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Abstract 
CHAID is one of the most established and popular algorithms for building tree models. 

Target variable can be either continuous or categorical while the predictors must be all 

categorical. Any continuous predictors are binned before using them in the model. When 

generating the model, each node can be split into multiple children nodes. The original 

algorithm is effective for small and medium data sets. However, generating tree models 

on distributed data containing large number of records and predictors requires a new 

approach. We present a distributed algorithm for CHAID tree implemented in the 

MapReduce model of distributed computation. It executes the same number of data 

passes as the original approach, but the computation in each data pass is fully parallelized 

taking advantage of all available computational resources. We demonstrate scalability of 

the distributed algorithm through experiments on a Hadoop cluster. 
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1. Introduction 

 
CHi-squared Automatic Interaction Detection (CHAID) is a well established and popular 

method for building tree models. It can be used for prediction and generate easy to 

interpret rules that constitute a knowledge base for decision support. It has been applied 

to numerous applications in different domains. 

 

Given a categorical or continuous target variable and a number of categorical attributes or 

predictors, CHAID constructs a tree model by iteratively partitioning input training data 

according to categories of the selected predictors. The root node represents the whole 

data set while each successive node in the tree represents a subset of the input training 

data records. Each node is split into multiple children nodes by selecting a predictor and 

merging the predictor’s categories into groups that define the new nodes. Record data in 

the parent node are divided among the children nodes according to the corresponding 

merged categories of the selected predictor. When splitting a node, CHAID algorithm 

selects a predictor and merges its categories so that the values of the target variable are 

differentiated as much as possible among divided record data in its children nodes. The 

algorithm was first proposed in the seminal paper [1] by Kass. 

 

CHAID trees are traditionally built on training data which is present at a single location. 

With emergence of massive and distributed data, data mining algorithms that can handle 

multiple data sources without the need to merge them before analysis, have drawn great 

attention.  
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Extension of traditional CHAID to the distributed data sources has to efficiently address 

the following performance issues: 

(1) Passing massive and distributed data sources to obtain contingency table (i.e. 

cross-table) for each predictor and each tree node. 

Each cross-table for data with categorical target variable contains number of 

records corresponding to every combination of predictor categories with the 

target categories. In order to compute cross-tables efficiently, the counting of 

records must be performed concurrently on multiple data sources.  

(2) Merging categories for each predictor to find the best split predictor for each tree 

node. 

With the cross-table computed for each predictor and tree node combination, 

predictor categories are compared pairwise in order to merge the categories with 

similar target variable distribution. The merging process is repeated until a 

stopping criterion is met. The final merged categories constitute perspective 

predictor categories for splitting the given node. This computation is time 

consuming when the number of predictors and tree nodes becomes large. 

Therefore, parallel calculation is needed in order to improve the algorithm 

performance. 

 

The initial work on extending traditional CHAID was done by Ouyang et al [2] and [3]. 

Their extension addresses the performance issue (1) above. Every local site collects local 

cross-tables and sends them to the central site. The central site forms global cross-tables 

and performs category merging and node splitting. However, the performance issue (2) 

above is not addressed. Computation on the central site becomes a performance 

bottleneck if the number of predictors and/or tree nodes is large. Increasing number of 

local sites also adversely affects the performance on the central site. 

 

We propose a new algorithm extending traditional CHAID to the distributed data sources. 

It addresses both performance issues (1) and (2) thereby achievies full parallelism and 

scalability. 

 

In Section 2 we present a MapReduce implementation of the parallelized CHAID 

describing an efficient approach for using available computation resources. Sub-sections 

clarify the role of mappers, reducers and the controller. Also provided is an example and 

experiment results. In Section 3 we state the conclusions. 

 

2. MapReduce Implementation 

 
For each node in the process of building a tree model and each predictor in the data set, 

we can aggregate a cross-table for each local data source. Merging of local cross-tables as 

well as merging of categories for each pair of predictor and tree node can be executed 

independently from the other predictors and tree nodes. This makes it possible to 

distribute computations across multiple computing resources. 

 

First, the massive and distributed data is processed by the local computing resources. 

Then local cross-tables are merged into global ones according to the two-dimensional 

keys each formed by a predictor and a tree node. These keys correspond to independent 

computation tasks, which can be accomplished using multiple computing resources. Our 
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approach to generating CHAID trees is very efficient and highly scalable regarding both 

computational issues encountered in the distributed setting. 

 

Given are distributed data sources as well as an operating system capable of accessing 

data and running the model building program. An example of such operating 

environment is Hadoop with the MapReduce interface as described in [4] by Dean et al. 

We use it as a concrete example as the implementation is similar for comparable systems. 

 

Under the MapReduce framework, jobs using multiple mappers and reducers fit perfectly 

for the parallel calculations. Given a partial tree model, all the leaf nodes (i.e. terminal 

nodes) in the last tree level are considered for splitting. Each mapper passes local data 

and collects local cross-tables as required, while each reducer merges local cross-tables 

and decides the best splitting points for a subset of predictors and nodes. The controller 

selects the best splitting predictor by comparing p-values across all predictors for each 

node, and determines whether the tree stops its growth. Since the tree grows iteratively 

level by level, a series of MapReduce jobs will be required. The number of jobs 

corresponds to the depth of the generated tree model. 

 

Figure 1 below represents the process steps in a flowchart. It starts by splitting the root 

node containing the whole data set. 

 
Figure 1: Flowchart for scalable CHAID tree growth process. 
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2.1 Mappers 
Under the MapReduce framework, mappers work on each data split (i.e. distributed data 

source) separately, and each mapper passes local data and performs its tasks as follows: 

1. Assign a record to a node according to the splitting rule computed in the previous 

data pass; 

2. Compute cross-tables for each predictor and each node in the given level 

separately. 

The output of each mapper consists of (key, value) pairs where key=key(predictor, node) 

encodes a predictor and a tree node, while value=value(table) contains the corresponding 

cross-table data. 

 

2.2 Reducers 
Multiple reducers are employed to maximize the parallel calculations, and each reducer is 

responsible for a subset of keys. For each key, a reducer first merges local cross-tables 

received from every mapper into the global cross-table. Next, it merges similar predictor 

categories according to the standard CHAID algorithm, as illustrated in the Figure 2. The 

resulting set of merged categories constitutes a set of splitting points for the 

corresponding predictor and the tree node. A p-value corresponding to the chi-square test 

for the cross-table with the selected predictor splitting points and target categories is also 

computed. 

 

The output of each reducer is a set of predictor splitting points and the p-value for each 

combination of predictors and tree nodes determined by the subset of keys processed by 

the reducer. 

 

 
 

Figure 2:  Flowchart for finding the set of predictor splitting points. 
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2.3 Controller 
The controller collects outputs from the multiple reducers, and selects the best splitting 

predictor by comparing p-values across all the predictors for each node. Then it checks 

the tree stopping rules to determine whether to initiate another map-reduce job to grow 

the next level of the tree. 

 

2.4 Example 
Figure 3 illustrates an example of the MapReduce job executed during a single data pass, 

which corresponds to the growth of one tree level. Without loss of generality, suppose we 

have 3 predictors (f1, f2, f3), 2 tree nodes (n1, n2), 2 mappers, and 2 reducers. Then the 

set of keys consists of 6 keys: (f1, n1), (f1, n2), (f2, n1), (f2, n2), (f3, n1) and (f3, n2). 

Each mapper generates all the keys, while each reducer collects identical subset of keys 

from every mapper. The keys are divided randomly and evenly across reducers. If subset 

of keys for reducer 1 is {(f1, n1), (f1, n2), (f2, n1)}, then the subset of keys for reducer 2 

is {(f2, n2), (f3, n1), (f3, n2)}. 

 

Additional notations used in Figure 3 are the following:  

  Local cross-table for the i-th predictor, j-th node, and k-th mapper 

   Set of merged categories, i.e. splitting points, for the i-th predictor and j-th node 

   p-value corresponding to the splitting points for the i-th predictor and j-th node 

 
Figure 3: MapReduce processing example for a single data pass. 
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2.5 Experiment Results 
For testing purposes we generated several simulated data sets all containing 200 

predictors and with different number of records. The total sizes of data sets increased 

from 64M to 256G in multiples of 4. The intent was to show scalability of the CHAID 

MapReduce algorithm.  

 

Computing resources used in experiment include a Hadoop cluster with 7 data nodes, 

each with 4 physical cores and 15G RAM. In addition there is 1 name node and 1 server 

node, each with 2 physical cores and 7G RAM. 

 

In total there are 32 mappers and 16 reducers available for processing. Given that the size 

of each data split processed by a single mapper is 64M, the available 32 mappers can 

process up to 2G of data in parallel. 

 

 
 
Figure 4: Time vs. Data size for running MapReduce CHAID on a Hadoop cluster. Both 

axes are in log scale. 

 
Figure 4 shows that the algorithm running time for data sets with size below 1G remains 

almost constant. This is largely as expected because parallel data processing capacity of 

the involved mappers is about 2G. In other words, when mappers can process all data in 

parallel, their processing time is the same as for a single mapper processing its data split 

of 64M. In addition, there are 16 reducers running in parallel so that the issue due to 

merging categories and finding the best splits does not adversely affect the running time. 

 

The running time grows linearly for data sets with size above 4G. Sequential processing 

begins for data sizes above 2G due to mappers being used beyond their parallel 

processing capacity. 
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3. Conclusions 

 
CHAID algorithm can be fully parallelized within the MapReduce framework. In 

addition to processing input data in parallel by mappers, the intermediate results can also 

be processed in parallel by reducers. This renders the algorithm efficient and scalable. 

Increasing the size of the computer cluster allows processing of proportionally larger 

amount of data within almost constant time, while the time grows linearly in the number 

of records when processing data beyond the system parallel processing capacity. 

 

Presented parallel CHAID algorithm generates tree models explicitly for categorical 

target variables. Its extension to the continuous target variables is straightforward. 
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