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Abstract 
Monte Carlo methods were used to investigate the accuracy and precision of effect size 
indices in estimating what the standardized mean difference from a 2 X 2 sample table of 
dichotomized variables would have been had the data not been dichotomized. Normally 
distributed, continuous data were generated for two groups and the continuous variable 
was dichotomized at specified cut points. The factors manipulated in the simulation study 
included overall sample size (n1 + n2 = 30, 60, 120, 240), reliability levels (.5, .7, .8, .9, 
1), population effect size (0, .2, .5, .8), continuous score cut point for dichotomization 
(.10, .25, .40, .50, .70), and population variance ratio (1:1, 1:2, 1:4). For each sample 
generated (100,000 replications), each of seven proposed effect size indices was 
calculated. Both the statistical bias and the RMSE were computed across the set of 
replications. Although the sample standardized mean difference became substantially 
biased in the presence of measurement error, the performance of the seven indices was 
not notably affected. Results were interpreted in terms of recommendations for estimating 
effect sizes with dichotomized variables. 
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1. Background 
 
The topic of effect sizes can be a controversial issue for many journal editors, as well as 
for researchers. For instance, Pedhazur and Pedhazur-Schmelking (1991) argued that 
Cohen’s (1988) convention of small, medium, and large effect sizes distorted the 
distinction between the magnitude of an effect and its substantive importance, i.e., 
researchers relegating “small” effects as less important or considering “large” effects as 
important. Also, the use and interpretation of a specific effect size across studies can be 
problematic due to the variability of research design factors, the last edition of the 
Publication Manual of the American Psychological Association (6th edition; 2010) as 
well as the 1999 report by Wilkinson and the APA Task Force on Statistical Inference 
have made clear the imperative for reporting effect sizes to supplement statistical 
hypothesis testing and ensure “accuracy of scientific knowledge” (p. 11).  Effect sizes 
provide useful indices of the magnitudes of treatment effects in individual studies as well 
as representing the primary statistics that are used in synthesizing research or meta-
analysis. 
 
Cohen (1977) defined effect size (ES) as “the degree to which the phenomenon is present 
in the population” (pp. 9-10), or “the degree to which the H0 is believed to be false” 
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(1992; p. 156). Each statistical test has its own ES index, which is scale free and 
continuous; however, to convey meaning of any ES index, it is necessary to have an idea 
of its scale, for which he proposed the small, medium, and large ES conventions. 
 
One ES index of mean differences is d. That is, for studies comparing two groups on a 
continuous outcome variable, the standardized mean difference (also referred to as 
Cohen’s d) is the most common index of effect size. In a population, this ES is obtained 
as 
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where E  and C  are the means of the experimental and control populations, 

respectively, and   is the common population standard deviation.  
 
A sample estimate of this effect size (d) is obtained by substituting sample statistics for 
each of these parameters. The sampling variance of this estimate is given by 
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In medical and social science research, continuous outcome variables are often 
dichotomized using a cut score to delineate the two dichotomous values. For example, 
measures of blood pressure or depression may be obtained on a continuous scale, but are 
subsequently dichotomized to classify patients as hypertensive or clinically depressed. 
Similarly, educational achievement measures may be obtained as a continuous variable 
(number of test items correct or scale score on a standardized achievement test) and 
subsequently dichotomized into pass/fail. With such dichotomization, the standardized 
mean difference can no longer be directly estimated from sample data. A variety of 
statistics have been proposed to provide estimates of the standardized mean difference 
that would have been obtained if the data had not been dichotomized. These effect sizes 
have been compared in Monte Carlo studies reported by Sanchez-Meca, Marín-Martínez, 
and Chacón-Moscoso (2003), and by Kromrey and Bell (2012). 
 

2. Alternative Methods for Computing Dichotomized Effect Sizes 
 
The standardized proportion difference (dp; Johnson, 1989) is a direct analogy to the 
standardized mean difference 
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where PE and PC are the sample success (or failure) proportions of the experimental and 
control groups. The pooled standard deviation is obtained as 
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The sampling variance of this statistic is obtained as 
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The phi coefficient ( ) is commonly used as a measure of association for 2 X 2 tables. 
This index can be transformed to the scale of the standardized mean difference 
(Rosenthal, 1994). The phi coefficient is obtained as 
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where the OiE and OiC are the success and failure frequencies in the experimental and 
control groups, respectively, and the mi are the marginal success and failure frequencies. 
 
The transformation of  to the standardized mean difference metric is given by 
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An arcsine transformation of the proportions in a 2 X 2 table was suggested by Cohen 
(1988) 
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Hasselblad and Hedges (1995) suggested a transformation of the log odds ratio to the 
metric of the standardized mean difference 

3
( )HHd Ln OR


  

with sampling variance 

2
2

1 2 1 2

3 1 1 1 1
HHd

E E C C

S
O O O O

 
    

  . 

 
A similar transformation of the log odds ratio was proposed by Cox (1970) 
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Glass, McGaw, and Smith (1981) proposed a probit transformation to obtain an effect 
size in the metric of the standardized mean difference 

Probit E Cd Z Z   

where ZE and ZC are the inverse of the standard normal distribution for PE and PC, 
respectively. That is, 
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The sampling variance of dProbit can be estimated by 

22

2 2 (1 )2 (1 ) CE

Probit

ZZ
C CE E

d
E C

P P eP P e
S

n n

 
  . 

 
A final index is obtained by transforming the biserial-phi correlation coefficient into the 
metric of the standardized effect size (Becker & Thorndike, 1988). The biserial-phi 
coefficient is obtained as 
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where p  and q are the marginal success and failure proportions from the 2 X 2 table, 

and y is the ordinate of the standard normal distribution at p . 
 
The biserial-phi coefficient is transformed to the scale of the standardized mean 
difference using 
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These indices were compared in a simulation study by Sanchez-Meca et al. (2003). The 
authors varied the sample sizes for the two groups, the cut points for dichotomization, 
and the population effect size, but maintained homogeneous variances in the two groups. 
The results suggested that dCox and dProbit provided nearly unbiased estimates of the 
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population effect size  . This research was replicated and extended by Kromrey and Bell 
(2012) who investigated heterogeneous variance conditions in addition to the 
homogeneous variance conditions studied by Sanchez-Meca et al. (2003).  
 
In the latter study, the Cox and Probit effect sizes showed smallest bias overall, but this 
advantage was limited to conditions in which population variances were equal. Under 
heterogeneous variances, all indices evidenced similar patterns of bias associated with 
changes in the cut point for dichotomization. An evaluation of the sampling errors of 
these indices or a consideration of the RMSE (which combines sampling error and bias 
into a metric of total error) suggested that the standardized proportion difference, the 
transformed phi coefficient, and the arcsine transformation have smaller sampling errors 
and smaller total errors than the Cox and Probit indices. These advantages were 
especially pronounced at smaller sample sizes and with populations presenting smaller 
effect sizes. 
 

3. Purpose 
 
By furthering the research by Kromrey and Bell (2012), this study was designed to 
examine the performance of the seven effect size indices under more complex conditions 
with varying degrees of reliability.  This design used a Monte Carlo simulation methodto 
compare the accuracy and precision of these effect size indices proposed for estimating a 
population standardized mean difference from a 2 by 2 sample table of artificially 
dichotomized variables.  
 

4. Method 
 
This Monte Carlo study investigated (a) overall sample size (n1 + n2 = 30, 60, 120, 240), 
(b) ratio of sample sizes in the two groups (1:1, 1:2, 1:4), (c) population effect size (0, .2, 
.5, .8), (d) continuous score cut point for dichotomization (.10, .25, .40, .70), (e) 
population variance ratio (1:1, 1:2, 1:3) and (f) reliability (.50, .70, .80, .90, 1.0). For each 
condition, 100,000 replications were conducted. Using SAS/IML, normally distributed, 
continuous data were generated for two groups and the continuous variables were 
dichotomized at the specified cut points. In each sample, the standardized mean 
difference was computed prior to dichotomization and the seven effect size indices were 
computed after the data were dichotomized. 
 

5. Results 
 
The outcomes from the simulation were analyzed by first examining box-and-whisker 
plots to describe the distributions of each outcome across all simulation conditions. 
Subsequently, variation in each outcome was analyzed using analysis of variance to 
obtain the eta-squared (η2) values associated with each simulation design factor and their 
interactions. Design factors and interactions with large values of η2 were further analyzed 
for substantive patterns. For each analysis, Cohen’s d effect size (the sample effect size 
prior to dichotomization) was included as a reference statistic. 
 
5.1 Statistical Bias of Effect Size Indices 
The overall distributions of statistical bias across all simulation conditions are presented 
as box and whisker plots in Figure 1. All seven indices tended to be negatively biased in 
their estimation of the effect size, yielding an effect size index that was smaller on 
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average than the population effect size. Overall, the Cox, Probit, and biserial-phi indices 
evidenced notably smaller bias than the other indices, although the variability in the bias 
of the biserial-phi index was large relative to the others.  This finding is consistent with 
Kromrey and Bell (2012).   
 

 
Figure 1: Distributions of statistical bias estimates 
 
The distribution of bias associated with every index was then examined across different 
reliability conditions (.5, .7, .8, .9, and 1).  Figure 2 shows that as expected, bias of all 
indices decreased as reliability improved although such decrease developed gradually.  At 
every reliability level, the three indices with smaller bias overall (the Cox, Probit, and 
biserial-phi) exhibited smaller bias than the other four (first row of Figure 2) but the 
variability of bias remained unchanged or even increased as reliability increased.  When 
reliability reached the optimal level of 1 with Cohen’s d at zero, all seven indices still 
demonstrated bias which varied largely.   
 
The simulation design factors associated with variation in statistical bias in the effect size 
indices included the population effect size (η2 = .37), the cut point (η2 = .35), and 
population variance ratio (η2 = .09). Moreover, interactions between the design factors 
were also associated with statistical bias. The interaction between the population variance 
ratio and the cut point yielded η2 = .14.  Notably, reliability as another factor in 
simulation did not result in significant bias variation.  
 
The following figures show the effect of some of these factors.  Figure 3 presents the 
mean bias estimate by population effect size and effect size index. All of the indices 
became progressively more negatively biased as the population effect size increased. 
However, the Cox (dCox), Probit (dprobit), Hasselblad and Hedges (dHH), and biserial-phi 
(dbis) indices showed smaller increases in negative bias than the standardized proportion 
difference (dp), the transformed phi coefficient (dphi), and the arcsine transformation 
(dasin).   
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Figure 2: Distributions of statistical bias estimates across different reliability conditions 
 

 

  
Figure 3: Distributions of statistical bias estimates across different levels of population 
effect size 
 
Figure 4 shows the distributions of statistical bias estimates across different levels of 
population effect size under five reliability conditions.  At every reliability level, the 
pattern of the seven indices is similar to that in Figure 3.  
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Figure 4: Distributions of statistical bias estimates across different levels of population 
effect size under five reliability conditions 
 
Figure 5 presents the average bias estimates associated with the interaction between cut 
point and population variance ratio. Evident in this figure is that the impact of the cut 
point on resulting bias increased as population variances became more heterogeneous. 
With heterogeneous variances, all seven indices displayed substantial negative bias with a 
cut point of .1, but moved to small positive bias with a cut point of .7. In contrast, under 
homogeneous variances, the Cox, Hasselblad and Hedges, and Probit indices showed 
notably lower levels of bias than the other indices and their biasestimateswere less 
influenced by changes in the cut point for dichotomization. 
 
5.2 RMSE of Effect Size Indices 
The distributions of root mean squared error (RMSE) by each effect size index across all 
simulation conditions are presented in Figure 6. In contrast to the statistical bias 
estimates, the smallest average RMSE values were obtained for the standardized 
proportion difference (dp), the transformed phi coefficient (dphi), and the arcsine 
transformation (dasin). Notable also in Figure 6 is that the biserial-phi coefficient (dbis) 
reached extremely large values in many conditions. The analysis of variance conducted 
on the RMSE values indicated that variation in RMSE was associated with total sample 
size (η2 = .30), effect size index (η2 = .12), cut point (η2 = .16), population effect size (η2 
= .08), and population variance ratio (η2 = .17). 
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Figure 5: Distributions of statistical bias estimates across different cut points under 
different population variance ratios  
 

 
Figure 6: Distributions of RMSE estimates by effect size indices across all conditions 
 
Figure 7 shows the variation in the average RMSE estimates for all seven effect size 
indices associated with every design factor. Variation due to total sample size (.23 ≤ η2 ≤ 
.42) and cut point (.12 ≤ η2 ≤ .35) for some effect size indices (dp, dphi, and dbis) was large 
enough to merit further investigation.  
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(a) (b) 

(c) (d) 

(e) (f) 
Figure 7: Distributions of mean RMSE estimates across effect size indices by each factor 
separately 
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In (b), variation in mean RMSE estimate increased as the population effect size 
increased; on the other hand, variation due to cut point (c) decreased with higher values 
of the factor. For total sample size (d), the variation in average RMSE decreased with 
larger total sample size. While high, average mean RMSE for reliability did not show 
sharp variations across effect sizes and levels of the factor (f). 

5.3 Empirical Variances of Effect Size Indices 
Figure 8 presents the distributions of empirical effect size variance estimates. Compared 
to the mean variance of Cohen’s d, the mean variances of the standardized proportion 
difference, the transformed phi coefficient, and the arcsine transformation were slightly 
larger. However, the remaining effect size indices had average variances approximately 
twice or more as large. Specifically, the biserial-phi index had an average variance three 
times greater than that of Cohen’s d with exceptionally large sampling variance in many 
conditions. The analysis of variance indicated that variation in the empirical variance 
values was associated with sample size (η2 = .51), effect size index (η2 = .15) and the 
interaction between sample size and effect size index (η2 = .08). 
 

 
Figure 8: Distributions of empirical effect size variance estimates 
 
Figure 9 presents the average empirical variances of the effect size indices by sample 
size. As expected, the variances of all the indices deceased with larger sample sizes but 
the rate of decrease varied among the sample sizes. The average variances of the 
standardized proportion difference, transformed phi coefficient, and the arcsine 
transformation were slightly larger than those of Cohen’s d at all sample sizes. In 
contrast, the remaining indices had remarkably larger variances at smaller sample sizes, 
but these variances decreased rapidly with increased sample sizes and only trivial 
differences in variances were evident at the largest sample size examined (N =240).  
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Figure 9: Average empirical variances of effect size indices by sample size 
 
5.4 Estimated Variances of Effect Size Indices 
The distributions of average estimated variances of the effect size indices are presented in 
Figure 10, which exhibited a similar pattern to those of empirical variance estimates 
(Figure 8).  The average estimated variances of the standardized proportion difference, 
the transformed phi coefficient, and the arcsine transformation were close to those of the 
Cohen’s d effect size.  The average estimated variances of Hasselblad and Hedges, Cox 
and the Probit effect size indices were about twice as large. The average estimated 
variances of the biserial-phi index was more than three times as large as what was 
observed for Cohen’s d effect size. The analysis of variance indicated that variation in the 
average estimated variances values was mainly associated with sample size (η2 = .41) and 
effect size index (η2 = .16).  Significant first order interaction effects were found with 
sample size and effect size indices (η2 = .15)  
 

 
Figure 10: Distributions of average estimated effect size variances 
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Figure 11 displays average effect size variances by sample size.  It is evident that 
differences between these variances and the variances themselves were at the largest with 
smallest sample size.  They decreased rapidly as sample size increased.  With the largest 
sample size (N = 240), variance estimates of all effect size indices essentially converged 
around .03.  The seven indices did not behave in the same way as sample size changed.  
For N = 30, the estimated average variance associated with the biserial-phi index (.70) 
was approximately twice as large as the Probit and Hasselblad and Hedges, Cox and 
more than four times as large as that of the standardized proportion difference, the 
transformed phi coefficient, the arcsine transformation, and  Cohen’s d.  
 

 
Figure 11: Average estimated effect size variance by sample size and effect size index 
 
5.5 Estimated Variances vs. Empirical Variances of Effect Size Indices 
To evaluate the accuracy of the estimated variances of the effect size indices, the ratios of 
the average estimated variances to the empirical variance estimates were computed for 
each condition in the simulation. The distributions of these ratios are presented in Figure 
12. A ratio greater than one would indicate an underestimation of population variance and 
a ratio less than one would indicate an overestimate of variance. It can be seen that the 
Cohen’s d, the standardized phi, and the biserial-phi indices overestimated the variance 
whereas the others underestimated it and, in general, had less variability. 
 
Variation in the variance ratios was associated with factors of the effect size indices (η2 = 
.20) and the cut point (η2 = .07). Variation was also found in connection with interaction 
between the effect size index and total sample size (η2 = .07), between the effect size 
index and the population ratio, and between the cut point and the total sample size (η2 = 
.06). Similar to previous analyses, reliability did not lead to substantial variation in the 
variance ratios. 
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Figure 12: Distributions of the ratios of empirical estimates of effect size variance to 
average estimated effect size variance 
 

6. Conclusions 
 
The seven effect size indices discussed in this paper have been proposed in the literature 
as methods to provide the estimated standardized mean difference after continuous data 
have been dichotomized. As noted in the simulation study by Kromrey and Bell (2012), 
the statistical bias and sampling error for all seven indices compared to those of the effect 
size obtained prior to dichotomization (Cohen’s d) clearly demonstrated tenuous 
estimations of the effect size parameter after continuous variables have been 
dichotomized. This was especially problematic with smaller sample sizes and cut points 
in which the percentages were farther away from the median (e.g. .10 and .70 as opposed 
to .25 and .40). Most notably were the results using the biserial-phi coefficient where the 
variance and RSME reached extremely large values in many conditions. This is most 
likely due to the fact that the denominator of the biserial-phi coefficient ( y ) is the 

ordinate of the standard normal distribution at p . Under the normal distribution, the 

values for y would be smaller in the tails of the distribution and would be notably larger 
between the inflexion points of the distribution, (i.e. the 16th and 84th percentile), which 
concomitantly could cause wide fluctuations for the coefficient.  Working “backwards” to 
“undo” dichotomized continuous variables is a difficult task. A better choice is for 
researchers to report the Cohen’s d value prior to the dichotomization. However, if the 
original data are not available, these effect size indices provide a useful approximation. 
 

References 
 
Becker, G. & Thorndike, R. L. (1988). The biserial-phi correlation coefficient. Journal of 

Psychology, 122, 523-526. 

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). 
Hillsdale, NJ: Erlbaum. 

Cox, D. R. (1970). Analysis of binary data. New York: Chapman & Hall. 

JSM 2013 - Social Statistics Section

2416



Glass, G. V., McGaw, B., & Smith, M. L. (1981). Meta-analysis in social research. 
Beverly Hill, CA: Sage. 

Hasselblad, V. & Hedges, L. V. (1995). Meta-analysis of screening and diagnostic tests. 
Psychological Bulletin, 117, 167-178. 

Johnson, B. T. (1989). DSTAT: Software for the meta-analysis review of research 
[computer program and manual]. Hillsdale, NJ: Erlbaum. 

Kromrey, J. D. & Bell, B. A. (2012). Effect Size Indices for Dichotomized Outcomes 
under Variance Heterogeneity: An Empirical Investigation of Accuracy and 
Precision. Paper presented the Joint Statistics Meeting, 2012.  

Rosenthal, R. (1994). Parametric measures of effect size. In H. Cooper & L. V. Hedges 
(Eds.), Handbook of Research Synthesis (pp. 231-244). New York: Russell Sage 
Foundation. 

Sanchez-Meca, J., Marin-Martinez, F., & Chacon-Moscoso, S. (2003). Effect size indices 
for dichotomized outcomes in meta-analysis. Psychological Methods, 8, 448-467. 

SAS Institute Inc. (2008).  SAS, release 9.2 [computer program].  Carey, NC: SAS 
Institute Inc. 

 

JSM 2013 - Social Statistics Section

2417


