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Abstract
Nearly 20% of very preterm infants (gestational age < 32 weeks) will experience severe intra-

ventricular hemorrhage (IVH stage 3 or 4)(Stoll 2010). Prophylactic use of indomethacin has been
shown to reduce the risk of severe IVH but this intervention’s side effects require its judicious use
on only those infants at the greatest risk of severe IVH. Current research suggests infants with
increased cerebral oxygenation may be at greater risk of severe IVH (Noori 2013) and neonate
cerebral sensors can easily and continuously measure this biometric resulting in high dimensional
data sets. In this work we employ a Bayesian prediction model on the cerebral tissue oxygenation
index (c-TOI) measures of 22 very preterm infants (5 experienced IVH) continuously monitored for
72 hours and evaluate the model’s performance via leave-on-out-cross validation at 5, 10, and 12
hours. By constructing conditional densities of this biometric at each time point for both groups of
infants we obtain conditional group assignment probabilities that are sequentially updated at each
time point. At 12 hours, this model has 80% sensitivity and 82% specificity.
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1. Introduction

Very preterm infants, born prior to 32 weeks gestational age, face a host of challenges as
their bodies complete the development process that typically occurs in utero. These infants
face higher rates of intra-ventricular hemorrhage (IVH), necrotizing enter colitis (NEC),
chronic lung disease, sepsis, and other morbidities than their preterm, late preterm, and
term counterparts (Volpe 2001, Russel 2007).

Within the lateral ventricles lies a metabolically highly active tissue, the germinal ma-
trix, which is the site where hemorrhage occurs in the immature brain. The immature fragile
capillary bed of the germinal matrix is prone to rupture leading to IVH as a result of a host
of insults such as ischemia-reperfusion injury.

About 90% of IVH cases happen within the first 72 hours of life and, while an infant
with IVH may present with seizure, such hemorrhages are often initially asymptomatic
and are often only detected on routine screening by cranial ultrasound. Severity of IVH
can range from mild (grade I and II) with no major complications, to severe (grade III
and IV) which may result in higher rates of mortality or long term brain injury including
hydrocephalus and cognitive disability.

In a large, multicenter study, Stoll et al. (2010) collected data on 9575 very preterm
infants from January 1, 2003 to December 31, 2007. Incidence of severe IVH among this
population was about 20% overall with decreasing incidence estimates of 38%, 36%, 26%,
21%, 14%, 11%, and 7% for increasing gestational ages of 22, 23, 24, 25, 26, 27, and 28
weeks, respectively (see Figure 1). Clearly, reducing the incidence of IVH and its effects
among this population is a major focus of the medical community.
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Figure 1: IVH incidence estimates among very preterm infants by gestational age from
Stoll et al. (2010).

Once IVH occurs, there are no effective treatments therefore, prevention of IVH is
the key in reducing IVH-associated mortality and morbidities. While prophylactic use of
inodomethacin has been shown to reduce the incidence of severe IVH in very preterm
infants if administered within the first 12-24 hours (Ment 1985, Bada 1989, Schmidt 2001),
the lack of improvement in neuro-developmental outcome at 18 months (Schmidt 2001) has
resulted in abandoning of this strategy by most neonatologists. The exact reasons for the
lack of long-term benefit of prophylactic indomethacin despite a significant reduction of
severe IVH, a major risk factor for poor neurodevelopmental outcome, are not known. It is
possible that indiscriminate exposure of the whole population to a medication with known
adverse effects (including decreased cerebral blood flow) would cancel out the beneficial
effect of reducing IVH. Therefore, identifying the very preterm infants at greatest risk for
severe IVH and administering prophylactic indomethacin to this selective group rather than
to every very preterm infant will likely tip the risk/benefit ratio in favor of this treatment.

It is known that cerebral blood flow (CBF) markedly increases over the first few days
after birth (Meek 1998, Kluckow 2000a, Kehrer 2005). Several studies have documented
an early ischemic period in preterm infants who later develop IVH (Meek 1999, Kluckow
2000b, Kissak 2004, Sorensen 2008, Verhagen 2010, Noori 2013). Cerebral tissue oxygen
(c-TOI) saturation has been shown to be lower in preterm infants who develop IVH com-
pared to those who do not (Sorensen 2008, Verhagen 2010, Noori 2013). Kluckow and
Evens showed a rise in superior vena cava flow (a surrogate for CBF) before occurrence of
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IVH. Noori et al demonstrated that very preterm infants with low CBF develop IVH only
after improvement in cardiac function and increase in CBF.

2. Proposed Prediction Model

Let Sl define the event that a subject belongs to group l for l = 1, . . . , s, let x(1), . . . , x(p)

be a set of p observations that arise in sequence from that subject, and let x(j)|Sl define the
conditional event of observing x(j) given the subject belongs to group l. Further suppose
the initial prior probability of belonging to group l is given by P (S

(0)
l ) and conditional

probabilities corresponding to the conditional events, P (x(j)|Sl), can be computed. Then
the posterior probability of belonging to group l having observed x(j) can be computed as

P (Sl|x(j)) = P (Sl|x(j−1))P (x(j)|Sl)∑S
l=1 P (Sl|x(j−1))P (x(j)|Sl)

(1)

Anderson and Dubnicka (2009) introduce the above sequential naı̈ve Bayes classifier and
demonstrate how P (x(j)|Sl) can be obtained when x(1), . . . , x(p) are discrete. In this paper,
we propose a modification to (1) for use with continuous x(1), . . . , x(p) and demonstrate its
use and discuss its performance using the c-TOI measures obtained in Noori (2013) to
predict very preterm infants at risk of severe IVH.

2.1 Sequential Naı̈ve Bayes Classifier for Continuous Data

Continuous data can be thought of as observations drawn from a population with an unob-
servable continuous probability density function, f(x). Using observed data x(1), . . . , x(p),
one can compute a kernel density estimate, f̂h(x), where h > 0 is the bandwidth, a smooth-
ing parameter used in estimating the underlying probability density function, which allows
for inference about the population. Clearly, observations are less likely to be drawn from
the tales of f(x) then from its higher density areas. This leads us to propose the following
modification to 1 in order to define conditional probabilities for use in its computation.

Let f̂h(x(j)|Sl) be a kernel density estimate of a continuous probability density function
f(x(j)|Sl). That is to say f̂h(x

(j)|Sl) is a conditional density estimate of the lth group for
the jth observed quantity from a reference data set. Suppose a subject to be classified to a
group yields the quantity x

(j)
new. Then

Pc(x
(j)|Sl) =

⎧⎨
⎩
∫ x(j)

new
−∞ f̂h(x

(j)|Sl)dx
(j) if x(j)new < x

(j)
med∫∞

x
(j)
new

f̂h(x
(j)|Sl)dx

(j) if x(j)new ≥ x
(j)
med

where x
(j)
med = x such that

∫ x
−∞ f̂h(x

(j)|Sl)dx
(j) = 1/2. The logic behind the above

expression hails from the notion that the observation will lie near the median of conditional
density estimates of groups likely to have produced it and in the tails of conditional density
estimates of groups less likely to have produced it. Hence the tail areas above or below the
median provide reasonable information about the likelihood of the observation given each
group under consideration.

Equation (1) can be modified accordingly to produce a sequential naı̈ve Bayes classifier
for continuous data of the form

P (Sl|x(j)) = P (Sl|x(j−1))Pc(x
(j)|Sl)∑S

l=1 P (Sl|x(j−1))Pc(x(j)|Sl)
(2)
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2.1.1 Smoothing the Posteriors

Posterior estimates of group assignments resulting from (2) ignore the fact that each obser-
vation x(j) is only one of many, possibly thousands, of sequential observations and gives
complete control of the posterior to the current observation under consideration. This re-
sults in what can be large swings in the direction of the posterior probability from one
observation to the next. In order to put each sequential observation into its proper perspec-
tive, as one of many observations, we propose smoothing the posterior probability estimates
by using an exponential smoothing parameter 0 < ε < 1 together with the computed con-
ditional density estimate in equation 2.1

P (x(j)|Sl) = P (x(j)|Sl) +

((
P (x(j)|S1) + · · · + P (x(j)|Ss)

s

)
− P (x(j)|Sl)

)
∗ ε (3)

where ε =
(
1− 1

p

)
. The result of (3) is to shrink the movement of each posterior

probability so as to produce stable, meaningful posterior probabilities computed in the
context of all the data.

2.2 Posterior Probability Plots

A by-product of the sequential naı̈ve Bayes classifier is a sequence plot of the posterior
probabilities. Such a plot provides a picture of how the posterior probabilities change over
time and could potentially be useful for making real time decisions about treatment inter-
ventions. For example. a clinician may use these plots to continuously monitor a subjects
real time risk of IVH and incorporate that information along with other considerations to
make evidence based care decisions accordingly. Examples of these plots and their poten-
tial usage is given in section 3.1.

3. Example

In a study conducted by Noori et al (2013) at the University of Oklahoma Health Sciences
Center (OUHSC0) 22 very preterm inborn infants had their cerebral tissue oxygenation in-
dex (c-TOI) monitored every 10 minutes over the first 72 hours of life using near infrafed
spectroscopy (NIRS). This produced a high dimensional data set with 22 subjects each
yielding 421 c-TOI readings as well as other demographic measures. In addition to mon-
itoring c-TOI, subject heart rate and arterial blood flow were also monitored and a trained
neonatologist conducted a cranial ultrasound every 12 hours to detect presence and sever-
ity of IVH. The proposed sequential naı̈ve Bayes classifier with uniform piors on the two
groups (“at risk” and “not at risk”) were used to determine whether c-TOI profiles from the
subjects with and without IVH could be used to identify subjects at risk of IVH. Also of
interest was to investigate how well the proposed classifier performs at various time points,
especially those in which interventions might effectively be administered (i.e. before 12
hours).

3.1 Results

Over the 72 hour study period, 5 infants (22.7%) experienced severe IVH. Noori (2013)
reports that the mean time to IVH detection was 39.2 hours (95% CI=(31.6,46.8)) and that
the c-TOI profiles between the IVH and No IVH groups differed significantly. The pro-
posed sequential naı̈ve Bayes classifier was used to predict each infant’s “at risk of severe
IVH” status using data observed up to 5, 10, 12, and 72 hours and the classification rate
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Figure 2: Posterior probability plots for (a) a subject that didn’t experience IVH and was
correctly classified, (b) a subject that did experience IVH and was correctly classified, and
(c) a subject that didn’t experience IVH and was NOT correctly classified

was evaluated using leave-one-out cross-validation. The 72 hour sensitivity and specificity
were 100% (5/5) and 88.2% (15/17), respectively. Sensitivity and specificity at 5, 10, and
12 hours were all 80% (4/5) and 82.4% (14/17), respectively.

To visualize the classification process, posterior probabilities were plotted across all
time points for each subject. Figure 2 gives three such plots that demonstrate the utility of
this method. Plots (a) and (b) show how the posterior probabilities of two subjects that were
correctly classified as “not at risk” and “at risk”, respectively, began to diverge toward those
correct group assignments from very early on in the study. A clinician monitoring subject
(a) in real time would presumably have noticed the subjects c-TOI measures fit the profile
of the “not at risk” group and given no IVH intervention. Likewise, a clinician monitoring
subject (b) would presumably have noticed this subects c-TOI measures aligning with the
“at risk” group and considered IVH intervention. The plot in (c) belonged to a subject that
did not experience IVH during the study period but was identified as “at risk” by the pro-
posed classification method. Further investigation revealed severe IVH was detected in this
subject approximately one month after the study’s conclusion when the subject was read-
mitted to the hospital for NEC related complications. It is interesting to note the proposed
method picked up on this subjects predisposition to severe IVH even though it happened
outside of the usual 72 hour window.

4. Discussion

In this paper we present a sequential naı̈ve Bayes classifier for continuous data patterned
after a similar classifier proposed in Anderson and Dubnicka (2009) for discrete data. Prior
probabilities and kernel density estimates play an important role in using this classifier and
considerations such as the type of kernel used as well as the bandwidth can effect the quality
of the estimated conditional probability. For this paper, uniform priors, a gaussian kernel,
and bandwidth selected using Silverman’s rule of thumb (Silverman 1986) were used. Dif-
ferent bandwith estimates and kernel options such as epanechnikov, cosine, and biweight
are possible. While estimates are expected to be somewhat robust to kernel choice, esti-
mates are likely to be sensitive to the bandwidth selected. Incorporating more informative
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priors to account for gestational age, or other protective demographics such as maternal
antenatal steroid use remains a topic of future work. Also to be noted is the assumption
of independence between consecutive observations when using the naı̈ve Bayes classifier.
Clearly the repeated measures obtained over the course of the study mentioned in this pa-
per will be correlated. While the proposed method ignores this feature of the data, it is
anticipated that incorporating the correlation structure of the data will lead to improved
classification rates, making the proposed method, a lower bound of sorts on the classi-
fication rate. Zhang (2004) discusses the surprisingly good performance of naı̈ve Bayes
classifiers even when the assumption of independence is unwarranted. They point out one
reason for this may be that while the true probability may not be accurately estimated, the
classifier can still make the correct assignment as long as the correct group is the most
probable. Incorporating the correlation of the observations remains a topic of research for
this method.
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