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Abstract
We discuss randomization tests for use with missing data and show that failing to account for

missing data produces underestimates of the variance of the test statistic.
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1. Introduction

A researcher is planning to conduct a trial on ten experimental units, five in group A and
five in group B. During collection of the data, two experiment units in each group are lost,
resulting in six observed data and four unobserved (missing) data. The complete outcome
data are presented below, where the Mi represent the planned-for, but not-obtained, data in
the experiment.

Group A Group B
1 4
2 5
3 6
M1 M2

M3 M4

The researcher decides to carry out a randomization test on the non-missing observa-
tions, examining all the

(
6
3

)
= 20 combinations of the ways the observed data could be

assigned to the two groups.
Using the difference of the means (Group A minus Group B) as the summary statistic

under consideration, the researcher notes that the observed mean difference of 2 − 5 =
−3 for the observed data is more extreme than any of the other 19 combinations of data
available under the randomization test and computes the p-value as 1/20 = 0.05.

A more careful examination of the problem, however, recognizes that the missing data
are data nonetheless and should be considered in the collection of possible combinations.
Under the null hypothesis of no difference between the treatments, all the data are just as
likely to fall into either of the treatment groups and should thus be accounted as such.

In reality, there are
(
10
5

)
= 252 combinations that must be examined. These combi-

nations include several more combinations that will yield a difference of the means of the
(non-missing) data between the two groups of −3.

Computing the differences in the means of the non-missing data in each group under
the 252 possible combinations shows that there are now 16 different ways to achieve the
minimum value. For example, one such way is to place the values 1, 2, 3, 4, 5 in Group A
and the values 6,M1,M2,M3,M4 in Group B. Thus, using all the data — both non-missing
and missing — the randomization p-value becomes 16/252 = 0.0635.

What is apparent then is that when one accounts for missing data, one’s conclusion
becomes less certain. This will be shown to be a consequence of an increase in the variance
of the sampling distribution of the test statistic being used in the statistical test when one
allows for “missing” to be an outcome.
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2. Computing variance inflation to account for missing data

A general form for adjustment of the variance of the difference in the treatment group
means can be attained as follows.

First, assume an experiment with 2n experimental units will be run, with n in group A
and n in group B and further suppose that each experimental unit will generate a missing
datum with probability p and an observed datum with probability 1− p.

Let JA and JB be the number of missing data in groups A and B, respectively.
Let Xi,A, i = 1, . . . , n − jA be the i.i.d. observed data from group A and Xi,B, i =

1, . . . , n− jB be those from group B.
The distributions of both JA and JB , the numbers of missing data in the two groups,

are binomial with parameters n and p.
Suppose futher that the observed data are independent and identically distributed ran-

dom variables such that the expectation E(X) := E(Xi,T ) and variance V (X) := V (Xi,T )
both exist and are the same for both T ∈ {A,B}.

We seek to compute E(D) and V (D) where D = X̄A − X̄B and the means X̄A and
X̄B are computed using only the non-missing data in each group.

The expected value of the D can be shown to be zero, as each of two groups have the
same expectation for the means of the nonmissing data. Computation of the variance is
more tricky.

We start with the computation of the variance of D conditional on the numbers of
missing data in the two groups JA and JB .

V (D|jA, jB) =
1

n− jA
V (X) +

1

n− jB
V (X)

= V (X)

[
1

n− jA
+

1

n− jB

]
Note that this is simply the variance of D ignoring the missing data. Also note the

obvious issue if either jA or jB is equal to n, the number of experimental units in each
group. Indeed, the form of the variance above implies that the variance is not defined if
either jA = n or jB = n, as (at least) one of the means cannot be computed. As such, the
investigation cannot procede if one (or both) of the groups produces only missing data.

Computing the unconditional variance for D involves integrating (summing) out the jA
and jB terms to yield

V (D) = E (V (D | jA, jB)) + V (E(D | jA, jB))

=

n∑
jA=0

n∑
jB=0

V (D | jA, jB)p(jA, jB) + 0

=
n∑

jA=0

n∑
jB=0

V (X)

[
1

n− jA
+

1

n− jB

]
p(jA, jB)

= V (X)

 n∑
jA=0

1

n− jA

(
n

jA

)
pjA(1− p)n−jA +

n∑
jB=0

1

n− jB

(
n

jB

)
pjB (1− p)n−jB


= V (X)

[
E

(
1

n− JA

)
+ E

(
1

n− JB

)]
.

The unconditional variance for D reveals an anomaly for which we must account. Re-
call that we supposed the number of missing data in a particular group were distributed as
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a binomial random variable with parameters n and p. This implies that there is a non-zero
probability that the number of missing data in a group could be equal to n; that is, there
is a possibility that all the data in one group might be missing. The consequence of such
an event would be the inability of being able to compute the difference in the means of the
observed data rendering the value of D missing and the value of the variance undefined. As
such, we must make the further assumptions that there exists at least one observed datum
in each group and that the total number of missing data does not exceed n, lest the problem
degenerates into anarchy.

Conditioning instead on the total number of missing data fixed at m := jA + jB < n,
we can compute the conditional variance as

V (D |m) = E (V (D |m, jA)) + V (E(D |m, jA))

=
m∑

jA=0

V (D |m,JA = jA)P (JA = jA) + 0

=
m∑

jA=0

V (X)

[
1

n− jA
+

1

n− (m− jA)

]
P (JA = jA)

=
m∑

jA=0

V (X)

[
1

n− jA
+

1

n− (m− jA)

] (m
jA

)(
2n−m
n−jA

)(
2n
n

)
=

V (X)(
2n
n

) m∑
jA=0

[
1

n− jA
+

1

n− (m− jA)

](
m

jA

)(
2n−m

n− jA

)
.

Again, notes from this specification of the variance of the sampling distribution of the
difference in the means of the observed data are in order.

First, if m = 0, then we get the simple variance of the difference in the means,
V (D |m = 0) = 2

nV (X), as would be anticipated if there are no missing data.
Second, the hypergeometric probabilities partition the

(
2n
n

)
elements of the randomiza-

tion distribution based on the number of missing data in (without loss of generality) the
first group. Carrying out a randomization test without treating the missing data as valid
data results in examining only a portion of the complete randomization distribution, that
portion that results from fixing jA at the value observed in the trial.

3. Returning to the example

We can compute the proper sampling distribution in the case of n = 5 and m = 4, the
situation observed in our introductory example, and compare it to the situation that would
come about if n = 3 and m = 0, a situation that would arise if one used only the non-
missing data in the introductory example.

Using our formula for the variance of the difference of the observed mean in the two
situations, one can show that

V (D | n = 5,m = 4) =
V (X)(

10
5

) 4∑
jA=0

[
1

5− jA
+

1

1 + jA

](
4

jA

)(
6

5− jA

)
=

461

630
V (X),
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while

V (D | n = 3,m = 0) =
V (X)(

6
3

) 0∑
jA=0

[
1

3− jA
+

1

3 + jA

](
0

jA

)(
6

3− jA

)
=

2

3
V (X) =

420

630
V (X).

Thus, failing to account for the fact that the missing data are actually data underestimates
the variance of the difference. To get the proper variance, one must scale the “naı̈ve”
varince by a factor of 461

420 = 1.098.
The following table presents the scale factors that show the appropriate scaling of the

naı̈ve variance to yield the proper missing-data-adjusted variance based on various planned
sample sizes in each of the two groups (n) and the total number of missing data (m),
assuming equal numbers of observed data in each group.

Number planned Total number Variance
for each group missing inflation

(n) (m) factor
3 2 1.13
4 2 1.05
5 2 1.03
5 4 1.10
6 2 1.02
6 4 1.05
7 2 1.01
7 4 1.03
7 6 1.07
8 2 1.01
8 4 1.02
8 6 1.05
12 2 1.00
12 4 1.01
12 6 1.02
12 8 1.02
12 10 1.03
20 2 1.00
20 4 1.00
20 8 1.01
20 10 1.01
20 12 1.01
20 16 1.02
20 18 1.02

4. Conclusions

Missing data in a planned, randomized experiment are still data. Failure to account for
the missing data when performing a randomization test underestimates the variance of the
test statistic and thus leads to overestimating the precision with which one makes inference
based on the data.

For large studies, this underestimate of the variance is small but for small studies the
underestimate can be substantial.
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