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Abstract 
The statistical methods for ranking and selection were introduced and used in the design 

of phase 2 oncology clinical trials, where subjects were randomized to several promising 

treatment arms with the goal to select one arm for further development. The methods 

were generalized to selection designs with time-to-event endpoint and different designs 

with binary endpoint. In order to facilitate its wider application, there need readily 

applicable methods for sample size calculation. For classical selection designs with 

binomial endpoint, we show that the sample size can be calculated exactly using a SAS 

program. For selection designs with time-to-event endpoint, we adapt Bechhofer’s 

method for normal endpoint and estimate sample size of total number of events; and we 

further show via simulation the designs have approximately the specified correct 

selection probability. For a class of flexible selection designs with binary endpoint, we 

point out a possible flaw of the minimum advantage requirement based on response rate, 

and propose a new class of designs based on the number of observed responses and 

calculate sample size with specified correct selection probability. 
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1. Introduction 
 

There are numerous challenges in conducting oncology clinical trials with limited 

resources, time, and patient population. One common practice is to screen a drug 

candidate with several promising dosing regimens in a Phase II setting using randomized 

selection designs and advance the best regimen for further development. 

 

Bechhofer (1954) pioneered research on the selection designs and Gibbons et al. (1977) 

published a book on the topic. Simon et al. (1985) introduced the methodology to 

oncology field. Liu et al. (2006) summarized different kinds of selection designs in 

cancer trials. In addition, Liu et al. (1993, 1995) studies selection designs for time-to-

event endpoint. Sargent & Goldberg (2001) proposed a flexible selection design. 

Steinberg et al. (2002) considered the selection designs with an early selection at an 

interim analysis. Cheung (2009) studied selection designs with an active control. Thall et 

al. (1989) proposed a two-stage design with selection at the first stage and comparison to 

the control at the second stage. Wason et al. (2012) and Wu et al. (2013) further studied 

multi-stage designs with interim treatment selection at the first stage. Jung (2013) 

discussed randomized phase 2 oncology clinical trials in more details.  

 

In Section 2 for selection designs with binary endpoint, we show that the sample size can 

be calculated using exact binomial distribution for classical binary endpoint and a 

                                                 
1
  Address correspondence to Zuoshun Zhang, Celgene Corporation, 33 Technology Drive, 

Warren, NJ 07059, USA; E-mail: zzhang@celgene.com 

JSM 2013 - Biopharmaceutical Section

2580



computational program using SAS is provided.  We verify sample sizes in Simon et al. 

(1985) and clarify a comment in Liu (2006). In Section 3, we review selection designs 

with normal endpoints from Bechhofer (1954) and provide constants for a range of 

correct selection probabilities. Section 4 is devoted to sample size estimation for selection 

designs with time-to-event endpoint. Using Bechhofer’s theory and normal 

approximation to survival distribution, we provide sample size estimation and verify the 

correct selection probability with simulation examples. The method is applicable where 

fixed number of events is required and is an extension to Liu et al. (1993, 1995, 2006) 

where fixed accrual time and follow-up time are required. In Section 5, we point out a 

dilemma in a flexible selection design proposed by Sargent & Goldberg (2001). As an 

alternative, we propose a new class of selection designs with minimum advantage 

requirements and calculate sample sizes. 

 

2. Selection Designs with Binary Endpoint 

 
This section follows the approach in Simon et al. (1985), which was reviewed in Liu et 

al. (2006). For a trial with arms, let the ordered response rate (range from 0 for no 

response and 1 for 100% response) be: 

  

The aim is to select the best arm (ie, the arm with the highest response rate ) with 

high probability. Assuming a fixed advantage  for the best arm over all the other 

arms, the least favourable configuration is: 

  

In the following, we consider designs with  arms and assume arm  is the 

best arm to be selected.  

 

Let the correct selection probability be denoted as CSP, which has a lower bound . We 

consider the cases where  The sample size determination uses the 

following criteria: for fixed , and , 

  CSP ≥ P for selecting the superior arm (Arm ). 

  

There are two scenarios of observed outcomes for correct selection of Arm : 

1) The observed response rate in Arm  is the highest among all arms, ie, 

 

Then the correct selection probability is the outcome probability. 

2) The observed response rate in Arm  and the another arms are the highest, ie, 

    

Then the correct selection probability is of the outcome probability. 

 

Simon et al. (1985) calculated sample sizes for  and  (Table 1) 

and Liu et al. (2006) made an arguable comment on Simon’s result. Liu et al. thought 

Simon et al. used normal approximation and the real CSP ranged from  to . We 

verified that the CSP range from  to used only cases in Scenario 1). If cases in 

both Scenario 1) and 2) are used as in Simon et al. (1985), the CSP will be above  

For an example in two arm selection design, we plot correct selection probability (CSP) 

with sample size per arm (Figure 1). A SAS program for sample size calculation is 

attached in Appendix I. 
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Table 1: Sample Size per Arm for Binary Endpoint with  Arm Selection Designs and 

Correct Selection Probability 0.90 with Response Rate Difference 0.15 

 

Response Rates Sample Size per Arm (n) 

      

0.10 0.25 21 31 37 

0.20 0.35 29 44 52 

0.30 0.45 35 52 62 

0.40 0.55 37 55 67 

0.50 0.65 36 54 65 

0.60 0.75 32 49 59 

0.70 0.85 26 39 47 

 

 

 
 

Figure 1: Plot of Correct Selection Probability (CSP) over Sample Size per Arm for Two 

Arm Selection Designs with Binary Endpoints and Response Rate 0.20 and 0.35  

 

3. Selection Designs with Normal Endpoint 

 
Bechhofer (1954) pioneered the research on the selection designs with normal endpoint. 

Gibbons et al. (1977) summarized results on selection designs. Let the clinical trial have 

 treatment arms and each arm enrol  subjects. The outcome for each subject be 

normally and independently distributed with mean and variance , ie 

  where   

Let the means be ordered as The selection design 

intended to select the largest mean  with high correct selection probability (CSP) 

assuming its superior to other means by at least . The least favourable configuration is 
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  .  

 

For fixed  (number of treatment arms) and  (mean difference), the sample size can be 

determined exactly to achieve the desired correct selection probability (CSP). Bechhofer 

(1954) gave a formula for the per arm sample size by 

   

where is the constant determined by the following equation: 

 

 

with as the cumulative distribution function of the 

standard normal distribution and  its density function. The 

constant can be calculated using numerical integration (eg, SAS or R). In Table 2, we 

list constant  for  and  We copied constant  for 

 and  from Bechhofer (1954) and calculated it for  using 

a SAS program. The sample size per arm can be calculated using the constants. Eg, in 

case of arms, and  the sample size per arm is  

 

Table 2: Constant for Selecting the Normal Distribution with the Largest Mean 

 

Correct Selection 

Probability (CSR) 

Constant  

   

0.95 2.3262 2.7101 2.9162 

0.90 1.8124 2.2302 2.4516 

0.85 1.4658 1.9079 2.1394 

0.80 1.1902 1.6524 1.8932 

 

4. Selection Designs with Time-to-Event Endpoint 

 
Liu et al. (1993, 1995, 2006) studied selection designs in Phase II trials with time-to-

event endpoint and calculated sample sizes by fitting Cox proportional hazards model 

with exponential survival distribution and uniform censoring in studies with fixed 

enrolment and follow-up period. In this note, we provided an alternative design with 

fixed number of events using an asymptotic method for sample size estimation with 

constants calculated in the previous section for normal endpoint.  

 

For a selection trial with  arms and a time-to-event (survival) endpoint, we assume the 

endpoints in arm  follow exponential distributions with constant parameters 

(hazard rates) respectively. The selection trial is to be designed with high 

probability to select the best arm, ie, the arm with the smallest hazard rate. Our aim is to 

estimate sample size based on the total number of events from all arms combined (Note: 

this is different from binomial endpoint). For the sample size estimation, we assume all 

subjects will be followed to their events (eg, no censoring allowed). We will estimate 

sample size first and subsequently use simulations to demonstrate that the designs have 

the specified correct selection probability (CSP).  
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For designs with arms, assume the superior arm have a fixed advantage over all other 

arms, ie, the hazard ratios of the superior arm over other arms are at most  

The least favourable configuration is:  

 . 

Let  be the number of subjects in each arm. Then the estimation of log hazard for each 

arm will act like mean estimation for the normal case, which follows normal distribution 

asymptotically: 

 

For a given correct selection probability (CSR), let  be the constant as defined in the 

previous section for the normal endpoint. The parameters satisfy equation , 

where  as one sample mean difference and  as 

one sample variance respectively. The estimated total number of events for all arms 

satisfying the equation  

. 

 

Using the above formula, we calculate total number of event for and  arms and 

for hazard ratios between the superior arm and other arms range from  to 0.80 (Table 

3). In general, sample sizes using our method are consistent with Liu et al. (1993, 1995, 

and 2006). The case with a hazard ratio of 0.667 in Table 3 below is identical to the case 

with a hazard ratio of 1.5 from Liu et al. (2006). For and  arms, they provided 

number of events for the worst arm as 24, 36 and 43 respectively; while our calculation 

provide the total number of events for all arms as 40, 91 and 147 respectively.  

 

Table 3: Total Number of Events for Selection Designs with Time-to-Event Endpoints 

and Correct Selection Probability (CSP) 0.90 and and  Arms 

 

No. of 

Arms  

Total Number of Events  

for Hazard Ratio (Arm   vs. Arm  

      

 132 80 52 40 26 14 

 300 181 118 91 58 32 

 483 291 189 147 93 51 

 

Using simulations, we demonstrated that the Correct Selection Probability (CSP) for 

selection designs with sample size in Table 3 ranges from 0.89 to 0.91. We assume that 

Arm 1 to have median survival 6 months, enrollment evenly in 12 months, about 

25% more patients enrolled than the total number of events, and the trial is followed to 

the required total number of events. 

 

In Table 4, we present estimated CSP from simulation for hazard ratio  to  

For each case, we performed 5000 simulated trials with follow-up to the required number 

of events for estimating CSR. 

 

We also estimate total number of events for selection designs with correct selection 

probability 0.95 and 0.85. The sample sizes are presented in Table 5 and 6.  
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Table 4: Correct Selection Probability (CSP) by Simulation for Designs in Table 3  

 

No. of 

Arms 

Hazard Ratio (Arm   vs. Arm  

    

Ne/Np CSP Ne/Np CSP Ne/Np CSP Ne/Np CSP 

 132/166 0.90 80/100 0.91 52/66 0.90 40/50 0.90 

 300/375 0.90 181/228 0.90 118/150 0.91 91/114 0.89 

 483/604 0.89 291/364 0.91 189/240 0.89 147/184 0.90 

Ne/Np = total number of events/total number of subjects.  

 

Table 5: Total Number of Events for Selection Designs with Time-to-Event Endpoints 

and Correct Selection Probability (CSP) 0.95 and and  Arms 

 

No. of 

Arms  

Total Number of Events  

for Hazard Ratio (Arm   vs. Arm  

      

 218 131 86 65 42 23 

 443 267 174 135 85 46 

 684 412 268 207 131 71 

 

Table 6: Total Number of Events for Selection Designs with Time-to-Event Endpoints 

and Correct Selection Probability (CSP) 0.85 and and  Arms 

 

No. of 

Arms  

Total Number of Events  

for Hazard Ratio (Arm   vs. Arm  

      

 87 52 34 27 17 9 

 220 132 86 67 42 23 

 368 222 144 112 71 39 
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5. Selection Designs for Binary Endpoint with Minimum Advantage 

Requirement 
 

Sargent & Goldberg (2001) proposed a new type of selection designs which selects the 

best arm only if its observed response rate over other arms is above a fixed threshold d, 

and if the advantage , other factors will be considered for the selection. They called 

those designs as flexible designs and considered  Such selection 

designs allow flexibility in decision making. Liu et al. (2006) renamed them as designs 

with minimum advantage requirements.  

 

Our calculations indicate that correct selection probability (CSP) does not monotonously 

increase with sample size when the threshold  is based on response rates. Figure 2 plots 

the case for  arms, response rates  and  and the minimum 

advantage . When sample size increases from  to ,  to ,  to , CSP 

decreases. 

 

Figure 2: Plot of correct selection probability (CSP) over sample size per arm for two 

arm selection designs with binary endpoint and response rate 0.35 and 0.20, the minimum 

advantage requirement in difference of the observed response rate  

We present an alternative selection design where "Minimum Advantage Requirements" is 

based on number of observed responses rather than based on response rate. With the 

specified correct selection probability, we give an exact method to calculate the sample 

sizes based on binomial distributions. We suggest selecting the observed best arm if the 

number of observed response is more than a pre-fixed non-negative integer . For the 

minimum advantage requirement  and  arms, Tables 7 shows the 

sample sizes per arm.  Figure 3 displays relationship between CSP and sample sizes for 

. All calculations are based on the exact binomial distribution implemented in 

a SAS program (Appendix II).  
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Table 7: Sample Size per Arm for Response Rate Difference  and the 

Minimum Advantage Requirement  in the Observed Response Between 

the two Arms 

Response Rates n per Arm 

p1 p2 

Correct Selection Probability 

0.90 0.85 0.80 

0.10 0.25 48 40 34 

0.20 0.35 57 46 39 

0.30 0.45 63 50 41 

0.40 0.55 65 52 43 

 

 
 

Figure 3: Plot of correct selection probability (CSP) over sample size per arm for two 

arm selection designs with binary endpoints and response rate 0.35 and 0.20 and the 

minimum advantage requirement in the difference of observed responses  for 

selection 

 

6. Discussion and Conclusion 

 
Randomized selection designs are useful when there are more than one treatment 

regimens to select. If there is a superior arm, the design provides high probability for its 

selection. In this note, we make additional sample size calculations using SAS program 

with exact binomial distribution for classical selection designs to supplement the work by 

Simon et al. For selection designs with survival endpoints, it is generally desirable to 

follow the trial to a fixed number of events for all arms. By assuming exponential 
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distribution of survival time and adapting Bechhofer’s method on selection designs with 

normal endpoint, we develop a method to estimate sample size of total number of events 

for all arms and further verify the design have desirable correct selection probability 

using simulations. We propose a new class of flexible designs with binary endpoints and 

give an exact method calculating sample size with specified correct selection probability 

based on binomial distributions. 
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Appendix I 
 

A SAS program for calculating sample size per arm in selection designs with binary 

endpoint in Section 1. The parameter values assigned in the macro variables can be 

changed for other cases.  

 

%let K = 3;     * Number of treatment arms; 

%let p0 = 0.20;    * Response rate in the (K-1) inferior arms (Arm 1 to K-1); 

%let delta = 0.15;  * Response rate for the superior Arm K is p0 + delta; 

%let cspmin = 0.90;  * Lower bound of correct selection probability (CSP); 

%let nmax = 100; * Upper bound of sample size per arm; 

 

data dd1; 

   do n=1 to &nmax; 

      csp1=0; 

      do i=0 to n; 

        if i=0 then fi=cdf('BINOMIAL',i,&p0,n)**(&K-1); 

        else if i>0 then fi=cdf('BINOMIAL',i,&p0,n)**(&K-1) –  

cdf('BINOMIAL',I 1,&p0,n)**(&K-1); 

   csp1 = csp1 + fi*(1 - cdf('BINOMIAL',i,&p0+&delta,n)); 

     end; 

     output; 

   end; 

run;   

 

data dd2; 

   do n=1 to &nmax; 

     csp2=0; 

     do i=0 to n; do j=1 to &K-1; 

       if i>0 then g = fact(&K-1)/(fact(j)*fact(&K-1-j))*(cdf('BINOMIAL', i-1,&p0,n) 

        **(&K-1*(pdf('BINOMIAL',i,&p0,n)**j)*pdf('BINOMIAL',i,&p0+&delta,n)/(j+1); 

       else if i=0 and j=(&K-1) then g = (pdf('BINOMIAL',i,&p0,n)**j) 

         *pdf('BINOMIAL',i,&p0+&delta,n)/(j+1); 

        else if i=0 and j<(&K-1) then g = 0; 

    csp2 = csp2 + g; 

     end; end; 

     output; 

  end; 

run; 

 

data dd3(keep=n csp1 csp2 csp);   

  merge dd1 dd2;   

  by n;  

  csp = csp1 + csp2; 

  if csp>=&cspmin then output; 

run; 

 

proc print; run; 
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Appendix II 

 
A SAS program for calculating sample size of selection designs with minimum advantage 

requirement for binary endpoint and 2 arms in Section 5. The parameter values assigned 

in the macro variables can be changed for other cases.  

 

%let K=2;    * Number of treatment arms (K=2); 

%let p0=0.20;   * Response rate in the inferior arm; 

%let delta=0.15; * Response rate for the superior is p0 + delta; 

%let cspmin=0.90; * Lower bound of correct selection probability (CSP); 

%let m=2;   * Selecion the superior arm if the response difference > m;  

%let pho=0;        * Weight for ambiguous region probability (0<pho<1, default value 0); 

%let nmax=100; * Upper bound of sample size per arm; 

 

data dd1;  

  do n=1 to &nmax; 

    do x=0 to n; do y=0 to n; 

      pxy = pdf('BINOMIAL',x,&p0 + &delta,n)*pdf('BINOMIAL',y,&p0,n); 

      output; 

    end; end; 

  end; 

run; 

 

data dd2; 

  set dd1; 

  if ((x-y) > &m) then corr = pxy; 

  else if (-&m =< (x-y) =< &m) then ambg = pxy; 

run; 

 

proc sql; 

  create table dd3 as select *, 

    sum(corr) as csp1,  

    sum(ambg) as csp2 

  from dd2 

  group by n 

  order by n; 

quit; 

 

proc sort data=dd3 out=dd4(keep = n csp1 csp2) nodupkey; 

  by n; 

run; 

 

data dd5;  

  set dd4;  

  csp = csp1 + csp2*&pho; 

  if csp >= &cspmin then output; 

run;  

 

proc print; run; 
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