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Abstract

Generalized Method of Moments (GMM) has been used with longitudinal data
models with time-dependent covariates. Lai and Small (2007) applied the two-
step GMM (2SGMM) to continuous longitudinal data with time-dependent co-
variates to improve efficiency over the independent Generalized Estimating Equa-
tions (GEE) approach (Zeger & Liang, 1986; Liang & Zeger, 1986). The con-
tinuously updating GMM (CUGMM) procedure, outlined by Hansen (1982), was
discussed in the JSM 2012 topic contributed session, Correlated Logistic Regres-
sion with Time-Dependent Covariates (Lalonde et al, 2012), and has been applied
to binary longitudinal data with time-dependent covariates. When a binary re-
sponse and binary time-dependent covariate are present, convergence failure has
been observed for 2SGMM.

This paper presents the use of 2SGMM for binary longitudinal data in the presence
of at least one binary time-dependent covariate. The GMM algorithm fails to
converge. Possible reasons and explanations, including two-way tables of the
data, are offered.

Key Words: Generalized Method of Moments, binary covariates, binary response,
time dependent covariates, convergence failure, quasi-complete separation

1 Introduction

Correlated binary response data are oftentimes observed in biomedical studies. This
type of data must be handled with caution due to their different properties from uncor-
related (independent) or continuous data. In modeling this type of response, the Gen-
eralized Estimating Equations (GEE) approach by Zeger and Liang (1986) has become
the most common and most popular. The GEE process takes into account the inher-
ent correlation in the response over repeated observations and allows the researcher to
specify the nature of this correlation (e.g., Compound Symmetry, 1st Order Autore-
gressive). One of the main attractions behind GEE is that regardless of misspecification
of the working correlation structure, the GEE algorithm always yields consistent pa-
rameter estimates. Additionally, the GEE approach does not require full specification
of the response distribution. It only requires information involving the mean-variance
relationship of the response, hence only assuming a quasi-likelihood instead of the full
likelihood (Liang and Zeger, 1986; Zeger and Liang, 1986).
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However, GEE may become problematic when special types of covariates that are as-
sociated via a feedback loop (i.e., time-dependent covariates) enter the picture. As sug-
gested by Pepe and Anderson (1994) and Fitzmaurice (1995), the independent working
correlation structure is the “safest” option when applying the GEE approach in mod-
eling marginal means. When these time-varying covariates are present in modeling
the marginal mean, they create clusters and groups, which result in non-diagonal co-
variance structures. A crucial concept behind Independent GEE is the assumption of
a diagonal covariance structure; thus, the presence of time-dependent covariates al-
most always violates this key assumption behind the Independent GEE process (Pepe
and Anderson, 1994). Moreover, when a time-dependent covariate is present and the
Independent GEE approach is applied, substantial loss of efficiency can be observed
as the correlation inherent in the response over repeated observations increases (Fitz-
maurice, 1995). For these reasons, the analysis of correlated response data involving
time-dependent covariates can become tricky and very difficult quickly.

In comparison to using the Independent GEE approach, the use of Generalized Method
of Moments (GMM) estimation improves efficiency when time-dependent covariates
are present. The results from Lai and Small’s (2007) simulation study show that GMM
estimators are more efficient than Independent GEE estimators when time-dependent
covariates (TDC) of types I or II are involved and equally as efficient as Independent
GEE estimators when a TDC of type III is present. For this reason, GMM estimation
is a superior method when compared to Independent GEE in estimating parameters of
a longitudinal study, especially when time-dependent, or time-varying, covariates are
observed.

Our example involves data obtained from a hospital database in Arizona, with the in-
terest to model hospital readmission within 30 days of discharge. Each patient was ob-
served three times, and information including age, whether or not the patient suffered
a stroke, whether or not (s)he suffered a coronary thrombosis, whether or not (s)he had
pneumonia, and hospital length of stay were recorded. The response variables is binary:
yes or no to readmission within 30 days. A logistic regression model with both binary
and continuous TDCs will be applied, and we will use the GMM estimation process.
When binary TDCs are present, GMM has a tendency to fail in algorithm convergence.

This paper is organized as follows: in Section 2, brief reviews of TDCs and the GMM
process are given; in Section 3, a proposed model for our example data, GMM al-
gorithm convergence failure, and possible explanations are discussed; suggestions for
future research, as well as ongoing research, are offered in Section 4.

2 TDCs and the GMM Process

2.1 Time-Dependent Covariates

Oftentimes in medical and longitudinal data situations, current and future covariates
are associated via a feedback loop. Consider a patient with hypertension (high blood
pressure). Whether or not the doctor prescribes medication depends on the patient’s

JSM 2013 - Biometrics Section

2339



blood pressure reading at today’s clinic visit. The patient’s blood pressure when (s)he
returns to the doctor’s office at a future date may depend on whether or not the doctor
prescribed him/her medication at the previous visit. These special types of covariates
that involve feedback are referred to as time-dependent covariates (TDCs) and intro-
duce correlation among variables over time. As mentioned earlier, this correlation must
be accounted for when constructing longitudinal models.

There are four types of time-dependent covariates, and distinctions are made based on
their relationship to the response variable(s). These four types of TDCs are defined in
the following subsections.

2.1.1 Type I TDCs

When the current covariate affects only the current response, it is considered a type I
time-dependent covariate. This type of TDC involves no feedback.

By definition, a type I TDC is a covariate that satisfies the expression

E

[
∂µis(β0)

∂βj
{yit − µit(β0)}

]
= 0

for all s, t, such that s = 1,...,T and t = 1,...,T ,

and β0 is the vector of true parameters, and βj is the jth predictor.

There is no association between the derivative term and the residual term for any com-
bination of s, t, such that s = 1,...,T and t = 1,...,T .

2.1.2 Type II TDCs

When the current covariate affects both the current response and some future response,
it is a type II TDC. This type of TDC involves feedback between the current covariate
and future response.

By definition, a type II TDC is a covariate that satisfies the expression

E

[
∂µis(β0)

∂βj
{yit − µit(β0)}

]
= 0

for all combinations of s, t, such that s ≥ t.

An association exists between the current derivative and future residual terms.

2.1.3 Type III TDCs

Type III TDCs involve feedback loops such that the current response affects the covari-
ate at some future time, and the current covariate affects the response at some future
time.
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By definition, a type III TDC is a covariate that satisfies the expression

E

[
∂µis(β0)

∂βj
{yit − µit(β0)}

]
6= 0

for some s > t.

No association exists between current residual and current derivative terms. When this
type of TDC is present in analyses, the independent working correlation structure works
best.

2.1.4 Type IV TDCs

Type IV TDCs can be thought of as the “opposite” of type II TDCs. A feedback loop
exists such that the current response is associated with the current covariate, and the
current response also affects the covariate at some future time.

By definition, a type IV TDC is a covariate that satisfies the expression

E

[
∂µis(β0)

∂βj
{yit − µit(β0)}

]
= 0

for all combinations of s, t, such that s ≤ t.

An association exists between the current residual and future derivative terms.

2.2 Generalized Method of Moments

In dealing with correlated binary response data, the Generalized Estimating Equations
(GEE) approach by Liang and Zeger (1986) has become the most common method.
In handling models with correlated response, GEE always yields consistent parame-
ter estimates. This is true regardless of whether or not the correct working correlation
structure is specified. More specifically, Independent GEE will always yield consistent
parameter estimates, even when time-varying covarites (i.e., time-dependent covari-
ates) are present. However, there are drawbacks to the Independent GEE approach, as
outlined by Pepe and Anderson (1994) and Fitzmaurice (1995), including its loss of
efficiency as correlation between responses increases.

In comparison to using Independent GEE, the use of Generalized Method of Moments
(GMM) estimators improves efficiency when time-dependent covariates of type I or
type II are involved in the analysis. Results of Lai and Small’s (2007) simulation study
show that the use of GMM estimators does not change the efficiency of parameter es-
timates when time-dependent covariates of type III are involved in the analysis. Thus,
GMM estimators are equally as efficient as GEE estimators when the working correla-
tion structure is correctly specified, and they are more asymptomatically efficient than
GEE estimators when the working correlation structure is misspecified. For this rea-
son, GMM estimation is a superior method when compared to Independent GEE when
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estimating parameters of a longitudinal study.

The Generalized Method of Moments process assumes no response distribution and
therefore is not likelihood or quasi-likelihood based. Instead, GMM estimates are ob-
tained using moment conditions, which are products of derivative and residual terms
for the ith subject at times s and t:

N∑
i=1

∂µis(β0)

∂βj
{yit − µit(β0)}, s = 1,...,T and t = 1,...,T .

The first term in the summation is the derivative of the mean for the ith subject with
respect to the jth predictor at time s. The second term is the residual for the ith subject
at time t. β0 is the vector of true parameter values. (In practice, we may not know β0,
in which case we use something like Independent GEE to obtain “probable” parameter
estimates.)

When time-dependent covariates are present, only those moment conditions that are
considered to be “valid” are used in the GMM estimation process. Selection of these
“valid” moment conditions depends on the types of time-dependent covariates that are
present. As given in sections 2.1.1 through 2.1.4, the four types of time-dependent co-
variates work for specific combinations of time points s and t. These combinations of s
and t determine which moment conditions are “valid” for the different types of TDCs.
For example, for balanced longitudinal data with T = 3 (such as in our example), con-
sider a T by T , or 3 by 3 matrix of products of derivative and residual terms for the jth

predictor:


time: t = 1 t = 2 t = 3

s = 1 ∂µi1
∂βj
{yi1 − µi1} ∂µi1

∂βj
{yi2 − µi2} ∂µi1

∂βj
{yi3 − µi3}

s = 2 ∂µi2
∂βj
{yi1 − µi1} ∂µi2

∂βj
{yi2 − µi2} ∂µi2

∂βj
{yi3 − µi3}

s = 3 ∂µi3
∂βj
{yi1 − µi1} ∂µi3

∂βj
{yi2 − µi2} ∂µi3

∂βj
{yi3 − µi3}


For a type I TDC, all 9 elements in the matrix are “valid” moment conditions because
the expectation of the moment condition equals 0 for all s and t, s = 1,...,T and t =
1,...,T . For a type II TDC, elements in the lower triangular are “valid” moment condi-
tions because the expectation of the moment condition equals 0 for all combinations of
s and t where s ≥ t:


∂µi1
∂βj
{yi1 − µi1} ∂µi1

∂βj
{yi2 − µi2} ∂µi1

∂βj
{yi3 − µi3}

∂µi2
∂βj
{yi1 − µi1} ∂µi2

∂βj
{yi2 − µi2} ∂µi2

∂βj
{yi3 − µi3}

∂µi3
∂βj
{yi1 − µi1} ∂µi3

∂βj
{yi2 − µi2} ∂µi3

∂βj
{yi3 − µi3}


Following this logic, the 3 diagonal elements are the “valid” moment conditions for
type III TDCs, and the 6 elements in the upper triangular are the “valid” moment con-
ditions for type IV TDCs because s ≤ t.
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The GMM process uses all valid moment conditions for each of the j covariates and
combines them into the vector g(yi,xi, β0). These g vectors are averaged over all N
subjects to obtain GN :

GN (β) =

N∑
i=1

g(yi,xi, β0)

To obtain the Generalized Method of Moments parameter estimates, we construct a
quadratic form QN :

QN (β) = GN (β)
T WN GN (β)

and minimize this quadratic form. Here, WN is a weight matrix, whose optimal choice
was shown to be the inverse of the covariance matrix of the moment conditions g(yi,xi, β)
by Hansen (1982).

3 The GMM Approach for Models with TDCs

3.1 Correlated Binary Response Model with Binary TDCs

A logistic regression model was constructed to model the rate of readmission within 30
days of discharge, where readmission is a binary variable. Each patient was observed 3
times, and model predictors include age, hospital length of stay (LOS), whether or not
the patient suffered a stroke, whether or not the patient suffered a coronary thrombo-
sis, and whether or not the patient had pneumonia. For the continuous time-dependent
covariates, age is a type I TDC and hospital length of stay is a type II TDC. All three
binary TDCs are of type III. The Generalized Method of Moments estimation technique
was applied to construct the model:

logit(p) = β0 + β1Xit,Age + β2Xit,LOS + β3Xit,Coronary

+ β4Xit,Pneumonia + β5Xit,Stroke

where p = probability of readmission within 30 days,
and Xit,Stroke, Xit,Coronary, and Xit,Pneumonia are indicator variables.

3.2 GMM Algorithm Convergence Failure

3.2.1 Binary TDCs and GMM Non-Convergence

When applying the two-step Generalized Method of Moments (2SGMM) approach out-
lined by Lai and Small (2007) to these data, the algorithm failed to converge and no
parameter estimates were obtained.

It is suspected that the GMM algorithm non-convergence is due to quasi-complete sep-
aration of the binary variables. The GMM process relies on moment conditions rather
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than on a set of likelihood equations. Recall that these moment conditions are prod-
ucts of derivative and residual terms for the ith subject. For a Bernoulli response, this
product simplifies to:

µi (1− µi)

Further, GMM estimation involves computations that take the product of these moment
conditions with the covariate:

µi (1− µi)Xit

For the binary predictors, Xit assumes value 1 when the condition is present, thus re-
turning the familiar product: µi (1 − µi). However, when the condition is not present,
Xit becomes 0, wiping out this entire product.

Moreover, when the value of the binary covariate is 0, the moment condition simplifies
to 0, leaving very few moment conditions to be used in the GMM algorithm, thus
resulting in convergence failure.

3.2.2 Quasi-Complete Separation

The algorithm used in the Generalized Method of Moments estimation process failed
due to quasi-complete separation of the binary variables.

The issue with quasi-complete separation is most apparent when examining two-way
tables of the response variable with the binary covariate.

The following are two-way tables of the response variable, Readmission, with each of
the binary time-dependent covariates. Overall, 9325 patients, approximately 71% of
our sample, were readmitted, and 3830 patients, approximately 29% of our sample,
were not readmitted.

Table 1: Incidence of Readmission vs. Incidence of Stroke

Stroke
Readmission No (0) Yes (1) sum

Not readmitted 3752 78 3830
Readmitted 9058 267 9325

sum 12810 345 13155

Table 1 illustrates that only 345 patients suffered a stroke out of a total of 13155 pa-
tients and only 267 of those who suffered a stroke were readmitted. These counts are
relatively small compared to the total 13155 patients – proportionally, they are barely
2% and 3% of the total 13155 patients, respectively. 12810 patients did not experience
a stroke, which amounts to over 97% of the total 13155 patients, and 9058 of these
patients who were readmitted did not experience a stroke, an approximate 70% of all
patients in the study.
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Table 2: Incidence of Readmission vs. Incidence of Coronary Thrombosis

Coronary Thrombosis
Readmission No (0) Yes (1) sum

Not readmitted 3330 500 3830
Readmitted 8268 1057 9325

sum 11598 1557 13155

Table 2 illustrates that only 1557 patients suffered a coronary thrombosis out of the
total 13155 patients, and only 1057 of those who suffered a coronary thrombosis were
readmitted. These counts are again relatively small compared to the total 13155 patients
– proportionally, they are about 8% and 12%, respectively. 11598 patients did not
experience a coronary thrombosis, which amounts to approximately 88% of the total
13155 patients, and 8268 of these patients who were readmitted did not experience a
coronary thrombosis, an approximate 63% of all patients in the study.

Table 3: Incidence of Readmission vs. Incidence of Pneumonia

Pneumonia
Readmission No (0) Yes (1) sum

Not readmitted 3472 358 3830
Readmitted 8581 744 9325

sum 12053 1102 13155

Table 3 illustrates that only 1102 patients had pneumonia out of the total 13155 patients,
and only 744 of those who had pneumonia were readmitted. These counts are relatively
small compared to the total 13155 patients – proportionally, they are approximately
8% and 5.65%, respectively. 12053 patients did not have pneumonia, which amounts
to approximately 92% of the total 13155 patients, and 8581 of these patients who were
readmitted did not have pneumonia, an approximate 65% of all patients in the study.

4 Discussion

4.1 Existing Solutions

Currently exisiting solutions to this issue involving binary time-dependent covariates
are not ideal. One of the traditional approaches involves ignoring the time-dependence
that is inherent across all observation times. By doing so, we ignore the correlation in
the response across multiple observations, which results in less efficient model param-
eter estimates.

Another common approach in dealing with binary TDCs is to use an estimation process
that accounts for correlation among the response, such as the Independent General-
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ized Estimating Equations approach, as introduced by Zeger and Liang (1986). Using
Independent GEE will always result in consistent parameter estimates; however, as out-
lined by Pepe and Anderson (1994) and Fitzmaurice (1995), Independent GEE yields
less efficient parameter estimates as the correlation increases across multiple observa-
tions. Thus, using Independent GEE may circumvent the issue of GMM algorithm
non-convergence but may result in parameter estimates that are less efficient.

The least ideal method in dealing with binary time-dependent covariates is to omit them
altogether from statistical analyses. Avoiding the use of binary TDCs may result in
easier and simpler analyses but will result in loss of useful and important information.
Ease in handling the data by avoiding the inclusion of binary TDCs may distort the
information extracted from the data.

4.2 Extensions and Further Research

4.2.1 Simulation Study

Ongoing research includes a simulation study involving manipulation of the success
probability of the binary time-dependent covariates in an attempt to coerce GMM algo-
rithm convergence. Issues that result in algorithm convergence failure, such as quasi-
complete separation, may be avoided if the success probability of the binary TDC is
contained at a certain level. Our research currently involves finding some threshold for
px, the probability of success of the binary time-dependent covariate, such that conver-
gence or non-convergence of the GMM algorithm can be observed.

4.2.2 Selection of Moment Conditions

Another research that is currently being conducted to handle data with time-dependent
covariates involves a new method in selecting “valid” moment conditions. Current
selection of “valid” moment conditions is directly dependent on the type of time-
dependent covariate being estimated. Rather than selecting these moment conditions
based on the type of TDC, we propose an improvement that involves assigning weights
to all moment conditions. This way, all T × T valid moment conditions are used in the
GMM estimation process, leaving none out of the estimation process.
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