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Abstract 
A simulation study was conducted to explore the Type I error rates and statistical power 

of the independent means t-test, the Satterthwaite’s approximate t-test, and the 

conditional t-test based on a preliminary test of variances. Factors manipulated were total 

sample size (10, 20, 50, 100, 200, 300, 400), sample size ratio between the groups (1:1, 

2:3, 1:4), population variance ratio (1:1, 1:2, 1:4, 1:8, 1:12, 1:16, 1:20), population effect 

size (0, .2, .5, .8), and alpha for both the test of treatment effect and the test of variances. 

Normal population distributions and distributions with varying kurtosis (γ1) and skewness 

(γ2) values (γ1=1.00, γ2=3.00; γ1=1.50, γ2=5.00; γ1=2.00, γ2=6.00; γ1=0.00, γ2=25.00) 

were included. As expected, the independent means t-test showed great dispersion of 

Type I error control. The Satterthwaite t-test provided adequate Type I error control in 

nearly all conditions and the conditional t-test evidenced notable improvement in Type I 

error control relative to the independent means t-test as the level of alpha for the test of 

variances increased. This study provides guidance on the proper use of parametric tests 

with nonnormal, heteroscedastic populations. 

 

Key Words: Type I error control, statistical power, parametric tests, Satterthwaite’s 

approximate test, Conditional t-test 

  
1. The Independent T-Test and Alternatives 

 

1.1 Introduction 
Elementary statistics courses typically introduce significance testing and inferential 

techniques using the independent means t-test, which provides a smooth transition into 

concepts such as statistical assumptions, robustness, Type I error control, and power.  

The independent means t-test relies on the assumptions of population normality and equal 

variances (homoscedasticity). Alternative approaches (e.g., Satterthwaite’s approximate 

test) relax these assumptions, approximating the t distribution and the corresponding 

degrees of freedom.  Although the independent means t-test is “the most powerful 

unbiased test” (Bridge and Sawilowski, 1999; p. 229) for detecting true mean differences 

under the assumption of normality, statisticians to date are still evaluating the various 

conditions and factors for which this test is robust under the violation of the equality of 

variances assumption and departures from normality.  Many statistical textbooks (e.g., 

Cody & Smith, 1997; Schlotzhauer & Littell, 1997) continue recommending what Hayes 

and Cai (2007) call the “conditional decision rule” (p. 217), that researchers screen their 

samples for variance homogeneity by conducting preliminary tests (e.g., the Folded F-

test). That is, the t-test assumes that the distributions of the two groups being compared 

are normal with equal variances. The preliminary test of the null hypothesis that      
  

  
    versus the alternative      

    
   is conducted using the test statistic:   

  
 

  
 . 
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Common practice has been that if the Folded F-test is not statistically significant (e.g., p 

> .05), then the test of         versus       is calculated using the independent 

means t-test: 

   
 ̅   ̅ 

       √
  
  
 
 
  
 

 

On the other hand, if the preliminary test is statistically significant (p < .05) and in 

addition there are unequal sample sizes, the independent means t-test should be avoided 

and the Satterthwaite’s approximate t-test should be used instead (Moser, Stevens, & 

Watts, 1989): 
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Due to the unlikeliness of encountering real data that are normally distributed (see 

Micceri, 1989) and the serious disadvantages of performing preliminary tests of equality 

of variances (e.g., Moser et al., 1989; Zimmerman, 2004), researchers have questioned 

the robustness of the conditional t-test with respect to Type I error and statistical power 

when the assumptions of normality and homoscedasticity are not met.  

Thus, the purpose of this study was to explore the performance of the independent t-test 

and alternatives (i.e., Satterthwaite’s t test and the conditional t-test) by conducting a 

series of simulations under various manipulated conditions. Some guidelines for 

researchers on the selection of an appropriate test were also recommended.  

 

1.2 Previous Research on Conditional Testing 
While some statistics textbooks do not even mention the assumption of homogeneity of 

variance (e.g., Gravetter & Wallnau, 2011) as one required for the t-test, 

homoscedasticity is basic and necessary for hypothesis testing because the violations of 

this assumption “alter Type I error rates, especially when sample sizes are unequal” 

(Zimmerman, 2004; p. 173).  However, some research on preliminary tests suggests that 

the choice between the independent means t-test and the Satterthwaite’s approximate test, 

conditioning on a preliminary test of the assumption of homogeneity of variance is not 

effective. 

 
Moser et al. (1989) examined the effect of the significance level of the preliminary test of 

variance on the size and power of the t-test and Satterthwaite’s tests of means and noted 

that when            was established for the significance level of the test of 

variances, it allowed applying directly the t-test or Satterthwaite’s, respectively. In 

addition, they suggested that for equal sample sizes (n1 = n2), the t-test and the 

Satterthwaite’s had the same power and provided very stable sizes close to the nominal 

alpha prescribed for the test of means. For unequal sample sizes (n1 ≠ n2), the 

Satterthwaite’s test still provided reasonable and stable sizes close to the nominal 

significance level. Based on their study, Moser et al. (1989) recommended applying 

directly the Satterthwaite’s test for testing the equality of means from two independent 

and normally distributed populations where the ratio of the variance is unknown. Both 

Zimmerman (2004) and Rasch, Kubinger, and Moder (2011) found similar optimal 

results for the Welch-Satterthwaite separate-variance t-test if applied unconditionally 
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whenever sample sizes were unequal and noted that the power of this test deteriorated if 

it was conditioned by a preliminary test. Grissom (2000) argued that it is realistic to 

expect heteroscedasticity in data as well as outliers, and examined the effect of these 

factors on variance. He also addressed issues of robustness (i.e., control of Type I error 

rate) in the presence of heteroscedasticity and departures from normality, for which he 

suggested trimming as a way to stabilize variances. 

 
2. Method 

 

A completely crossed factorial mixed design included six between-subjects factors: (a) 

total sample size (10, 20, 50, 100, 200, 300, and 400), (b) sample size ratio between 

groups (1:1, 1:3, and 1:4), (c) variance ratio between populations (1:1, 1:2, 1:4, 1:8, 1:12, 

1:16, and 1:20), (d) effect size for mean difference between populations (Δ = 0, .2, .5, .8), 

(e) alpha set for testing treatment effects (α = .01, .05, .10, .15, .20, and .25), (f) alpha set 

for testing homogeneity assumption for the conditional t-test (α = .01, .05, .10, .15, .20, 

.25, .30, .40, .45, and .50), and one within-subjects, (g) population distributions with 

varying kurtosis and skewness values (γ1 = 1.00, γ2 = 3.00; γ1 = 1:50, γ2 =5:00; γ1 = 2.00, 

γ2 = 6.00; γ1 = 0.00, γ2 =25.00, including the normal distribution data from previous 

research, γ1 = 0.00, γ2 =0.00).  For each condition, 100,000 samples were simulated. The 

use of 100, 000 replications provided a maximum standard error of an observed 

proportion (e.g., Type I error rate estimates) of .0015 and a 95% confidence interval no 

wider than ± .003 (Robey & Barcikowski, 1992). This crossed factorial design (7 x 3 x 7 

x 4 x 6 x 10 x 5) provided a total of 176,400 conditions. 

 

3. Results 

 

3.1 Type I Error Control for the Tests of Means 
An overall view of the Type I error control of the tests is provided in Figure 1. These 

boxplots describe the distributions of the Type I error rate estimates under a nominal 

alpha level of .05 across all conditions in which the population means were identical. The 

first two plots are for the independent means t-test and Satterthwaite’s approximate t-test, 

respectively. The remaining plots delineate the Type I error rate estimates for the 

conditional t-test across the different conditioning rules (i.e., the alpha levels for the 

Folded F-test) that were investigated. For instance, the plot for C (01) provides the 

distribution of the Type I error rates for the conditional t-test when an alpha level of .01 

was used with the Folded F-test as the rule to choose between the independent means t-

test and Satterthwaite’s approximate t-test. 

 

Note that in Figure 1 the independent means t-test has the great dispersion of the Type I 

error rates. In some conditions, this testing approach provides appropriate control of the 

Type I error probability while in others the Type I error rate is very different from the 

nominal alpha level. In contrast, Satterthwaite’s approximate t-test provides adequate 

Type I error control in nearly all of the conditions simulated. The series of plots for the 

conditional t-test illustrate that the conditional test provides a notable improvement in 

Type I error control relative to the independent means t-test and the improvement 

increases as the alpha level for the Folded F-test is increased. This improvement occurs 

because the statistical power of the Folded F-test increases as the alpha level is increased. 

That is, the ability of this test to detect variance heterogeneity (and to subsequently steer 

us away from the independent means t-test and steer us to Satterthwaite’s approximate t-

test) increases with the alpha level for this test, which supports the argument of 
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insufficient power when using a more conservative nominal alpha level for a preliminary 

analysis. 

 

 
Figure 1: Distributions of estimated Type I error rates for testing approaches 

(Nominal alpha = .05) 

 

3.2 Power for the Folded F-Test 
Figure 2 provides the distributions of statistical power estimates for the Folded F-test 

across all conditions simulated in which population variances were not equal. As 

expected, when the alpha level used for the Folded F-test is small (e.g., .01 or .05) the 

average power is low. However, the power of the Folded F-test increases when the 

applied alpha level increase. 

 
Nominal alpha levels of .05 and .25 for the Folded F-test were selected for further 

analysis of power. The average power of the Folded F-test based on simulation design 

factors is presented in Table 1. As seen in the table, the power remains stable regardless 

of distribution shapes, yet using the alpha level of .25 consistently yielded more power. 

The average powers for .05 and .25 alpha levels were around .81 and .90, respectively, 

across normal and non-normal distributions. Further, as the value of variance ratio 

increases, the power of the Folded F-test increase as well. Using the alpha level of .25 

provided substantially more power when the variance ratios were small (i.e., variance 

ratio = 1:2 and 1:4). As the variance ratios increased, the power differences between the 

two nominal alpha levels decreased. 

 

It is well-known that the power increases when the sample size increases. Using an alpha 

level of .05 for the Folded F-test yielded average power of .80 with sample size of 50 and 

of .90 with 100. In contrast, the average power reached .80 with as few as 20 

observations and .90 with 50 observations using an alpha level of .25. The use of 

extremely unbalanced samples (sample size ratios of 1:4 or 4:1) reduced the power of the 

Folded F-test, but power advantages of the more liberal alpha level remained evident. 
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Figure 2: Distributions of statistical power for the Folded F-Test by nominal alpha level 

 

Note: For shape, the two values indicate skewness and kurtosis, respectively 

 

3.3 Impact of Variance Heterogeneity on the Test of Means 
The large dispersion of Type I error rates for the independent means t-test (Figure 3) 

results in large part from the variance heterogeneity that was included in the simulation 

conditions. Figure 3 presents the distributions of Type I error rates for the independent 

means t-test with the results disaggregated by population variance ratio. Note that as the 

population variance ratio increases, both the average Type I error rate and the dispersion 

of Type I error rates increase. 

 

Figures 4 and 5 present the analogous distributions of Type I error rates for 

Satterthwaite’s approximate t-test and the conditional t-test, respectively, with an alpha 

level of .25 as a decision rule for the Folded-F test. Both the Satterthwaite’s approximate 

t-test and the conditional t-test provided good control of Type I error rate even if the 

population variances in the two groups are heterogeneous. 

Table 1: The Power of the Folded F-Test Using α = .05 and α = .25 

Condition α = .05 α = .25 Condition α = .05 α = .25 

Total N   Variance ratio   

10 0.36 0.62 1:2 0.55 0.73 

20 0.64 0.82 1:4 0.76 0.87 

50 0.85 0.92 1:8 0.85 0.93 

100 0.92 0.96 1:12 0.89 0.93 

200 0.96 0.98 1:16 0.91 0.96 

300 0.98 0.99 1:20 0.92 0.97 

400 0.99 0.99    

N ratio 

  

Shape 

  1:4 0.74 0.86 0,0 0.82 0.91 

2:3 0.83 0.92 1,3 0.81 0.90 

1 0.85 0.93 1.5,5 0.81 0.90 

3:2 0.85 0.92 2,6 0.81 0.89 

4:1 0.80 0.82 0,25 0.81 0.91 

P
o

w
er
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Figure 3: Distributions of estimated Type I Error rates by variance ratio at α = .05 for the 

Independent Means T-Test 

Figure 4: Distributions of estimated Type I error rates by variance ratio at α = .05 for the 

Satterthwaite’s Approximate T-Test 

Figure 5: Distributions of estimated Type I error rates by variance ratio at α = .05 for the 

Conditional T-Test Using α = .25 for the Folded F-Test. 

 

Of course, the independent means t-test is known to be relatively robust to violations of 

the assumption of variance homogeneity if the sample sizes in the two groups are equal. 

This phenomenon is illustrated in Figure 6. Note that the Type I error rate for the 

independent means t-test is maintained near the nominal .05 level if sample sizes are 

equal. With disparate sample sizes in the two groups, the independent means t-test either 

becomes conservative (Type I error rates lower than the nominal alpha level) or liberal 
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(Type I error rates higher than the nominal level) depending upon the relationship 

between sample size and population variance. In contrast, both Satterthwaite’s 

approximate t-test (Figure 7) and the conditional t-test (Figure 8) evidence much 

improved Type I error control under variance heterogeneity when samples sizes are 

unequal. 

Figure 6: Distributions of estimated Type I error rates by sample size ratio for the 

Independent Means T-Test 

 

Figure 7: Distributions of estimated Type I error rates by sample size ratio for 

Satterthwaite’s Approximate T-Test 

Figure 8: Distributions of estimated Type I error rates by sample size ratio for the 

conditional t-test. 

 

Using a larger sample size does not improve the performance of the independent means t-

test (Figure 9), but larger samples provide substantial improvements to the Type I error 

control of both Satterthwaite’s approximate t-test (Figure 10) and the conditional t-test 

(Figure 11).  
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Figure 9: Distributions of estimated Type I error rates for the independent t-test by total 

sample size 

Figure 10: Distributions of estimated Type I error rates for Satterthwaite’s approximate 

t-test by total sample size 

 

 
Figure 11. Distributions of estimated Type I error rates for the conditional t-test by total 

sample size 

The variability in the estimated Type I error rates for the three tests of means was 

analyzed by computing the eta-squared value associated with each simulation design 

factor and the first-order interactions. For the independent means t-test, the factors 

associated with variability in estimated Type I error rates were sample size ratio (η
2
 = 

0.69) and the interaction between sample size ratio and variance ratio (η
2
 = 0.22). For 

Satterthwaite’s approximate t-test and the conditional t-test respectively, major factors 

were sample size ratio (η
2
 = 0.15; η

2
 =0.18), total sample size (η

2
 = 0.18; η

2
 =0.14), and 

the interaction between sample size ratio and total sample size (η
2
 = 0.26; η

2
 =0.36). An 

analysis of the sole impact of distribution shape on Type I error rates of the three tests 
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showed that Type I error rate of Satterthwaite's approximate t-test was most affected (η
2
 = 

0.07). While Type I error rate of the independent means t-test was least impacted by the 

distribution shape (η
2
 = 0.001), Type I error rate of the conditional t-test was also 

impacted (η
2
 = 0.04) but to a much lesser degree in comparison with that of 

Satterthwaite's approximate t-test. 

 

The mean Type I error rates by total sample size and distribution shape for the three test 

types under the nominal alpha level of .05 are presented in Figures 12, 13, and 14. Figure 

12 shows that for the independent means t-test, the mean Type I error rates are much 

above the nominal alpha level in all conditions of distribution shapes and total sample 

sizes. Although the mean estimated Type I error rates decrease with larger samples, they 

remain substantially greater than .05. In contrast, both Satterthwaite’s approximate t-test 

and the conditional t-test provided much better Type I error control except for extremely 

small sample sizes (i.e., total sample size = 10) or the extremely skewed distribution (i.e., 

skewness = 2) (see Figure 13 and 14, respectively). 

 

 
Figure 12: Mean Type I error rate for the Independent t-test by total sample size and 

distribution shape 

 

 
Figure 13: Mean Type I error rate for Satterthwaite’s approximate t-test by total sample 

size and distribution shape 
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Figure 14: Mean Type I error rate for the conditional t-test by total sample size and 

distribution shape 

 

3.4. Bradley’s Liberal Criterion for Robustness of Type I Error Control 
The Type I error rate estimates were further evaluated on the basis of the liberal criterion 

for robustness suggested by Bradley (1978). Given a nominal alpha level, Bradley’s 

liberal criterion provides a plausible range of Type I error rates in which a test can be 

considered robust.  The liberal criterion for the robustness is set at 0.5α around the 

nominal alpha. For example, when α = .05, a test is considered robust when the Type I 

error rate falls between .025 (= 0.5*.05) and .075 (= 1.5*.05).  

 

For the independent means t-test, the overall proportions of cases meeting the Bradley’s 

liberal criterion were .35, .44, and .52 for α = .01, .05, and .10, respectively. In contrast, 

the respective proportions for the Satterthwaite’s approximate test were .77, .91, and .96. 

Depending on the alpha of the Folded F-test, the proportions of the conditional t-test are 

generally bound between those of independent means t-test as a lower limit and those of 

Satterthwaite’s approximate tests as an upper limit. When the significance level of the 

Folded-F test was .25, the conditional t-test showed the largest proportion meeting the 

criterion close to that of Satterthwaite. The overall proportions meeting the criterion at α 

= .05 for independent means t-test, conditional t-test and Satterthwaite’s approximate test 

are presented in Table 2. 

 

Table 2: The Proportions of Cases Meeting the Bradley’s Liberal Criterion at α = .05 
Test t-

test 

Conditional t-test  Satterthwaite 

α
a
  .01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50  

Proportion .44 .84 .87 .88 .89 .90 .91 .88 .88 .88 .88 .88 .91 
a
 The significance level of Folded F-test. 

  

The factors related to the Bradley proportions vary across tests (Table 3). For the 

independent means t-test, the sample size ratio and the variance ratio between the two 

populations emerged as primary factors making an impact on the Type I error control. 

Although the overall proportions of conditions for the independent means t-test meeting 

the Bradley’s criterion were very low (below 50%), the Type I error rates were perfectly 

controlled when the homogeneity of variance assumption was met (i.e., variance ratio 
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between groups = 1:1). As the disproportion of two group variances became larger to 

1:20, the Type I error control of independent means t-test diminished considerably. When 

the two groups have equal sample size, the independent means t-test adequately 

controlled the Type I error rates within the Bradley’s criterion in 91% of the conditions. 

The imbalance of sample size between groups also worsened the Type I error control 

noticeably. On the other hand, the adequacy of Type I error control of the independent 

means t-test appears independent of total sample size and the shape of distribution. The 

proportions meeting the Bradley’s criterion were consistently low irrespective of total 

sample size and distribution shape. 

 

On the contrary, the impact of variance ratio and sample size ratio on the Type I error 

control of the Satterthwaite’s approximate test and the conditional t-test appear minimal. 

Both tests showed adequate levels of Type I error control in the majority of conditions 

regardless of variance ratio and sample size ratio. Instead, total sample size and the 

skewness of the distribution were associated with the Bradley proportions of both the 

Satterthwaite’s approximate test and the conditional t-test. When the total sample size 

was 10, the proportions meeting the criterion dropped to about 65%. In this total sample 

size condition (N = 10), the conditional t-test showed slightly better control of Type I 

error than the Satterthwaite’s approximate test. Interestingly, the Type I error control of 

both tests was affected by skewness but not by kurtosis (see Table 3).  

 

Table 3: The Proportions of Cases Meeting the Bradley’s Liberal Criterion by Tests and 

Conditions at α = .05 

Condition t-test Conditional  Satterthwaite Condition t-test Conditional Satterthwaite 

Total N    Variance ratio 

10 0.45 0.68 0.65 1:1 1.00 0.94 0.92 

20 0.49 0.76 0.82 1:2 0.62 0.93 0.95 

50 0.45 0.93 0.95 1:4 0.40 0.91 0.93 

100 0.43 0.97 0.97 1:8 0.29 0.90 0.91 

200 0.42 1.00 1.00 1:12 0.27 0.89 0.89 

300 0.41 1.00 1.00 1:16 0.25 0.89 0.89 

400 0.41 1.00 1.00 1:20 0.23 0.89 0.90 

N ratio 

   

Shape 

   1:4 0.18 0.98 0.97 0,0 0.43 0.96 0.97 

2:3 0.67 0.98 0.98 1,3 0.44 0.96 0.97 

1 0.91 0.97 0.97 1.5,5 0.44 0.93 0.94 

3:2 0.28 0.91 0.91 2,6 0.46 0.77 0.78 

4:1 0.14 0.70 0.74 0,25 0.41 0.91 0.91 

Note. Conditional = conditional t-test at α = .25 of Folded F-test. For shape, the two 

values indicate skewness and kurtosis, respectively. 

 

3.5 Statistical Power Analysis 
Although Satterthwaite’s approximate t-test provides superior Type I error control, it is 

not always the best test to select because of the potential for power differences. When the 

assumptions are met, the independent means t-test is the most powerful test for mean 

differences. For this simulation study, power comparisons were made only for conditions 

in which both the Satterthwaite’s approximate t-test and the conditional t-test  procedures 

evidenced adequate Type I error control by Bradley’s (1978) benchmark. Figure 15 

shows the distributions of power estimates for the conditional t-test and Satterthwaite’s 

approximate t-test (at a nominal alpha of .05). As evident in this figure, the power 

differences between the tests were small. 
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Figure 15: Distributions of estimated statistical power (Nominal alpha = .05) 

Figure 16 presents a scatter plot of the power estimates for the conditional t-test and 

Satterthwaite’s approximate t-test (using an alpha level of .25 for the Folded-F test). Data 

points above the line represent conditions in which the Satterthwaite test was more 

powerful than the conditional t-test, while those below the line are conditions in which 

the conditional t-test is more powerful. Overall, the conditional t-test, using alpha = .25 

for the Folded F-test of variances, was more powerful in 29% of the conditions while 

Satterthwaite’s approximate t-test was more powerful in only 23% of the conditions 

(identical power estimates were obtained in the other conditions).  

 
Figure 16: Scatterplot of power estimates for the conditional t-test and Satterthwaite’s 

approximate t-test 
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To identify research design factors associated with power differences between these two 

tests, the percentages of conditions in which each test evidenced power advantages were 

disaggregated by the simulation design factors (Table 4). For conditions with 

homogeneous variances, the conditional t-test evidenced more power than the 

Satterthwaite’s test in 61.64% of the conditions, while the Satterthwaite’s test was more 

powerful in 20.55% of the conditions (in the remaining conditions, the two tests 

evidenced equal power). As the variance ratios increased, the power advantages of the 

conditional t-test diminished, such that the Satterthwaite’s test was more often the more 

powerful test when the population variance ratio was 1:8 or larger. 

Table 4: Percentage of Simulation Conditions by Research Design Factors in which the 

Conditional t-test and Satterthwaite’s Test Were More Powerful 

Condition Conditional  Satterthwaite Condition Conditional  Satterthwaite 

N   Variance ratio 

10 48.97 51.03 1:1 61.64 20.55 

20 54.89 44.11 1:2 43.15 34.97 

50 44.79 28.83 1:4 31.03 29.35 

100 29.22 20.98 1:8 21.02 22.08 

200 19.43 12.38 1:12 16.56 18.06 

300 11.62 9.52 1:16 14.62 17.63 

400 8.19 7.81 1:20 13.25 15.81 

N ratio 

  

Shape  

  1:4 10.59 53.95 0,0 29.20 15.67 

2:3 9.21 44.77 1,3 29.60 21.98 

1 35.58 0.00 1.5,5 28.17 24.63 

3:2 47.68 4.04 2,6 21.69 24.51 

4:1 48.52 4.54 0,25 34.98 27.50 

Note. Conditional = conditional t-test at α = .25 of Folded F-test. For shape, the two 

values indicate skewness and kurtosis, respectively. 

With balanced samples the conditional t-test was more powerful in 35.38% of the 

conditions and Satterthwaite’s test was never more powerful. With unbalanced samples in 

which the larger sample is drawn from the population with the larger variance (in 

heterogeneous populations), the Satterthwaite’s test presents notable power advantages 

(44.77% and 51.03% of the cases with sample size ratios of 2:3 and 1:4, respectively). In 

contrast, when the larger sample is drawn from the population with the smaller variance, 

the conditional t-test evidences more power than the Satterthwaite’s test (47.68% and 

48.52% of the conditions with sample size ratios of 3:2 and 4:1, respectively). The results 

by total sample size show that the conditional t-test is more powerful in more conditions, 

except for the smallest sample sizes examined (N = 10). Finally, the conditional t-test is 

more powerful in more conditions for all distribution shapes except for the most skewed 

distribution examined (skewness = 2, kurtosis = 6). 

4. Conclusions and Recommendations 

The testing of differences between two population means is a fundamental statistical 

application, but controversy about the appropriate test to use has been evident for many 

years. When conducting the independent means t-test, major statistical software programs 

(e.g, SAS and SPSS) automatically produce the results of the independent means t-test 

and the alternative Satterthwaite’s approximate test. Depending on the statistical 

significance of homogeneous variance testing (Folded F-test in SAS and Levene’s F test 

in SPSS), researchers are recommended to follow one of the options, which has been a 

common practice in studies comparing two population means. However, recent studies on 

the conditional t-tests in comparison to Satterthwaite’s test have strongly supported the 
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Satterthwaite’s test over the conditional t-test and suggested even abandoning the 

conventional practice of selecting one of the options based on the results of the 

homogeneity of variance test. Considering the ongoing controversy surrounding these 

tests and the frequency with which two means are compared in applied research, this 

simulation study was intended to investigate the performance of the independent means t-

test, Satterthwaite’s approximate t-test, and the conditional t-test under the manipulated 

conditions of population distribution shape, total sample size, sample size ratio between 

groups, variance ratio between populations, the difference in means between populations, 

alpha level for testing the treatment effect, and alpha level for testing the homogeneity 

assumption for the conditional t-test. Type I error control and power analysis were used 

to examine the performance of these testing procedures. 

As expected, the independent means t-test performed very well on the Type I error 

control when the homogeneity assumption was met regardless of the tenability of the 

normality assumption. This reminds us of the long-known property that the independent 

means t-test requires the homogeneity assumption to be met and this test is robust to 

violations of the normality assumption when two population variances are equal. 

Furthermore, the independent means t-test showed adequate Type I error control when 

sample sizes in the two groups were equal under the normal distribution. This re-

emphasizes another well-known property that the independent means t-test is robust to 

violations of the homogeneity assumption when the sample sizes are equal under the 

normal distribution. Under these conditions, the independent means t-test is the best 

method to test the difference between two independent means. This testing procedure 

also provides more statistical power. On the other hand, the t test evidenced poor Type I 

error control under heterogeneous variances with non-normal distributions. Thus, two 

alternatives, Satterthwaite’s approximate t-test and the conditional t-test, were considered 

in this study.  

This study also found that the Type I error rate of the conditional t-test was affected by 

the alpha level for the Folded F-test that was used to test the homogeneity assumption of 

population variances. The more conservative alpha levels for the Folded F-test resulted in 

larger Type I error rates for the conditional test because of lower statistical power, such 

that the Folded F-test might not be able to detect the true difference between population 

variances. This leads us to re-consider the conventional procedures for examining the 

difference between two population means. Thus, the conditional t-test with using a 

relatively large alpha level for the Folded F-test may be an appropriate alternative.  

Overall, Satterthwaite’s approximate test performed best in control of Type I error rate 

but the conditional t-test also yielded comparable results using a large alpha level of .25 

for the Folded F-test. Both alternatives made a tremendous improvement in Type I error 

control, compared to the independent means t-test, when group variances were unequal. 

Extreme skewness (e.g., skewness = 2) contaminated the Type I error control for both 

alternative testing procedures. Kurtosis seemed not to have this kind of impact. 

Increasing total sample size was found in this study to improve Type I error control for 

both testing procedures, but not for the independent t-test. When total sample size was 

200 or more, Bradley’s rates were 100% for both alternative testing procedures. Although 

Satterthwaite’s approximate t-test provides slightly better Type I error control, the use of 

the conditional t-test may have a slight power advantage.  

So, what can we recommend for researchers on the selection of an appropriate test? First, 

with equal sample size the independent means t-test is the appropriate testing procedure 

to examine the difference of two independent group means because it provides adequate 

Type I error control and more statistical power. With unequal sample size the Folded F-
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test can provide reasonable guidance in the choice between the independent t-test and 

Satterthwaite’s approximate test. A large alpha level of .25 is recommended to evaluate 

the results of the Folded F-test. If the F value is not statistically significant at this large 

alpha level, then the independent means t-test should be used. In contrast, if the F value is 

statistically significant at this large alpha level, then Satterthwaite’s approximate test 

should be chosen. Finally, the confidence in this conditional testing procedure increases 

as the sample sizes become larger. To adequately control for Type I error rate in the 

conditional testing procedure, a total sample size of at least 200 is recommended with 

extremely skewed populations (e.g., skewness = 2). For less skewed populations, a total 

sample size of at least 100 is recommended. With a total sample size smaller than these 

recommended in the corresponding conditions, the Type I error control resulting from 

any of these testing procedures may be questionable. 
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