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Abstract 

A process capability index is a statistical measure of a process to produce output 
within pre specified limits known as specification limits.   Process capability indices 
measure natural variations in processes relative to specification limits determined a 
priori.  They allow detection of shifts in the processes.  Common process capability 
indices are 𝐶𝑝 and 𝐶𝑝𝑘 .  If LSL and USL are the lower specification limit and upper 
specification limits of a process, the midpoint of the specification interval is given by 
m=(USL+LSL)/2. It is well known that when the process mean equals m, 𝐶𝑝𝑘  reduces to 
𝐶𝑝. However the process mean is usually unknown. This makes it difficult to determine 
whether to use 𝐶𝑝 or 𝐶𝑝𝑘 without any guideline in practice.  In this paper, we introduce 
new estimators of process capability based on a preliminary test of statistical 
hypothesis.  The estimators are known as the preliminary test estimator (PTE) and the 
weighting function estimator (WFE).  Based on mathematical derivations and Monte 
Carlo experiments, we demonstrate that the PTE and WFE outperform the 𝐶𝑝 and 𝐶𝑝𝑘  
indices under the mean square error criterion. 

Key Words: process capability; preliminary test estimator; weighting function estimator; 
mean square error. 

1. Introduction 

Process capability indices are commonly used in industry to measure natural variations in 
processes relative to predetermined specification limits. The two basic process capability 
indices are 𝐶𝑝 and 𝐶𝑝𝑘 . Let LSL and USL be the lower specification limit and upper 
specification limits of a process respectively, then  

𝐶𝑝 = 𝑈𝑆𝐿−𝐿𝑆𝐿
6𝜎

 = 𝑑
3𝜎

       (1) 

and 𝐶𝑝𝑘 =  min (𝑈𝑆𝐿−𝜇,𝜇−𝐿𝑆𝐿)
3𝜎

 = 𝑑−|𝜇−𝑚|
3𝜎

     (2) 

where μ and σ are the mean and standard deviation of the process,  d=(USL−LSL)/2,  and 
m=1

2
(𝐿𝑆𝐿 + 𝑈𝑆𝐿). Note that 𝐶𝑝 does not take into account the process mean μ. The index  

𝐶𝑝𝑘 that is a function of μ and σ is an extension of 𝐶𝑝.  

In practice, the mean and standard deviation are usually unknown; hence they must be 
estimated by a sample. Let 𝑋� and S be the sample mean and sample standard deviation 
from a random sample of size n. The usual estimators of 𝐶𝑝 and 𝐶𝑝𝑘  are obtained by 
replacing the unknown parameters by their respective sample estimates. The usual 
estimators are 
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�̂�𝑝= 𝑈𝑆𝐿−𝐿𝑆𝐿
6𝑆

 = 𝑑
3𝑆

       (3) 

and �̂�𝑝𝑘 =  min (𝑈𝑆𝐿−𝑋�,𝑋�−𝐿𝑆𝐿)
3𝑆

 = 𝑑−|𝑋�−𝑚|
3𝑆

     (4) 

It is easily seen from Equation (2) that when μ = m, the index 𝐶𝑝𝑘  reduces to 𝐶𝑝 .  
Properties of �̂�𝑝 and �̂�𝑝𝑘 are studied and given in the literature, see e.g. Kotz and Johnson 
(1993). Since μ is unknown, we do not know whether μ = m. However, we can use the 
sample to test the null hypothesis 𝐻𝑜: μ = m against the alternative hypothesis 𝐻1: μ ≠ m . 
We assume that the process has a normal distribution. So the test is a t test. The test 
statistic is 

 t = 𝑋
�−𝑚
𝑆/√𝑛

         (5) 

The null hypothesis 𝐻𝑜 is rejected if |t| > 𝑡𝛼/2, where  𝑡𝛼/2 is the upper 100α/2 percentage 
point of the t distribution with n – 1 degrees of freedom. The result of the t test can lead 
us to which estimator to use. The t test becomes a preliminary test. And the estimator 
depending on the outcome of the preliminary test is known as the preliminary test 
estimator (PTE). Preliminary test estimator was first studied by Bancroft(1944). Since 
then there are many papers published in this area, see for example the bibliography by 
Bancroft and Han(1977), Han, Rao and Ravichandran(1988).  We now define the process 
capability preliminary test estimator as 

 �̂�𝑝𝑡𝑒 = {
�̂�𝑝        𝑖𝑓 |t|  ≤  𝑡𝛼/2 
�̂�𝑝𝑘     𝑖𝑓 |t|  >  𝑡𝛼/2     

      (6) 

It is seen that when 𝐻𝑜 is rejected, the test indicates that μ ≠ m, so we use  �̂�𝑝𝑘 as the 
estimator of the process capability. On the other hand, when 𝐻𝑜 is not rejected, we use �̂�𝑝 
as the estimator.  

Another estimator based on the t statistic is the weighting function estimator (WFE), it is 
defined as 

 �̂�𝑤𝑓𝑒 = w�̂�𝑝 + (1 – w)�̂�𝑝𝑘      (7) 

where w = 1/(1 +  𝑡2), which is the weight. When 𝑡2 is small, the weight  w is near 1 and  
�̂�𝑤𝑓𝑒 is close to �̂�𝑝. When 𝑡2 is large, the weight w is near 0 and �̂�𝑤𝑓𝑒 is close to �̂�𝑝𝑘. We 
will study these adaptive estimators in this paper. Section 2 will derive the expected value 
and variance of �̂�𝑝𝑡𝑒 . A Monte Carlo study is used to compare the preliminary test 
estimator and the weighting function estimator with the estimator �̂�𝑝𝑘. 
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2. Expected Value and Variance of the Preliminary Test Estimator 

The expected value and variance of �̂�𝑝𝑡𝑒 are obtained by using the distribution of 𝑋� and 
𝑆 2. We assume that the process follows a normal distribution. Then 𝑋� ~ N(μ, 𝜎2) and  
(n–1)𝑆 2/𝜎2 ~ 𝜒2(n –1); 𝑋� and 𝑆 2 are independently distributed. The expected value of 
�̂�𝑝𝑡𝑒 is 

 E(�̂�𝑝𝑡𝑒) = E(�̂�𝑝||t|  ≤  𝑡𝛼/2)P(|t|  ≤  𝑡𝛼/2) + E(�̂�𝑝𝑘||t| >  𝑡𝛼/2)P(|t| >  𝑡𝛼/2) (8) 

Now �̂�𝑝𝑘 can be written as  

 �̂�𝑝𝑘 =�̂�𝑝 – |t|
3√𝑛

 

So we have  

 E(�̂�𝑝𝑡𝑒) = E(�̂�𝑝)  – 1
3√𝑛

E(|t|||t| >  𝑡𝛼/2)P(|t| >  𝑡𝛼/2)  

Let Z = √𝑛(𝑋 − 𝜇)/𝜎 and  V = (n–1)𝑆 2/𝜎2 ; then Z~ N(0, 1),  V~ 𝜒2(n –1), Z and V are 
independently distributed. The t statistic can be written as 

 t = 𝑍−𝛿
�𝑉/(𝑛−1)

 

where δ = √𝑛(m – μ)/σ.  Using the joint probability density function of Z and V and after 
some tedious algebra, we obtain  

 E(�̂�𝑝𝑡𝑒) = √𝑛−1Г((𝑛−1)/2)
Г((𝑛−2)/2

𝐶𝑝 – 1
3√𝑛

(𝐺1+ 𝐺2)    (9) 

where  𝐺1 = 
�𝑛−12 Г((𝑛−2)/2)

Г((𝑛−1)/2)
[φ(δ) – δ(1 – Φ(δ) )]     (10) 

      − 
Г�𝑛−22 �

√2Г�𝑛−12 �
∑ √𝑛−1

2𝑖−1

𝑛
2−1
𝑖=1 (𝑛−1

𝑡𝛼
2

2 )𝑖−1𝑒
−(𝑛−1)𝛿2/(2(𝑡𝛼

2

2+𝑛−1))
 

       ×∑ �2𝑖 − 1
𝑗 �2𝑖−1

𝑗=0 (−𝛿)2𝑖−1−𝑗 ∑ �𝑗𝑘�
𝑗
𝑘=0 𝜎𝐴𝑘+1𝜇𝐴

𝑗−𝑘𝐵𝑘1 

and φ(·) and  Φ(·) are the probability density and cumulative distribution function of the 
standard normal distribution respectively,  
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      𝐵𝑘1 = 1 − Φ(a) , if k = 0,       (11) 

      =φ(𝑎)[𝑎𝑘−1 + (𝑘 − 1)𝑎𝑘−3 + (𝑘 − 1)(𝑘 − 3)𝑎𝑘−5 +⋯+ (𝑘 − 1)(𝑘 − 3) … 

                     × 4 × 2],    if  k = 1, 3, 5, …..(odd) 

 =φ(𝑎)[𝑎𝑘−1 + (𝑘 − 1)𝑎𝑘−3 + (𝑘 − 1)(𝑘 − 3)𝑎𝑘−5 + ⋯+ (𝑘 − 1)(𝑘 − 3) …  

                  ×3 × 𝑎] +(𝑘 − 1(𝑘 − 3) × … × 3 × 1 × [1 −𝛷(𝑎)],    

𝑖𝑓 𝑘 = 2, 4, 6, … . (𝑒𝑣𝑒𝑛) 

and  𝑎 = 𝛿−𝜇𝐴
𝜎𝐴

, 𝜇𝐴 = (𝑛−1)𝛿
𝑡𝛼
2

2+𝑛−1
,   𝜎𝐴 =

𝑡𝛼
2

2

𝑡𝛼
2

2+𝑛−1
     (12) 

  𝐺2 = 
�𝑛−12 Г((𝑛−2)/2)

Г((𝑛−1)/2)
[φ(δ) + δΦ(δ) )]     (13) 

      − 
Г�𝑛−22 �

√2Г�𝑛−12 �
∑ √𝑛−1

2𝑖−1Г(𝑖)

𝑛
2−1
𝑖=1 (𝑛−1

𝑡𝛼
2

2 )𝑖−1𝑒
−(𝑛−1)𝛿2/(2(𝑡𝛼

2

2+𝑛−1))
 

       ×∑ �2𝑖 − 1
𝑗 �2𝑖−1

𝑗=0 (−1)𝑗𝛿2𝑖−1−𝑗 ∑ �𝑗𝑘�
𝑗
𝑘=0 𝜎𝐴𝑘+1𝜇𝐴

𝑗−𝑘𝐵𝑘2 

where 

     𝐵𝑘2 = Φ(a) ,   if k = 0,       (14) 

            =−φ(𝑎)[𝑎𝑘−1 + (𝑘 − 1)𝑎𝑘−3 + (𝑘 − 1)(𝑘 − 3)𝑎𝑘−5 + ⋯+ (𝑘 − 1)(𝑘 − 3) 

                 … × 4 × 2]      if  k = 1, 3, 5, …..(odd) 

           =−φ(𝑎)[𝑎𝑘−1 + (𝑘 − 1)𝑎𝑘−3 + (𝑘 − 1)(𝑘 − 3)𝑎𝑘−5 + ⋯+ (𝑘 − 1)(𝑘 − 3) 

                  … × 3 × 𝑎] × (𝑘 − 1(𝑘 − 3) × … × 3 × 1 × 𝛷(𝑎)   𝑖𝑓 𝑘 = 2, 4, 6, … . (𝑒𝑣𝑒𝑛) 

In a similar procedure we can derive 𝐸(�̂�𝑝𝑡𝑒2 ) that is 

𝐸��̂�𝑝𝑡𝑒2 �= 𝑛−1
𝑛−3

𝐶𝑝2 −
2(𝑛−1)
3√𝑛

Г�𝑛−32 �

Г�𝑛−12 �
𝐶𝑝{2φ(𝛿) − 𝛿�1 −𝛷(𝛿)� + 𝛿𝛷(𝛿)  (15) 

− �
1

2𝑖−1Г(𝑖)
(
𝑛 − 1
𝑡𝛼
2

2 )𝑖−1𝑒
−(𝑛−1)𝛿2/(2(𝑡𝛼

2

2+𝑛−1))
(𝑛−3)/2

𝑖=1

[� �2𝑖 − 1
𝑗 �

2𝑖−1

𝑗=0

(−𝛿)2𝑖−1−𝑗� �𝑗𝑘�
𝑗

𝑘=0

𝜎𝐴𝑘+1𝜇𝐴
𝑗−𝑘𝐵𝑘1 
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+ � �2𝑖 − 1
𝑗 �

2𝑖−1

𝑗=0

(−1)𝑗𝛿2𝑖−1−𝑗� �𝑗𝑘�
𝑗

𝑘=0

𝜎𝐴𝑘+1𝜇𝐴
𝑗−𝑘𝐵𝑘2]} 

+
(𝑛 − 1)

9𝑛
Г �𝑛 − 3

2 �

Г �𝑛 − 1
2 �

[1 + 𝛿2 −�
𝑛 − 1

2𝑖−1Г(𝑖)

𝑛−3
2

𝑖=1

(
𝑛 − 1
𝑡𝛼
2

2 )𝑖−1𝑒
−(𝑛−1)𝛿2/(2(𝑡𝛼

2

2+𝑛−1))

× ��2𝑖
𝑗 �

2𝑖

𝑗=0

(−𝛿)2𝑖−𝑗� �𝑗𝑘�
𝑗

𝑘=0

𝜎𝐴𝑘+1𝜇𝐴
𝑗−𝑘𝜇𝑘′ ] 

where 𝜇𝑘′  is the 𝑘𝑡ℎ moment of N(0, 1), i.e.  

 𝜇𝑘′  = 1     if k=0 

      = 0     if k is odd  

      = (k-1)(k-3)….5× 3 × 1      if k is even 

Using equations (9) and (15) we obtain the bias and mean square error of the preliminary 
test estimator.  

 Bias(�̂�𝑝𝑡𝑒)= E(�̂�𝑝𝑡𝑒) −𝐶𝑝𝑘  

 MSE(�̂�𝑝𝑡𝑒)= 𝐸��̂�𝑝𝑡𝑒2 � −  (𝐸��̂�𝑝𝑡𝑒�)2 + (Bias(�̂�𝑝𝑡𝑒))2 

 

3. Comparisons of the Estimators 

We now compare the estimators in terms of bias and mean square error (MSE).  Since the 
exact formulas for the bias and MSE of the weighting function estimator are difficult to 
obtain, we use a Monte Carlo study to obtain them. In the Monte Carlo study we let USL 
and LSL be 1 and –1 respectively without loss of generality. Also we let σ = 0.33 and μ = 
-0.9 (0.1) 0.9. The relative efficiency of the preliminary test estimator to  �̂�𝑝𝑘  is defined 
as  

 REPTE=1/𝑀𝑆𝐸(�̂�𝑝𝑡𝑒)
1/𝑀𝑆𝐸(�̂�𝑝𝑘)

 

Similarly the relative efficiency of the weighting function estimator to  �̂�𝑝𝑘  is defined as  

 REWFE=1/𝑀𝑆𝐸(�̂�𝑤𝑓𝑒)
1/𝑀𝑆𝐸(�̂�𝑝𝑘)

 

The Monte Carlo results are given in Table 1 and Table 2. From the tables it is seen that 
both �̂�𝑝𝑡𝑒 and �̂�𝑤𝑓𝑒 have smaller absolute bias than �̂�𝑝𝑘. Also the absolute bias of �̂�𝑝𝑡𝑒 is 
smaller than  �̂�𝑤𝑓𝑒 when µ is equal or close to m; but when µ moves away from m, the 
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absolute bias of �̂�𝑤𝑓𝑒 is smaller. Now let us compare the relative efficiencies. Both  �̂�𝑝𝑡𝑒 
and �̂�𝑤𝑓𝑒  have good relative efficiency when µ is equal or close to m. The relative 
efficiency of   �̂�𝑝𝑡𝑒 is larger than that of �̂�𝑤𝑓𝑒 when the null hypothesis is true. but when 
µ moves away from m, the relative efficiency of  �̂�𝑤𝑓𝑒 is higher. 

              Table 1 Biases and Relative Efficiencies   n=7,  α =0.05 

  𝜇  BiasCpk BiasPTE BiasWFE REPTE  REWFE 

-0.9 -0.0115  -0.0115   0.0012  1.00  1.00 

-0.8 -0.0230  -0.0230  -0.0086  1.00  1.03 

-0.7 -0.0350  -0.0342  -0.0188  0.99  1.04 

-0.6 -0.0427  -0.0366  -0.0236  0.97  1.05 

-0.5 -0.0638  -0.0476  -0.0415  0.99  1.08 

-0.4 -0.0760  -0.0348  -0.0486  1.02  1.09 

-0’3 -0.0904  -0.0204  -0.0581  1.11  1.09 

-0.2 -0.0935  -0.0041  -0.0572  1.15  1.08 

-0.1 -0.1348  -0.0520  -0.0986  1.15  1.09 

 0.0   -0.2059  -0.1327  -0.1706  1.19  1.11 

 0.1 -0.1420  -0.0594  -0.1052  1.19  1.11 

 0.2  -0.0967  -0.0073  -0.0609  1.13  1.08 

 0.3 -0.0809  -0.0089  -0.0486  1.09  1.08 

 0.4 -0.0668  -0.0274  -0.0399  1.00  1.07 

 0.5 -0.0623  -0.0460  -0.0398  0.98  1.07 

 0.6 -0.0456  -0.0411  -0.0266  0.98  1.05 

 0.7 -0.0343  -0.0337  -0.0179  0.99  1.04 

 0.8 -0.0166  -0.0165  -0.0024  1.00  1.02 

 0.9 -0.0102  -0.0102  0.0026  1.00  0.99 
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              Table 2  Biases and Relative Efficiencies   n=7,  α =0.10 

  𝜇  BiasCpk BiasPTE          BiasWFE          REPTE           REWFE  

-0.9 -0.0115  -0.0115  0.0012  1.00  1.00 

-0.8 -0.0230  -0.0230  -0.0086  1.00  1.03 

-0.7 -0.0350  -0.0350  -0.0188  1.00  1.04 

-0.6 -0.0427  -0.0416  -0.0236  0.99  1.05 

-0.5 -0.0638  -0.0597  -0.0415  1.00  1.08 

-0.4 -0.0760  -0.0602  -0.0486  1.00  1.09 

-0.3 -0.0904  -0.0524  -0.0581  1.05  1.09 

-0.2 -0.0935  -0.0337  -0.0572  1.12  1.08 

-0.1 -0.1348  -0.0702  -0.0986  1.14  1.09 

 0.0  -0.2059  -0.1411  -0.1706  1.18  1.11 

 0.1 -0.1420  -0.0767  -0.1052  1.18  1.11 

 0.2 -0.0967  -0.0384  -0.0609  1.10  1.08 

 0.3 -0.0809  -0.0420  -0.0486  1.05  1.08 

 0.4 -0.0668  -0.0512  -0.0399  1.00  1.07 

 0.5 -0.0623  -0.0587  -0.0398  0.99  1.07 

 0.6 -0.0456  -0.0445  -0.0266  0.99  1.05 

 0.7  -0.0343  -0.0343  -0.0179  1.00  1.04 

 0.8 -0.0166  -0.0166  -0.0024  1.00  1.02 

 0.9 -0.0102  -0.0102   0.0026  1.00  0.99 
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4. Conclusion 

Measurement of process capability is an important aspect of manufacturing with 
significant economic impact.  The whole idea of the 6-sigma programs evolved around 
measuring capability via suitable indexes. Therefore, a reliable estimator of process 
capability is an essential business imperative.  This paper extends the estimation of 
process capability which is based on a preliminary test of hypothesis leading to adaptive 
estimators; the preliminary test estimator and the weighting function estimator.  We 
demonstrated that our proposed estimators perform better than the existing estimators 
when the null hypothesis is true.   In the Big Data environment today, where the 
distributions are affected by man, machine, and materials; estimators that adapt to the 
underlying data structure are needless to say, essential. 
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