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Abstract
The inverse Gaussian distribution provides an attractive family of probability densities in
modeling the coefficient of variation (CV) as it may conveniently be parameterized in terms
of the mean and CV. Tests for mean and dispersion parameters have been investigated for
this family in the literature, however, the coefficient of variation has not received much
attention in this respect. Noting that the coefficient of variation plays a very important
role in many practical data analysis situations, this article considers the uniformly most
powerful invariant test for the problem. Some approximations to the distribution of the
resulting test statistic have been investigated.
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1. Introduction

The inverse Gaussian distribution has received considerable attention as a model
for describing positively skewed data after the pioneering work of Tweedie (1957a,
1957b) and the subsequent review paper by Folks and Chhikara(1978). The prob-
ability density function (pdf) of the inverse Gaussian random variable X is given
by,

f(x|µ, λ) =
{

λ

2πx3

}1/2

exp

{
− λ

2µ2x
(x− µ)2

}
; x > 0, µ > 0, λ > 0 (1)

The above density will be denoted by IG(µ, λ). Its cumulative distribution func-
tion (cdf) can be written as

F (x |µ, λ) = Φ
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where Φ(.) denotes the c.d.f. of a standard normal variable. It is also interesting to
note that

X̄ ∼ IG(µ, nλ) and λ
n∑

i=1

(
1

Xi
− 1

X̄

)
∼ χ2

n−1 (3)

For a broad review and application of the IG family and other related results, the
reader may refer to the text by Chhikara and Folks (1989) and Seshadri (1998).

We will find it convenient to parametrize the above IG density in terms of (µ, υ),
where υ denotes the square of the coefficient of variation given by

υ =
µ

λ
.
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Noting that the coefficient of variation plays a very important role in many practical
data analysis situations (see Searles (1964), Srivastava (1974)), this article considers
the uniformly most powerful invariant test for the problem that is outlined in Section
2. Section 3 considers the computational aspect of the distribution function of the
test statistic. A very accurate approximation is developed in Section 4 that has gone
through an extensive numerical analysis. A selection of this analysis is presented in
Section 5.

2. Uniformly Most Powerful Invariant Test

Our interest lies in testing hypotheses about the parameter υ, based on a random
sample X = (X1, X2, ..., Xn) from IG(µ, µυ−1). Using the sufficiency reduction of
the data, we find that the likelihood function ℓ(µ, υ|X) factors as follows;

ℓ(µ, υ|x) = enυ
n∏

i=1


(

µ

2υπx3i

)1/2
 exp

{
− 1

2µυ

∑
xi −
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∑ 1
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}
= gθ(S(x)) h(x) (4)

where
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i=1

{(
µ

2υπ

)1/2
}
exp

{
− 1

2µυ

∑
xi −

µ

2υ

∑ 1

xi

}
(5)

is a function of parameters (µ, υ), only through

S(x) =

(∑
xi,
∑ 1

xi

)
,

and

h(x) =
n∏

i=1

1

x
3/2
i

, (6)

is a function of the data only. Thus, by the Fisher’s factorization theorem, it follows
that the bivariate statistic (X. =

∑
Xi, X− =

∑ 1
Xi

) is sufficient for (µ, υ). Note
also that IG(µ, λ) is a convex exponential family (see Seshadri (1993), Prop. 2.6),
hence S(X) is complete for (µ, υ). Looking at the likelihood ratio under H0 : υ = υ0
against H1 : υ = υ1, we find that an UMP test as given by Neyman-Pearson lemma
is not available. This will be made more precise later by considering the group of
scale changes: Gc = {gc}, where gc(y) = cy, c > 0 under which the problem of
testing remains invariant: X → Y = (Y1, Y2, ..., Yn) where

Yi = Xi/Xi+1, i = 1, ..., n− 1,

Yn = Xn.

The distribution for Y has been worked out in Jorgenson (1982) (see Eq. 3.21)
for the generalized inverse Gaussian distribution. Specializing it to the inverse
Gaussian case, the joint pdf of Y is given by

nn/2

2nKn
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i exp
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. (7)
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Integrating out yn from the above expression, the joint density of the maximal
invariant (Y1, Y2, ..., Yn−1) is given by (see Eq. 3.23 of Jorgenson (1982));

K−n/2((T1(y))
1
2 (T2(y))

1
2 /υ)

2n−1Kn
−1/2(1/υ)

n−1∏
i=1

y
− i

2
−1

i

(
T1(y)

T2(y)

)−n
4

(8)

where

T1(y) =
n∑

k=1

n−1∏
i=k

y−1
i , T2(y) =

n∑
k=1

n−1∏
i=k

yi (9)

andKa(.) denotes the modified Bessel function of the third kind that may be defined
by the integral representation

Ka(u) =
1

2

∫ ∞

0
ta−1exp

{
−u

2
(t+ t−1)

}
dt. (10)

The above shows that the distribution of Y depends on the maximal invari-
ant in the parameter space, namely υ. Hence, the most powerful invariant test
about υ may be based on (T1(y), T2(y)). Jorgenson (1982) shows that the statistic
T ∗ =

√
T1(y)T2(y) is a maximal invariant under the scale transformations, hence

its distribution depends on υ only. Therefore the most powerful invariant test of
H0 : υ = υ0 against a simple alternative may be based on the distribution of the
test statistic T ∗. He further showed that in fact T ∗ =

√
X.X−1, and that (see his

Eq. 5.6), the ratio of the non-null pdf to that of the null pdf of T ∗ is given by

U(t∗; υ0, υ) =
K−n/2(t

∗/υ)Kn
−1/2(1/υ0)

K−n/2(t∗/υ0)K
n
−1/2(1/υ)

.

This shows that there is no uniformly most powerful test for a composite alternative.
In what follows we will consider the modified test statistic T given by

T = X̄
∑(

1

Xi
− 1

X̄

)
,

that can be explicitly shown to have distribution depending on the parameter υ
only. The uniformly most powerful invariant test for H0 : υ = υ0 vs. H1 : υ = υ1 is
based on the test statistic T ∗,

CR : {X : T (X) ≥ tα},

where tα is obtained from
Pr

υ=υ0
[T ≥ tα] = α.

In the following section we discuss computation of the distribution of T ∗ and
some approximations. Different approximations are compared with exact percent-
age points also in the next section.

3. Distribution of the Test Statistic

We can write

T = X̄
n∑

i=1

(
1

Xi
− 1

X̄

)
= ZY, (11)
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where
Z ∼ IG(υ, n) and Y ∼ χ2

n−1.

To demonstrate this we use the properties of X̄ and λ
∑n

i=1

(
1
Xi

− 1
X̄

)
from Eq. (3)

and the fact that for any constant c, cX ∼ IG(cµ, cλ), given that X ∼ IG(µ, λ).
The exact Distribution of T then can be expressed as

P (T ≤ t) =

∫ ∞

0
P

(
Z ≤ t

y

)
fY (y)dy (12)

or

P (T ≤ t) =

∫ ∞

0
P

(
Y ≤ t

z

)
fZ(z)dz. (13)

Note that P
(
Z ≤ t

y

)
may be calculated from cumulative distribution of the stan-

dard normal distribution as

P (Z ≤ z) = Φ
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υ
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+ exp{2n

υ
} Φ

{
−
√

n

z

(
z

υ
+ 1

)}
Computationally the latter representation may be better because exp(2nυ ) can blow
up for large n or small υ.

4. Approximations

The approximations for the test statistic T are moment based approximations based
on the limiting behaviour of the components Z and V. Using the moment properties
of IG and Chi-square distributions, we give below the first three cumulants of the
statistic T,

E(T ) = υν

V (T ) =
υ3

ν
(2ν + nu2) + υ2 + 2ν

k3(T ) = (ν3 + 6ν2 + 8ν)

(
υ3 + 3

υ4

n
+ 3

υ5

n2

)
− 3υν

(
υ2 +

υ3

n

)
(2ν + ν2) + 2υ3ν3.

where ν = n− 1.

4.1 First Approximation

Noting that for large n, Y/ν converges to 1 with probability 1, we may approximate
T by an IG random variable. Note that E(T/(υν)) = 1, we approximate the
distribution of T/(υν) by that of IG(1, λ1), where λ1 may be obtained by equation
the second moment. Since V ar( T

υν ) =
1
λ1
, thus λ1 = nν

(2+ν)υ+2n . Note that for large

n, λ1 ≈ n
υ , therefore for large n

T/ν ≈ IG(υ, n).

4.2 Second Approximation

Using a similar approach to the distribution of Z, instead of that of Y, we can ap-
proximate T by a multiple of Chi-square random variable. So we have approximately
T
υν ∼ Gamma(α, β), where αβ = 1 and αβ2 = Var(T/(υν). Thus we get

β =
(2 + ν)υ + 2n

nν
= 1/λ1 and α = λ1. (14)
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4.3 Third Approximation

This approximation combines the strengths of the above approximations through a
mixture approach where

T

υν
= w.IG(1, λ1)⊕ (1− w).Gamma

(
λ1,

1

λ1

)
,

with w being the mixing coefficient to be determined appropriately, and ⊕ denotes
that the distribution (and consequently the pdf) is the mixture of the constituent
random variables. Therefore

P

(
T

υν
≤ x

)
= w.cdf of IG(1, λ) + (1− w).cdf of Gamma

(
λ1,

1

λ1

)
.

To obtain the appropriate value of w we equate the third central moments:

E

(
T

υν

)3

= E[IG(1, λ1)]
3 + (1− w)E

[
Gamma

(
λ1,

1

λ1

)]3
.

This gives

k3(T/(υν)) = w.k3[IG(1, λ1)] + (1− w).k3

[
Gamma

(
λ1,

1

λ1

)]
,

Noting that k3[IG(1, λ)] = 3
λ2 and k3[Gamma

(
λ, 1

λ

)
] = 2

λ2 , we get

w =
λ2
1

υ3ν3
k3(T )− 2. (15)

The simplicity of the mixture approximation is in approximation of percentiles
in the fact that they can be also obtained by simple mixtures (see Chaubey, 1989)).
Thus

tα = (υν)[wX(1)
α + (1− w)X(2)

α ],

where X
(1)
α denotes the percentile of IG(1, λ1) and X

(2)
α denotes that for the random

variable Gamma(λ1, 1/λ1).

5. Comparison of the Approximations

For a qualitative judgement of the three approximations, the exact distribution
function and corresponding approximations were computed for a selection of values
of the sample size n and the exact value of the CV as given in terms of υ. These are
accompanied by a boxplot of the corresponding errors. Figures 1-4 represent these
for sample sizes 10, 20, 30 and 50 respectively. From the graph of the distribution
functions, it is difficult to discriminate between different approximations; but the
error plots seem quite useful. We also compare the exact values of the percentiles
for different values of υ0 and α = .01 and .05. These values are displayed in the
table below. The computations are performed using numerical integration routines
from R (see R Development Core Team, 2005).
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Table 1: A comparison of the mixture approximation for the
percentiles of the test statistic T

υ = 0.1, α = 0.05

n = 10 n = 20 n = 30 n = 50

Exact 1.907226 1.604352 1.481422 1.364071
IG Approx. 1.928325 1.620498 1.493704 1.372344

Gamma Approx. 1.906014 1.602906 1.480233 1.363272
Mixture Approx. 1.908313 1.604630 1.481531 1.364133

υ = 0.3, α = 0.05

Exact 1.959070 1.638569 1.508182 1.383821
IG Approx 1.978577 1.653179 1.519290 1.391281

Gamma Approx 1.956529 1.634673 1.504930 1.381517
Mixture Approx 1.962573 1.639464 1.508575 1.383957

υ = 0.1, α = 0.01

Exact 2.470374 1.940409 1.736048 1.547014
IG Approx 2.602469 2.009526 1.782771 1.575322

Gamma Approx 2.453586 1.932056 1.730547 1.543780
Mixture Approx 2.468925 1.939647 1.735577 1.546775

υ = 0.3, α = 0.01

Exact 2.590431 2.008769 1.786265 1.581772
IG Approx 2.705068 2.069618 1.827709 1.607070

Gamma Approx 2.543698 1.985152 1.770659 1.572561
Mixture Approx 2.587937 2.007021 1.785142 1.581184
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Figure 1: Exact and Approximate Distributions of T and Their Error Analysis for
n = 10
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Figure 2: Exact and Approximate Distributions of T and Their Error Analysis for
n = 20
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Figure 3: Exact and Approximate Distributions of T and Their Error Analysis for
n = 30
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Figure 4: Exact and Approximate Distributions of T and Their Error Analysis for
n = 50
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From the graphs of the distribution functions in Figures 1-4, it seems that all
the three approximations provide similar qualitative performance. However, the
accompanying error plots show that the IG approximation is not as good as the χ2

approximation for small υ. For larger values of υ, IG approximation is quite good,
however, mixture approximation may provide substantial improvement over both
of them providing a very accurate approximation. The mixture approximation may
also provide a fairly accurate (up to two decimals) approximation to the percentiles.
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