thus, if more missing data is observed, bi-directional

imputation may be preferred over standard imputation. We note that for Alizadeh’s data,
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Figure 8: Results from imputing Alizadeh data with Robust Imputation.

Figure 9: Results from imputing Yoshimoto data with kNN.

removing outliers and imputing bidirectionally using the multivariate normal distribution

(that is, using bidirectional robust imputation) is optimal according to the Frobenius norm

and correlation metrics.

Additionally, the correlation between actual and imputed data seems to be improved

in all cases when imputing bi-directionally. This can be also be seen in the plots of im-

puted versus actual data and show that variance is reduced in all methodologies when bi-
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Figure 10: Results from imputing Yoshimoto data with PCA.

Figure 11: Comparison of all bi-directional methods on Alizadeh’s data.

directionally imputing. A decrease in variance is not terribly surprising because the bi-

directional technique imputes twice (once with tissues as variables and once with genes as

variables), nevertheless it is interesting to see that imputing with genes as variables yields

useful information–verifying the view of Raychaudhuri et. al. (Raychaudhuri 2013).

Though the variance is reduced and the results appear to be more accurate than standard

imputation they are also more skewed and biased. Indeed, the plots of imputed data versus

actual data all appear to be tilting horizontally. An appropriate bias correction could yield

a significant improvement though it is unclear exactly how to fix the bias.

Modifications may be used in the bi-directional methodology. For example, one may

compute a weighted average instead of a standard average. A possible way to select weights

may be to retain only the complete portion of the data, add missing values, impute, and

compute the correlation between actual values and imputed values. If we let cortissues and

corgenes denote the correlation when imputing with tissues and genes as variables respec-

tively then the weights for the standard imputation and the transpose imputation may be

chosen as:
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wtissues =
cortissues

cortissues + corgenes
,

wgenes =
corgenes

cortissues + corgenes
.

Where wtissues denotes the weight for the imputation when tissues are variables, and wgenes

denotes the weight for the imputation when genes are variables.

Future work might evaluate different choices of weights for averaging the imputation

results or how to successfully correct bias. Additionally, one may investigate whether the

bi-directional methodology improves downstream clustering of genes and tissues as was

done for Hedenfalk’s data (Hedenfalk 2001) by Branden and Verboven (Branden 2009). Fi-

nally, different methods may be implemented bi-directionally especially since the method-

ology is easy to code and the p >> N problem can be overcome with a shrinkage estimate

of the covariance matrix.
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