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Abstract 
Monte Carlo methods were used to investigate the impact of covariate measurement error 
on the efficacy of propensity score (PS) methods. Seven factors were crossed in the 
simulation design:  number of covariates (3, 9, 15, 30), population treatment effect (0, .2, 
.5, .8), covariate relationship to treatment (.1, .2, .4), covariate relationship to outcome 
(.1, .2, .4), correlation among covariates (0, .2, .5), sample size (50, 100, 250, 500, 1000), 
and covariate reliability (.4, .6, .8, 1.0).  Each sample (5000 replications) was analyzed 
using seven PS methods (matching with and without a caliper, ignoring covariates, 
ANCOVA, PS as a covariate, stratification, and PS weighting). Outcome measures 
included treatment effect bias, RMSE, 95% CI coverage and width.  Results indicate that 
even low levels of measurement error lead to substantial statistical bias in treatment 
effect estimates and reduction in CI coverage. Such effects were evident across 
conditioning methods and effects increased with greater amounts of measurement error, 
larger numbers of covariates, and greater strength of relationship between the covariates 
and both the treatment assignment and the outcome variable 
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1. Measurement Error in Propensity Score Analysis 
 
Measurement error is a common phenomenon in many fields of study. Buonaccorsi 
(2010) stated, “in some sense, all statistical problems involve measurement error” (p. 1). 
Both continuous and categorical variables are often mismeasured, and whether random or 
systematic, measurement error can seriously impact the estimation of treatment effects 
and mislead their interpretation (Fuller, 1987). Although the study of measurement error 
has grown in recent years (Buonaccorsi, 2010; Fuller, 1987;), the examination of the 
impact of measurement error on propensity score analysis has been scarce. 
 
Steiner, Cook, and Shadish (2011) conducted a simulation study in which different 
degrees of unreliability were induced in the covariates used to create the propensity score. 
Baseline data were obtained from previous studies that had demonstrated the quality of 
covariates for reducing bias when there were a comprehensive number of covariates (23) 
and when a small subset of covariates (8) were shown to remove selection bias (Shadish, 
Clark & Steiner, 2008; and Steiner, Cook, Shadish, & Clark, 2010, respectively). By 
assuming initial reliability of covariates to be 1.00 and manipulating the amount of error 
variance added to the observed covariates, the researchers decreased the reliability of 
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each covariate (ρxx = .9, .8, .7, .6, .5) and calculated the impact of such measurement error 
on the bias reduction available through PS analysis. 
 

2. The Simulation Study 
 
The focus of the present simulation study was to determine the impact of covariate 
measurement error on propensity score analysis. A factorial design with eight completely 
crossed factors included the number of covariates (3, 9, 15, and 30), population treatment 
effect (0, .2, .5, and .8), covariate relationship to treatment (mean partial regression 
weight of 0.025, 0.050, and 0.100), covariate relationship to outcome (mean partial 
regression weight of 0.025, 0.050, and 0.100), correlation among the covariates ( 0, .2, 
and .5), sample size (50, 100, 250, 500, and 1000), covariate reliability (.4, .6, .8, and 
1.0), and propensity score conditioning method (matching without a caliper, matching 
using .25 SD of the PS as a caliper, ignoring the covariates, ANCOVA, PS as a covariate, 
stratification, and PS weighting).  Each condition simulated presented a continuous 
outcome variable, a binary treatment indicator, and both continuous and binary covariates 
(with a 2:1 ratio of continuous to binary covariables). For each condition, 5000 samples 
were simulated. The use of 5,000 estimates provided adequate precision for the 
investigation of the sampling behavior of point and interval estimates of the model 
coefficients. That is, 5,000 samples provided a maximum 95% confidence interval width 
around an observed proportion that is .014 (Robey & Barcikowski, 1992). This 
complete crossed factorial design provided a total of 60,480 conditions. All simulations 
were conducted using SAS/IML. 
 
 

3. Results 
 
The results of this simulation study were analyzed by computing η2 to estimate the 
proportion of variability in each of the outcomes (i.e., statistical bias, RMSE, CI coverage 
and width, and Type I error rate). Patterns of the mean values of the outcomes associated 
with the factors were further analyzed. 
 
3.1 Common Support 
The overall distributions of common support for sample size, reliability of covariate 
measurement, number of covariates, population regression weights for the propensity, 
population regression weights for the dependent variable, and correlation among 
covariates are described in Table 1. The distributions of common support for the trimmed 
samples are described in Table 2. 
 
The range of common support between treatment and control groups increased as the 
sample size increased from 50 to 250. There was a decrease in support range for N= 500 
and a slight increase as the sample size reached 1000. The non-support range (i.e., the 
range of non-overlap) almost equaled the support range at N = 50, and dramatically 
decreased as sample size increased. The optimum combination of the support/non-
support ranges occurred when N = 1000. As the reliability of the covariates increased, the 
range of the common support increased. However, the non-support range also increased 
as the reliability increased. These data suggest that an increase in reliability does not 
demonstrably impact the range of common support between propensity score groups.   
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Table 1: Distribution of Common Support Statistics 
Parameter Non-Support Cases Non-Support Range Support Range 
N    

50 0.44 0.42 0.41 
100 0.21 0.20 0.58 
250 0.08 0.10 0.61 
500 0.05 0.08 0.60 
1000 0.03 0.07 0.61 

 
 ρxx    

.40 0.15 0.17 0.54 

.60 0.16 0.17 0.56 

.80 0.17 0.18 0.57 
1.0 0.18 0.18 0.58 

 
N of Covariates    

3 0.04 0.08 0.36 
9 0.08 0.13 0.59 
15 0.15 0.16 0.68 
30 0.38 0.33 0.62 

 
 βxc  

  

0.025 0.12 0.15 0.48 
0.050 0.15 0.17 0.56 
0.100 0.22 0.20 0.64 

 
βyc    

0.025 0.16 0.18 0.56 
0.050 0.16 0.18 0.56 
0.100 0.16 0.18 0.56 

ρ12    
.00 0.13 0.16 0.51 
.20 0.16 0.18 0.57 
.50 0.20 0.19 0.60 

Note. ρxx = reliability, βxc = strength of relationship between covariates and treatment 
assignment,  = strength of relationship between covariates and the outcome, ρ12 = strength of 
relationship between covariates.  
 

Table 2: Distribution of Trimmed Propensity Scores 
Variable Mean Standard Deviation Minimum Maximum 

Non-Support Cases 0.16 0.25 0.004 1.00 

Non-Support Range 0.18 0.21 0.02 1.00 
Support Range 0.56 0.23 0.00 0.97 

 

The increase of the number of covariates included in the simulation model resulted in an 
increase in both support and non-support ranges up to 15 covariates, with support range 
increasing in greater increments.  However, after 15 covariates, the support range 
decreased and the non-support range more than doubled. As the relationship between 
covariates and treatment assignment increased, the support range increased in a linear 
fashion.  The non-support range also increased, but in smaller increments.  The optimum 
combination of the support/non-support ranges occurred when the weight parameter was 
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0.1. There was no change in either the support range or non-support range as the 
relationship between the covariates and the dependent variable increased, indicating that 
regression weights for the dependent variable have no impact on the support range of 
propensity score groups. Higher correlation among covariates provided a greater support 
range accompanied by a slight increase in non-support range as the covariate correlation 
increased. 

 
3.2 Balance 
Balance was estimated using the standardized mean difference for continuous covariates 
and the log odds ratio for binary covariates. Thus, in both types of covariates, a value of 
zero indicated a perfect balance between groups in comparison (e.g., treatment and 
control). Regarding PS conditioning methods, stratification showed the most serious 
unbalance (on average 0.59 and 0.44 for binary and continuous covariates, respectively, 
as presented in Table 3) followed by ignoring the covariates and matching without using 
a caliper. On the other hand, matching with caliper and weighting consistently showed 
excellent balance irrespective of design factors. PS ANCOVA achieved near zero balance 
when small sample size conditions were excluded. 
 

Table 3. Mean Balance of Covariates After Conditioning 
Conditioning method Binary (SD) Continuous (SD) 
Caliper Match -0.01 (1.11) 0.00 (0.02) 
No Caliper Match 0.27 (0.92) 0.23 (0.22) 
Ignore 0.26 (0.69) 0.24 (0.41) 
PS ANCOVA -0.00 (0.01) -0.00 (0.00) 
Weighting -0.03 (0.67) 0.01 (0.47) 
Stratification 0.59 (0.28) 0.44 (1.89) 

Note. For PS ANCOVA, two sample size conditions (N = 50 and N = 100) were excluded due to 
extreme outlying values.  
 
The number of covariates and sample size emerged as important factors associated with 
variability in balance (see Table 4) although the effects in general appear not substantial 
(that is, η2 < .06). Across conditioning methods, the number of covariates was negatively 
associated with balance: as the number of covariates increases, the covariates are less 
balanced overall. Saliently, PS ANCOVA was greatly impacted by the number of 
covariates, but the correlation between balance and the number of covariates was 
moderated by sample size. That is, when sample size was small (N = 50 and N = 100) and 
the number of covariates was large (k = 15 and k = 30), conditioning using the estimated 
PS as a covariate in the outcome model resulted in extreme unbalance in the covariates. 
When the sample size was 250 or larger, the negative effect of the number of covariates 
on balance was not observed. The effect of sample size was also apparent in stratification. 
Overall, the balance from stratification was poor, but was improved in larger sample 
sizes.  
 
 
3.3 Statistical Bias 
Bias in this study was computed as the difference between the estimated treatment effect 
and the corresponding population parameter established in the simulation. The overall 
distributions of estimated bias by conditioning methods are presented in Figure 1. It 
should be noted that the bias estimates over 20 observed in PS ANCOVA were excluded. 
 

JSM 2013 - Social Statistics Section

2421



Table 4. Mean Balance by Covariate Type, Sample Size, and Number of Covariates (k)
  Conditioning method 

Type of 
covariate N k 

Caliper 
Match 

No 
Caliper 
Match Ignore

PS  
ANCOVA Weight Stratification

Binary 50 3 0.00 0.09 0.11 -0.02 -0.02 0.86 
9 0.00 0.22 0.22 -0.04 -0.06 1.03 

15 -0.08 0.18 0.14 -4.37E+06 -0.13 1.04 
30 0.10 0.47 0.16 1.68E+16 0.17 0.96 

100 3 0.00 0.10 0.12 -0.01 -0.01 0.71 
9 0.01 0.26 0.26 0.00 -0.04 0.82 

15 0.01 0.31 0.32 -0.01 -0.05 0.86 
30 -0.34 0.09 0.08 -7.10E+07 -0.23 0.91 

250 3 0.00 0.11 0.12 0.00 0.00 0.47 
9 0.01 0.29 0.29 0.00 -0.02 0.50 

15 0.01 0.36 0.36 0.00 -0.03 0.53 
30 0.02 0.43 0.43 -0.01 -0.05 0.61 

500 3 0.00 0.11 0.13 0.00 0.00 0.34 
9 0.01 0.30 0.30 0.00 -0.01 0.35 

15 0.01 0.38 0.38 0.00 -0.02 0.37 
30 0.02 0.47 0.47 0.00 -0.04 0.43 

1000 3 0.00 0.12 0.13 0.00 0.00 0.24 
9 0.01 0.31 0.31 0.00 -0.01 0.24 

15 0.01 0.39 0.39 0.00 -0.02 0.26 
30 0.02 0.49 0.49 0.00 -0.03 0.31 

Continuous 50 2 0.00 0.12 0.14 0.00 -0.03 0.60 
6 0.00 0.16 0.17 -0.01 -0.03 0.72 

10 0.00 0.19 0.19 -0.77 0.01 1.50 
20 -0.01 0.23 0.18 -913.06 0.42 1.90 

100 2 0.00 0.13 0.16 0.00 -0.02 0.37 
6 0.00 0.19 0.20 0.00 -0.03 0.40 

10 0.01 0.24 0.25 0.00 -0.03 0.44 
20 0.00 0.25 0.26 -0.99 0.05 0.80 

250 2 0.00 0.15 0.18 0.00 -0.01 0.22 
6 0.00 0.22 0.23 0.00 -0.02 0.23 

10 0.01 0.28 0.28 0.00 -0.02 0.25 
20 0.01 0.32 0.33 -0.01 -0.02 0.31 

500 2 0.00 0.16 0.18 0.00 -0.01 0.15 
6 0.01 0.24 0.24 0.00 -0.01 0.16 

10 0.01 0.30 0.30 0.00 -0.02 0.17 
20 0.01 0.35 0.35 0.00 -0.02 0.21 

1000 2 0.00 0.17 0.19 0.00 0.00 0.11 
6 0.01 0.24 0.24 0.00 -0.01 0.11 

10 0.01 0.31 0.31 0.00 -0.01 0.12 
20 0.01 0.37 0.37 0.00 -0.01 0.15 

 

The mean bias estimates by conditioning method, number of covariates, and reliability 
are also reported in Table 5. As previously reported for balance results, PS ANCOVA 
yielded exceptionally large bias when sample size was small and the number of 
covariates was large. When noted, these extreme conditions were excluded in the results 
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of PS ANCOVA. Overall, the estimates of no caliper matching and ignoring the 
covariates were considerably biased across all simulation conditions (0.08 ~ 1.47). We 
also observed substantial bias in other conditioning methods except when the number of 
covariates was small and their reliability was 1.0.  

 
Figure 1: Distributions of estimated bias across all simulation conditions. 
 

Table 5: Mean Bias of Treatment Effect by Number of Covariates and Reliability 

 Conditioning method 

k ρxx 
Caliper 
Match 

No 
Caliper 
Match Ignore ANCOVA PS ANCOVA Weighting Stratification

3 .40 0.05 0.08 0.09 0.05 0.05 0.05 0.05 
.60 0.03 0.08 0.08 0.03 0.03 0.03 0.04 
.80 0.02 0.07 0.08 0.02 0.02 0.01 0.02 
1.0 0.00 0.07 0.08 0.00 0.00 -0.01 0.01 

9 .40 0.15 0.30 0.30 0.15 0.14 0.13 0.16 
.60 0.09 0.29 0.30 0.09 0.09 0.07 0.10 
.80 0.05 0.28 0.29 0.04 0.04 0.02 0.06 
1.0 0.01 0.27 0.28 0.00 0.00 -0.02 0.02 

15 .40 0.28 0.63 0.64 0.27 0.27 0.24 0.29 
.60 0.17 0.61 0.61 0.14 0.15 0.13 0.19 
.80 0.08 0.59 0.60 0.08 0.07 0.04 0.11 
1.0 0.02 0.57 0.58 0.00 0.00 -0.03 0.04 

30 .40 0.53 1.45 1.47 0.51 0.53 0.65 0.64 
.60 0.32 1.38 1.39 0.26 0.29 0.43 0.44 
.80 0.16 1.33 1.34 0.13 0.13 0.29 0.30 
1.0 0.05 1.30 1.31 0.05 -0.01 0.17 0.15 

Note. N = 50 and N = 100 were removed for PS ANCOVA. 

3.4 Root Mean Square Error     
The typical difference between a sample estimate of the treatment effect and the true 
treatment effect was estimated by the root mean squared error (RMSE). The mean RMSE 
estimates under the study factors over the PS Methods are presented in Table 6. As 
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evident in the table, extremely large mean RMSE values were observed for PS ANCOVA 
and the smallest sample sizes (N = 50 and N=100). Overall, there was a large RMSE 
estimate across all methods but the estimate tended to decrease with increases in sample 
size. There were larger RMSE estimates in those simulation conditions in which 
measurement error was not induced (ρxx = 1.0) but overall, the estimate increased as the 
reliability decreased. The smallest RMSE estimates were observed for the smallest 
number of covariates (3 and 9), across all PS methods. 

Table 6: Mean RMSE by Study Factors and PS Conditioning Methods 

 Conditioning Methods 
Design 
Factor 

Caliper 
Match 

No Caliper 
Match Ignore ANCOVA PS ANCOVA Weight Stratification 

N        
50 1.80 1.96 1.74 207.21 891347651.2 1.80 1.56 
100 0.57 1.35 1.29 7.62 7674.69 1.00 0.49 
250 0.14 1.28 1.28 0.18 0.18 0.33 0.14 
500 0.10 1.37 1.37 0.08 0.08 0.20 0.11 
1000 0.08 1.45 1.45 0.06 0.07 0.14 0.09 

        
Trim        

No 0.51 1.92 1.91 0.21 0.09 0.78 0.48 
Yes 0.55 1.04 0.94 83.84 0.13 0.59 0.46 

        
ρxx        

.40 0.66 1.54 1.49 5.10 0.19 0.69 0.57 

.60 0.55 1.49 1.43 95.76 0.08 0.66 0.48 

.80 0.48 1.47 1.41 60.39 0.04 0.68 0.45 
1.0 0.45 1.42 1.37 5.50 0.13 0.72 0.40 

        
k        

3 0.01 0.02 0.02 0.01 0.00 0.01 0.01 
9 0.06 0.20 0.20 0.05 0.02 0.05 0.06 
15 0.20 0.83 0.82 153.29 0.06 0.25 0.23 
30 1.89 4.91 4.71 12.41 0.36 2.46 1.61 

        
βxc        

0.025 0.42 0.83 0.78 2.09 0.03 0.38 0.35 
0.050 0.56 1.53 1.47 42.44 0.07 0.67 0.49 
0.100 0.63 2.08 2.03 81.21 0.23 1.02 0.59 

        
βyc        

0.025 0.09 0.22 0.21 1.12 0.01 0.11 0.08 
0.050 0.32 0.86 0.82 78.43 0.12 0.40 0.27 
0.100 1.19 3.36 3.24 45.49 0.20 1.55 1.07 

        
ρ12        

0 0.12 0.18 0.17 5.39 0.03 0.10 0.11 
0.2 0.52 1.20 1.15 38.08 0.09 0.55 0.43 
0.5 0.97 3.06 2.97 82.06 0.21 1.42 0.89 

Note. Estimates are based on 5,000 samples of each condition. ρxx = reliability, βxc = strength of 
relationship between covariates and treatment assignment,  = strength of relationship between 
covariates and the outcome, ρ12 = strength of relationship between covariates.  
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3.5 Type I Error Control 
The overall distributions of Type I error rate estimates are presented in Figure 2. Notable 
in this figure is the great inflation of Type I error rates for matching without a caliper and 
for ignoring the covariates. In contrast, caliper matching and PS ANCOVA provided 
median Type I error rates near the nominal .05 level. However, all of the conditioning 
methods demonstrated a large dispersion in Type I error rates across the conditions 
simulated. 

In addition to the main effects for sample size and covariate reliability, the interaction 
between these two factors was associated with variability in Type I error rates for all 
conditioning methods except matching without a caliper and ignoring the covariates. The 
marginal mean Type I error rates by these design factors are presented in Table 7. For all 
conditioning methods except matching without a caliper and ignoring the covariates, the 
Type I error rates increased as reliability of the covariates decreased regardless of the 
sample size. However, the relationship between covariate reliability and Type I error rate 
was stronger with larger samples. For example, with caliper matching and N = 50, the 
estimated mean Type I error rates ranged from .09 with ρxx = .40 to .07 with ρxx = 1.00. In 
contrast, with N = 1000, the estimated mean Type I error rates ranged from .66 with ρxx = 
.40 to .04 with ρxx = 1.00. Analogous results were evident for the other conditioning 
methods. 

 

 

Figure 2: Distributions of estimated Type I error rates across all conditions. 

The first-order interaction between covariate reliability and the strength of relationship 
between the covariates and treatment assignment was also associated with variability in 
Type I error control. The mean Type I error rate estimates associated with this interaction 
are presented in Table 8. As with the interaction results presented in Table 7, these data 
indicated that the impact of measurement error in the covariates was greater when the 
relationship between the covariates and treatment assignment was stronger. For example, 
with caliper matching and a modest relationship between the covariates and treatment 
assignment (βxc = 0.025), the mean Type I error rate ranged from only .03 to .12 as 
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measurement error increases. With a stronger relationship between the covariates and 
treatment assignment (βxc = 0.100), the mean Type I error rate ranged from .06 to .54. 

Table 7: Mean Type I Error Rates by Sample Size and Covariate Reliability (ρxx) 

  Analysis Method 

N ρxx 

Caliper 
Match 

No Caliper 
Match Ignore ANCOVA 

PS 
ANCOVA Weight 

Strati-
fication 

50 

.40 .09 .22 .25 .11 .08 .21 .16 

.60 .08 .22 .24 .09 .06 .20 .14 

.80 .07 .21 .23 .08 .05 .19 .12 
1.00 .07 .21 .22 .07 .05 .19 .12 

         

100 

.40 .11 .37 .41 .17 .12 .22 .17 

.60 .07 .35 .38 .10 .07 .17 .11 

.80 .05 .34 .35 .06 .04 .15 .07 
1.00 .04 .33 .34 .05 .04 .15 .05 

         

250 

.40 .28 .66 .68 .36 .31 .31 .36 

.60 .14 .65 .67 .19 .15 .18 .20 

.80 .06 .64 .65 .09 .05 .12 .09 
1.00 .03 .63 .64 .05 .03 .12 .04 

         

500 

.40 .47 .80 .81 .53 .50 .45 .56 

.60 .26 .80 .80 .31 .28 .25 .36 

.80 .11 .80 .80 .13 .10 .13 .17 
1.00 .04 .80 .80 .05 .03 .11 .05 

         

1000 

.40 .66 .89 .89 .70 .68 .62 .73 

.60 .44 .90 .90 .48 .45 .37 .56 

.80 .19 .90 .89 .20 .18 .17 .31 
1.00 .04 .90 .89 .05 .04 .11 .08 

Note. Estimates are based on 5,000 samples of each condition. 

 

Table 8: Mean Type I Error Rates by Strength of Relationship between Treatment 
Assignment and Covariates (βxc) and Covariate Reliability (ρxx) 

  Analysis Method 

βxc ρxx 

Caliper 
Match 

No Caliper 
Match Ignore ANCOVA 

PS 
ANCOVA Weight 

Strati-
fication 

0.025 

.40 .12 .40 .41 .17 .13 .14 .18 

.60 .07 .40 .40 .10 .06 .08 .11 

.80 .04 .39 .40 .06 .03 .06 .07 
1.00 .03 .40 .40 .05 .02 .05 .05 

         

0.050 

.40 .31 .60 .62 .37 .33 .34 .39 

.60 .17 .60 .62 .20 .17 .20 .25 

.80 .08 .60 .61 .10 .07 .13 .13 
1.00 .04 .59 .60 .05 .03 .11 .07 

         

0.100 

.40 .54 .77 .79 .59 .57 .60 .62 

.60 .37 .76 .78 .40 .37 .43 .46 

.80 .17 .75 .76 .18 .16 .27 .26 
1.00 .06 .73 .74 .06 .05 .24 .09 

Note. Estimates are based on 5,000 samples of each condition. 
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In addition to the examination of mean Type I error rates, the Type I error control of the 
conditioning methods was evaluated using Bradley’s (1978) liberal criterion of 
robustness. This criterion indicates that Type I error control is considered acceptable if 
the actual Type I error rate is within the bounds of αnominal ± 0.5 αnominal. At the nominal α 
= .05, these bounds are .025 and .075. The proportions of conditions that provided 
acceptable Type I error control according to Bradley’s criterion are presented in Table 9. 
This view of Type I error control supports the results of the mean Type I error rate 
analyses presented above. For example, the impact of covariate measurement reliability is 
strikingly observed in Table 9. With caliper matching, adequate Type I error control was 
maintained in 74% of the conditions when covariates were measured without error, but in 
only 57% of the conditions when ρxx = .80, and in only 24% of the conditions when ρxx = 
.40. Similar degradation of Type I error control was evident with stratification and the 
ANCOVA approaches. Regardless of the conditioning method used, larger samples 
resulted in smaller proportions of conditions with adequate Type I error control, as did 
larger numbers of covariates. Increasing the strength of relationship between the 
covariates and treatment assignment (βxc) resulted in smaller proportions of conditions 
with adequate control, but the strength of relationship between the covariates and the 
outcome variable (βyc) was not related to the proportions of conditions. An interesting 
result of the Bradley criterion analysis was that trimming the samples for common 
support had little effect on the proportions of conditions with adequate Type I error 
control and the direction of the effect differed among the conditioning methods. For 
example, the use of weighting provided adequate control in only 21% of the conditions 
before trimming, but in 29% of the conditions after trimming. In contrast, stratification 
provided adequate control in 33% of the conditions before trimming and only 29% of the 
conditions after trimming. 

 

3.6 Confidence Interval Coverage 
The distributions of confidence interval coverage estimates across all conditions 
simulated are presented in Figure 3. Evident in this figure were the overall poor interval 
coverage for matching without a caliper and ignoring the covariables. Use of any 
conditioning method besides matching without a caliper resulted in substantial 
improvement in the coverage of confidence intervals, but the overall coverage was best 
with caliper matching, PS ANCOVA, and ANCOVA with the original covariates. 
However, the distributions presented in Figure 3 showed notable dispersion in coverage 
estimates regardless of the conditioning method employed. 

Three research design factors were substantially associated with variability in interval 
coverage: sample size, covariate reliability, and strength of relationship between the 
covariates and treatment assignment. However, the interaction between reliability and 
sample size and the interaction between reliability and strength of relationship were both 
considerable. 

The mean interval coverage estimates by conditioning method, sample size, and covariate 
reliability are presented in Table 10. These data indicated that the impact of covariate 
measurement error was much greater with larger samples than with smaller samples. For 
example, with N = 50, the mean interval coverage for caliper matching dropped from .92 
to only .90 as covariate reliability dropped from 1.0 to .40. In contrast, with N = 1000, the 
mean coverage estimate dropped from .95 to .40. Note that even with covariate reliability 
of .80, the interval coverage was substantially reduced for all methods of conditioning 
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(with the exceptions of matching with no caliper and ignoring the covariates – methods 
that evidenced very poor coverage regardless of the reliability of the covariates). 

Table 9: Proportion of Conditions with Adequate Type I Error Control  
(Bradley Criterion) by Research Design Factors 

  Analysis Method 
Design 
Factor 

Caliper 
Match 

No Caliper 
Match Ignore ANCOVA 

PS 
ANCOVA Weight 

Strati-
fication 

N        
50 .64 .33 .30 .67 .42 .31 .20 
100 .60 .11 .11 .60 .43 .33 .53 
250 .48 .00 .00 .46 .43 .24 .41 
500 .40 .00 .00 .36 .39 .22 .28 

1000 .31 .00 .00 .29 .33 .15 .15 

Trim        
No .49 .03 .03 .50 .39 .21 .33 
Yes .48 .14 .14 .45 .41 .29 .29 

ρxx        
.40 .24 .07 .06 .12 .24 .17 .07 
.60 .42 .09 .08 .26 .38 .33 .19 
.80 .57 .09 .09 .55 .46 .31 .37 

1.00 .71 .10 .10 .96 .52 .20 .63 

k        
3 .65 .15 .17 .58 .53 .40 .38 
9 .49 .09 .08 .49 .36 .34 .32 

15 .48 .07 .07 .44 .36 .19 .28 
30 .33 .03 .01 .38 .34 .08 .26 

βxc        
0.025 .61 .17 .16 .67 .43 .36 .52 
0.050 .51 .07 .07 .45 .42 .27 .29 
0.100 .34 .01 .02 .31 .34 .13 .13 

βyc        
0.025 .49 .09 .08 .47 .40 .25 .31 
0.050 .48 .08 .08 .47 .41 .25 .31 
0.100 .49 .09 .08 .48 .40 .25 .32 

ρ12        
.00 .46 .12 .10 .44 .37 .26 .31 
.20 .49 .08 .08 .47 .40 .26 .31 
.50 .51 .06 .07 .52 .43 .23 .32 

Note. Estimates are based on 5,000 samples of each condition. k = number of covariates, ρxx = 
reliability, βxc = strength of relationship between covariates and treatment assignment, βyc = 
strength of relationship between covariates and the outcome, ρ12 = strength of relationship between 
covariates.  
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Figure 3:  Distributions of estimated confidence interval coverage across all conditions. 
 
 
 

Table 10: Mean Confidence Interval Coverage Estimates by  
Sample Size  and Covariate Reliability(ρxx) 

  Analysis Method 

N ρxx 

Caliper 
Match 

No Caliper 
Match Ignore ANCOVA 

PS 
ANCOVA Weight 

Strati-
fication 

50 

.40 .90 .79 .78 .89 .93 .79 .84 

.60 .91 .79 .78 .92 .94 .80 .86 

.80 .92 .80 .79 .92 .95 .81 .87 
1.00 .92 .80 .80 .93 .95 .82 .88 

         

100 

.40 .90 .66 .63 .86 .89 .79 .84 

.60 .94 .68 .66 .91 .94 .83 .90 

.80 .95 .70 .68 .94 .96 .85 .93 
1.00 .96 .71 .69 .95 .96 .85 .94 

         

250 

.40 .76 .39 .37 .70 .73 .72 .69 

.60 .88 .40 .38 .84 .87 .83 .82 

.80 .94 .42 .40 .92 .95 .88 .91 
1.00 .96 .43 .42 .95 .97 .88 .96 

         

500 

.40 .59 .25 .24 .53 .56 .60 .50 

.60 .78 .25 .24 .74 .77 .77 .69 

.80 .91 .25 .24 .89 .91 .87 .85 
1.00 .96 .25 .25 .95 .97 .89 .95 

         

1000 

.40 .40 .15 .14 .36 .38 .43 .33 

.60 .62 .14 .14 .59 .61 .66 .51 

.80 .84 .14 .15 .83 .85 .84 .74 
1.00 .95 .14 .15 .95 .96 .89 .92 

Note. Estimates are based on 5,000 samples of each condition. 
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The mean coverage estimates by covariate reliability and the strength of relationship 
between the covariates and treatment assignment are presented in Table 11. As expected, 
these data indicated that the impact of covariate measurement error on confidence 
interval coverage was greater when the covariates were more strongly related to treatment 
assignment. With caliper matching and βxc = 0.025, the coverage estimates dropped from 
.96 to .88 as covariate reliability drops from 1.00 to .40. However, with a stronger 
relationship between the covariates and the treatment assignment (βxc = 0.100), the 
coverage for caliper matching dropped from .94 to .52 with the same reduction in 
covariate reliability. As noted with the sample size interaction, with a strong relationship 
between the covariates and treatment assignment, a reliability value as high as .80 
presented sufficient measurement error to notably reduce the average coverage 
probability to .86 with caliper matching. 

 

Table 11: Mean Confidence Interval Coverage Estimates by Strength of Relationship 
between Covariates (βxc) and Treatment Assignment and Covariate Reliability (ρxx) 

  Analysis Method 

βxc ρxx 

Caliper 
Match 

No Caliper 
Match Ignore ANCOVA 

PS 
ANCOVA Weight 

Strati-
fication 

0.025 

.40 .88 .63 .62 .85 .88 .87 .83 

.60 .93 .63 .62 .91 .94 .92 .89 

.80 .95 .63 .63 .94 .97 .94 .93 
1.00 .96 .63 .63 .94 .97 .95 .95 

         

0.050 

.40 .72 .44 .42 .68 .71 .69 .65 

.60 .85 .44 .43 .82 .85 .81 .78 

.80 .92 .44 .44 .91 .94 .87 .88 
1.00 .95 .45 .45 .95 .96 .88 .93 

         

0.100 

.40 .52 .28 .26 .47 .50 .45 .44 

.60 .69 .29 .27 .66 .68 .61 .60 

.80 .86 .30 .29 .86 .87 .74 .78 
1.00 .94 .32 .30 .95 .95 .76 .91 

Note. Estimates are based on 5,000 samples of each condition. 
 

3.7 Confidence Interval Width 
The distributions of confidence interval widths across all conditions in the simulation 
suggested that the differences in the average widths of intervals across PS methods were 
relatively small and that substantial variability in widths was evident for all PS 
conditioning methods. The eta-squared analysis indicated that two research design factors 
were substantially associated with variability in interval width: sample size and number 
of covariates. However, the interaction between these factors was also sizable. 

The mean interval widths by conditioning method, sample size, and number of covariates 
are presented in Table 12. As expected, larger samples resulted in narrower confidence 
intervals regardless of the conditioning method or number of covariates. Similarly, 
increasing the number of covariates resulted in wider intervals across the methods and the 
sample sizes. However, the impact of increasing the number of covariates was greater 
with smaller samples than with larger samples. For example, with caliper matching and 
small samples (N = 50) the mean widths of the intervals increased from 0.73 to 11.16 as 
the covariates increased from 3 to 30. Conversely, with N = 1000, the mean interval 
widths increased from 0.12 to only 0.71 across the same range of covariates. 
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Table 12: Mean Confidence Interval Width by Sample Size and Number of Covariates 
  Analysis Method 

N k 

Caliper 
Match 

No Caliper 
Match Ignore ANCOVA 

PS 
ANCOVA Weight 

Strati-
fication 

50 

3 0.73 0.64 0.61 0.54 0.60 0.60 0.56 
9 1.54 1.25 1.13 1.05 1.22 1.10 1.14 

15 3.29 2.43 2.00 2.24 6.12 1.86 2.20 
30 11.16 6.35 5.90 5.79 18407.81 5.18 8.06 

         

100 

3 0.45 0.42 0.42 0.37 0.40 0.41 0.39 
9 0.88 0.77 0.74 0.66 0.75 0.74 0.74 

15 1.48 1.22 1.14 1.08 1.25 1.13 1.21 
30 5.06 3.44 2.96 2.95 9.65 2.73 3.35 

         

250 

3 0.26 0.25 0.26 0.23 0.24 0.26 0.24 
9 0.49 0.46 0.46 0.40 0.44 0.46 0.44 

15 0.79 0.70 0.69 0.63 0.70 0.70 0.69 
30 1.66 1.33 1.24 1.27 1.46 1.23 1.42 

         

500 

3 0.18 0.17 0.18 0.16 0.17 0.18 0.17 
9 0.33 0.32 0.32 0.28 0.30 0.32 0.30 

15 0.52 0.48 0.48 0.44 0.47 0.49 0.47 
30 1.06 0.89 0.84 0.85 0.94 0.85 0.92 

         

1000 

3 0.12 0.12 0.13 0.11 0.12 0.13 0.12 
9 0.22 0.22 0.23 0.20 0.20 0.23 0.21 

15 0.36 0.34 0.34 0.30 0.32 0.35 0.32 
30 0.71 0.61 0.58 0.59 0.63 0.60 0.62 

Note. Estimates are based on 5,000 samples of each condition. 
 

4. Conclusions 
 
While PS methods have primarily been applied in medical research, recently there has 
been an increase in its use in social science research (Thoemmes & Kim, 2011).  Much of 
social science research, especially educational research, relies on effects estimated from 
nonrandomized studies. Given the inability to use random assignment in many studies in 
education, there has been a call for methodologists interested in education research to 
examine methods that approximate randomization (Schneider, Carnoy, Kilpatrick, 
Schmidt, & Shavelson, 2007). One of the most promising alternatives to randomization is 
propensity score analysis. In an effort to increase the methodological knowledge-base of 
propensity score analysis this study empirically investigated its performance under 
conditions common in educational research.  

Overall, the number of covariates and the reliability of the covariates emerged as major 
simulation design factors related to bias: more covariates and more measurement error 
induced more bias. Covariate reliability was seen to have a profound impact on both 
Type I error control and confidence interval coverage for the estimation of treatment 
effects. This effect was more prominent with larger samples (in which standard errors 
were smaller) and with conditions in which the relationship between treatment 
assignment and the covariates was strong (in which selection bias was stronger). 
Especially important is that even small amounts of measurement error (i.e., ρxx = .80) 
resulted in notable decrements in the accuracy of inferences. 
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Much of the previous research on PS analysis has stressed the importance of covariate 
selection, namely the inclusion of all potential confounding variables, to remove the bias 
associated with the nonrandomized design. Covariate selection is indeed, a critical aspect 
of PS analysis, but much of the previous research assumed the covariates were all 
measured without error, which is unrealistic in social science research. This study 
explored the impact of measurement error on the PS estimates and found that even low 
levels of measurement error had a negative impact on the accuracy and precision of the 
estimates. These results suggest that the psychometric quality of covariates may be as 
important as the inclusion of all potentially confounding covariates. This current study 
used simulation methods that maximized the information of the covariate set for the PS 
estimation models. Future research should begin to look at the impact of both 
measurement error and misspecification of the PS model on the treatment effect and 
balance estimates, an intersected phenomenon likely to occur in applied research settings. 
In addition, errors-in-variables logistic models (e.g., Carrol et al., 2006) may provide 
improved estimation of propensity scores in the presence of measurement error. 
Empirical inquiry into such methods is a worthy avenue for further research. 
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