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Long Term Survival Probabilities and Kaplan-Meier Estimator

Ion Grama* Jean Marie Tricot! Jean Francois Petiot?

Abstract

The Kaplan-Meier nonparametric estimator has become a standard tool for estimating a survival
time distribution in a right censoring schema. However, if the censoring rate is high, this estimator
do not provide a reliable estimation of the extreme survival probabilities. In this paper we propose
to combine the nonparametric Kaplan-Meier estimator and a parametric-based model into one con-
struction. The idea is to fit the tail of the survival function with a parametric model while for the
remaining to use the Kaplan-Meier estimator. A procedure for the automatic choice of the location
of the tail based on a goodness-of-fit test is proposed. This technique allows us to improve the es-
timation of the survival probabilities in the mid and long term. We perform numerical simulations
which confirm the advantage of the proposed method.

Key Words: Adaptive estimation, censored data, model selection, prediction, survival analysis,
survival probabilities

1. Introduction

Let (X;,C;i, Z;)' ,i = 1,...,n be i.i.d. replicates of the vector (X, C, Z)", where X and C
are the survival and right censoring times and Z is a categorical covariate. It is supposed
that X; and C; are conditionally independent given Z;, ¢ = 1, ..., n. We observe the sample
(T;, A, Z;) , i = 1,...,n, where T; = min {X;, C;} is the observation time and A; =
Lix,<c;y is the failure indicator. Let F'(z|z), © > xo > 0 and Fp (z(2), © > xo
be the conditional distributions of X and C, given Z = z, respectively. In this paper
we address the problem of estimation of the survival function S (z]z) = 1 — F (z|2)
when & > xg is large. The function S is traditionally estimated using the Kaplan-Meier
nonparametric estimator (Kaplan and Meier (1958)). Its properties have been extensively
studied by numerous authors, including Fleming and Harrington (1991), Andersen, Borgan,
Gill and Keiding (1993), Kalbfleisch and Prentice (2002), Klein and Moeschberger (2003).
However, in various practical applications, when the time x is close to or exceeds the largest
observed data, the predictions based on the Kaplan-Meier and related estimators are rather
uninformative.

For illustration purposes we consider the well known PBC (primary biliary cirrhosis)
data from a clinical trial analyzed in Fleming and Harrington (1991). In this trial one ob-
serves the censored survival times of two groups of patients: the first one (Z = 1) was
given the DPCA (D-penicillamine drug) treatment and the second one is the control group
(Z = 0). The overall censoring rate is about 60%. Here we consider only the group co-
variate and we are interested to compare the extreme survival probabilities of the patients
under study in the two groups. In Figure 1 (left picture) we display the Kaplan-Meier non-
parametric curves of the treatment and the control (placebo) groups. From these curves it
seems difficult to infer whether the DPCA treatment has an effect on the survival proba-
bility. For instance at time x = 4745 (13 years) using the Kaplan-Meier nonparametric
estimator (KM), one gets an estimated survival probability S s (z|z =0) = 0.3604 for
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Figure 1: We compare two types of prediction of the survival probabilities in DPCA and placebo groups: on
the left picture the prediction is based on the Kaplan-Meier estimation and on the right picture the prediction
uses a semiparametric approach. The points on the curves correspond to the largest observation time in each

group.

the control group and Sg s (z|z = 1) = 0.3186 for the DPCA treatment group. In this ex-
ample and in many other applications one has to face the following two drawbacks. First,
the estimated survival probabilities S kM (z|z) are constant for  beyond the largest (non
censored) survival time, which is not quite helpful for prediction purposes. Second, for this
particular data set, the Kaplan-Meier estimation suggests that the DPCA treatment group
has an estimated long term survival probability slightly lower than that of the control group,
which can be explained by the high variability of Sg s (2|z) for large z. These two points
clearly rise the problem of correcting the behavior of the tail of the Kaplan-Meier estimator.

A largely accepted way to estimate the survival probabilities S (z|z) for large x, is
the parametric-based model fitting the hole data starting from the origin. Its advantages are
pointed out in Miller (1983), however, it is well known that the bias model can be high if it
is misspecified. The more flexible nonparametric Kaplan-Meier estimator would generally
be preferred for estimating certain functionals of the survival curve, as argued in Meier,
Karrison, Chappell and Xie (2004). In this paper we propose to combine the nonparamet-
ric Kaplan-Meier estimator and the parametric-based model into one construction which
we call semiparametric Kaplan-Meier estimator (SKM). Our new estimator incorporates
a threshold ¢ in such a way that Sp (z|z) is estimated by the Kaplan-Meier estimator for
x < t and by a parametric-based estimate for x > ¢. The main theoretical contribution
of the paper is to show that with an appropriate choice of the threshold ¢ such an esti-
mate is consistent if the tail is correctly specified. In the case when the tail is misspecified
we show by simulations that the method is robust. Denote by §t the resulting estima-
tor of Sr, where the parametric-based model is the exponential distribution with mean 6.
By simulations we have found that 59 endowed with a data driven threshold 7, outper-
forms the Kaplan-Meier estimator. As it is seen from Figure 1 (right picture), we obtain at
x = 4745 the estimated survival probability §?0 (z|z = 0) = 0.2739 for the control group

and §?1 (z|z = 1) = 0.3150 for the DPCA treatment group, where %o and #; are the cor-
responding data driven thresholds. Our predictions are recorded in Table 2 and seem to be
more adequate than those based on the Kaplan-Meier estimation. We refer to Section 6,
where this example is described in more details.

In Figure 2 we display the root of the mean squared error of the predictions of S (x|z)
based on the Kaplan-Meier and the proposed semiparametric Kaplan-Meier estimators as
functions of the observation time z. This is an example where the exponential model for
survival and censoring tails is misspecified. The errors are computed within a Monte-Carlo
simulation study of size M = 2000 with a gamma distribution modeling the survival and
censoring times which do not exhibit exponential behavior in the tail (see Section 5 and Ex-
ample 2 of Section 2 for details). The advantage of the proposed semiparametric estimator
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Figure 2: The top line displays simulated root MSE’s of the Kaplan-Meier and semiparametric Kaplan-
Meier estimators as functions of the time z. On the bottom line we show the ratio of the two root MSE’s
displayed on the top line. The two columns correspond to sample sizes n = 20 and n = 500. The vertical
dashed line is the 0.99 quantile of the true distribution of the survival time.

over the Kaplan-Meier estimator can be clearly seen by comparing the two MSE curves.
The MSE of the semiparametric estimator is much smaller than that of the Kaplan-Meier
estimator for large observation times x > ¢g.g9 but also for mid range observation time
values, for example = € [8, qo.99] , Where gp g9 is the 0.99-quantile of the distribution F.
The proposed extensions of the nonparametric curves are particularly suited for predicting
the survival probabilities in the case when the proportion of the censored times is large.
This is the case of the mentioned simulated data where the mean censoring rate is about
77%. Note also that we get an improvement over the Kaplan-Meier estimator even for very
low sample sizes like n = 20.

The proposed estimator §t is sensible to the choice of the threshold ¢. The main diffi-
culty is to choose ¢ small enough, so that the parametric-based part contains enough obser-
vation times to ensure a reliable prediction in the tail. At the same time one should choose
t large enough in order to prevent from a large bias due to an inadequate tail fitting. The
very important problem of the automatic choice of the threshold t is treated in Section 4,
where a procedure which we call testing-pursuit-selection is performed in two stages: First
we test sequentially the null hypothesis that the proposed parametric-based model fits the
data until we detect a chosen alternative. Secondly we select the best model among the
accepted ones by penalized model selection. Therefore our testing-pursuit-selection proce-
dure is actually also a goodness-of-fit test for the proposed parametric-based model. The
resulting data driven estimator of the tail depends heavily on the testing procedure.

Related result concerning the approximation of the tail by the Cox model (Cox (1972))
can be found in Grama, Tricot and Petiot (2011). The case of continuous multivariate co-
variate Z in the context of a Cox model and the use of fitted tails other than the exponential
can be treated by similar methods. The models which take into account the cure effects can
be reduced to ours after removing the cure fraction. However, these problems are beyond
the scope of the paper.

This proceeding is a shortened version of the complete article to appear in “Buletinul
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Academiei de Stiinte a Republicii Moldova, Matematica” (ISSN: 1024-7696 and till 2000
ISSN: 0236-3089), http://www.math.md/en/publications/basm/.

2. The model and background definitions

Assume that the survival and right censoring times arise from variables X and C' which
take their values in [z, 00), where xo > 0. Consider that X and C' may depend on the
categorical covariate Z with values in the set Z = {0,...,m}. The related conditional
distributions F'(x|z) and F¢ (z|z), x > xq, given Z = z, are supposed to belong to the
set F of distributions with strictly positive density on [x¢, o). Let fr (:|z) and SF (-|z) =
1 — F'(:|z) be the conditional density and survival functions of X, given Z = z. The
corresponding conditional hazard function is hp (-|2) = fr (:|2) /SF (:|2), given Z = z.
Similarly, C' has the conditional density fc (-|z), survival function S¢ (+|z) and hazard
function h¢ (+|2) = fo (+|2) /Sc (+]z), given Z = z. We also assume the independence
between X and C, conditionally with respect to Z. Let the observation time and the failure
indicator be
T=min{X,C} and A=1l;x<cy,

where 15 is the indicator function taking the value 1 on the event B and 0 otherwise. Let
Prp, (dz,dé|z), x € [xg,00), § € {0,1} be the conditional distribution of the vector
Y = (T,A)", given Z = 2. The density of Pr f,. is

prre (1,8]2) = fr (2]2)° Sp (2]2)'° fo (x]2) 70 Se (2|2)°, 2.1)

where z € [zg,00),d € {0,1}.

Let z; € Z be the observed value of the covariate Z;, where Z;, i+ = 1,...,n are
i.i.d. copies of Z, and let Y; = (T, A;)",i=1,...,n be a sample of n vectors, where each
vector Y has the conditional distribution Pr ,, (-|2;) , given Z; = z;, fori =1, ..., n. Itis
clear that, given Z = z € Z, the vectors Y;, i € {j : z; = z} are ii.d. .

In this paper the problem is to improve the nonparametric Kaplan-Meier estimators of
the m + 1 survival probabilities Sp (z|z) =1 — F (z|2), z € Z, for large values of x. To
this end, we fit the tail of F' (-|z) by the exponential distribution with mean § > 0. Consider
the following conditional semiparametric quasi-model

), x € [z, t],
e

) exp (~55t), @ >t (22)

Foy(z]2) = { 1—(1—-F(t Z))z

where ¢t > x is a nuisance parameter and F' (-|z) € F, z € Z are functional parameters.
The conditional density, survival and hazard functions of Fp; are denoted by fr,,, Sr,,
and hp, ,, respectively. Note that hf, , (z]z) = 1/6, for z > t.

We shall focus on two typical models throughout the following examples.

Example 1 (asymptotically constant hazards). Consider asymptotically constant sur-
vival and censoring hazard functions. This model can be related to the families of dis-
tributions in Hall (1982), Hall and Welsh (1984, 1985), Dress (1998) and Grama and
Spokoiny (2008) for the extreme value models. Let A > 0, Opax > Omin > 0 be some
constants. Consider that the survival time X has a hazard function hp (-|z) such that for
some 0, € (Omin, Omax) and o, > 0,

‘gth (9233|z) - 1| < Aexp (_azx) , T = Xo. (2.3)

Condition (2.3) means that hx (z|z) converges to 0, ! exponentially fast as x — co. Sub-
stituting o, = o6, (2.3) gives |hp (z]2) — 67| < A’ exp (—alx) , where A’ = A/fpin.
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Similarly, let M > 0, Ymax > Ymin > 0, p > 1 be some constants. Assume that the
hazard function h¢ (-|z) of the censoring time C' satisfies for some v, € (Ymin, Ymax) »

lezhC (921"2) - ’Yz| < M (1 + :L.)_M’ T > xo. (2‘4)

Condition (2.4) is equivalent to saying that h¢ (z|z) approaches -, /6, polynomially fast
as x — oo. Substituting v, = 7.0, (2.4) gives |h¢ (z]z) — L] < M'z~#, where M’ =
M erﬁflax / emin-

For example, conditions (2.3) and (2.4) are satisfied if I’ and Fo coincide with the re-
scaled Cauchy distribution K, y defined below. Let £ be a variable with the positive Cauchy
distribution K (x) = 27! arctan (), z > 0. We define the re-scaled Cauchy distribution
by K, (x) =1— lzﬁ({e(’; ;})(g(m::/)e/)e))) , where p and 6 are the location and scale parameters.
The distribution K, g can be seen as the excess distribution of the variable ¢ log § + 1 over
the threshold 0. We leave to the reader the verification that K, ¢ fulfills (2.3) with 0, = 0,
a, = 2 and (2.4) with v, = 1. The distribution K, 9 will be used in Section 5 to simulate
survival and censoring times.

Example 2 (non constant hazards). Now we consider the case when the hazard func-
tions are not asymptotically constant. For instance, this is the case when the survival and
censoring times have both gamma distributions. The numerical results presented in Figure
2 and discussed in Section 5 show that the approach of the paper works when conditions
(2.3) and (2.4) are not satisfied, which means that the tail probabilities can be estimated by
our approach even if the exponential model is misspecified for the tail.

3. Consistency of the estimator with fixed threshold

Define the quasi-log-likelihood by £L; (0]2) = > i, log pr, , e (Ti, Dil2i) 112,=2), Where
Fy+ is defined by (2.2) with parameters § > 0, ¢t > xg and F' (-|2) € F, z € Z. Taking
into account (2.1) and dropping the terms related to the censoring, the partial quasi-log-
likelihood is

L 0lz) = > Ailoghg, (Tilz) = > Aslogh (3.1)
T:<t, zi=z T;>t, zi=z
T; t
_ Z / hFG,t (v]z) dv — Z (/ thyt (v) dv + g1 (T; — )) 7
T;<t, zy=z " %0 Ti>t, zi=z Zo

for fixed z € Z and t > 2. Maximizing £'*" (8|2) in 8, obviously yields the estimator

~ ZTi>t, 2=z (E - t)
0. =

)

— , (3.2)
Nzt
where by convention 0/0 = oo and 7t = > 5oy ., A; is the number of observed
survival times beyond the threshold ¢.

The estimator of S (), for xg < x < t, is easily obtained by standard nonparamet-
ric maximum likelihood approach due to Kiefer and Wolfowiz (1956) (see also Bickel,
Klaassen, Ritov and Wellner (1993), Section 7.5). We use the product Kaplan-Meier
(KM) estimator (with ties) defined by Sx s (z2) = [lr<, 1 —di(2) /ri(2)), = >
zo, where 7; (2) = >0 l(1;>7;, 2=z} is the number of individuals at risk at 7; and
di(z) = Z;‘:l L7,=1;,A;=1, z;==} i the number of individuals died at 7; (see Klein and
Moeschberger (2003), Section 4.2 and Kalbfleisch and Prentice (2002)). The semipara-
metric fixed-threshold Kaplan-Meier estimator (SFKM) of the survival function takes the
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form R
Sk (z]2), x € [xo,1],

Setale) = { Sicur (H2)exp (<), w>1, G

where exp (— (x—1t)/ 52t> =1if §Z7t = oo. Similarly, it is possible to use the Nelson-
Aalen nonparametric estimator (Nelson 1969, 1972, Aalen, 1976) instead of the Kaplan-
Meier one.

Denote by n, = Y. ; 1 (2 = z) the number of individuals with profile z € Z. As-
sume that there is a constant x € (0, 1] such that, for any z € Z,

N, > KN. 3.4

Let P be the joint distribution of the sample Y;, 7 = 1,...,n and E be the expectation
with respect to P. In the sequel, the notation o, = Op ([3,,) means that there is a positive
constant ¢ such that P (ay, > ¢fy, fn < 00) — 0 as n — oo, for any two sequences of
positive possibly infinite variables v, and f,,.

Consider the Kullback-Leibler divergence K (¢, 0) = [ log (dGg//dGy) dGg between
two exponential distributions with means #” and 6. By convention, K (00, #) = oo. It is easy
to see that K (0',0) = ¢ (6//0 — 1), with ) () = x —log (z + 1), > —1 and that there
are two constants ¢; and ¢y such that (¢//60 —1)* < ¢1K (0/,0) < ¢3 (/0 —1)*, when
|6/ /6 — 1| is small enough.

Our main result is the following theorem.

Theorem 3.1 Assume condition (3.4). Assume that hp (-|z) satisfies (2.3) and h¢ (+|2)

satisfies (2.4). Then,
20y
~ 1 z Qz
K (92’%”’92) — Op << og n> T, 12 ) | s
’ n

- 147, + 2a,

where
tom logn + o (logn) .

We give some hints about the optimality of the rate in (3.5). Assume that the survival
time X is exponential, i.e. hp (z|z) = ;! for all x > g and z € Z. This ensures that
condition (2.3) is satisfied with any a > 0. Assume conditions (2.4) and (3.4). If there
are two constants 0p,in and Oy ay such that 0 < Opin < 0, < Opax < 00, (3.5) implies

ez,tz,n - ‘9z
close to the n rate as a« — oo, since limg 00 @/ (1 4+, + 2a0) — 1/2. Thus the
estimator az’tw almost recovers the usual parametric rate of convergence as a becomes
large whatever is v, > 0.

In the case when there are no censoring (7, = 0), after an exponential rescaling our
problem can be reduced to that of the estimation of extreme index. If v, — O our rate

= Op ((n_l log n) 1+'y(;+2a) , for any a > 0. This rate becomes arbitrarily
~1/2

20y
becomes close to n~ +22z | which is known to be optimal in the context of the extreme
value estimation, see Dress (1998) and Grama and Spokoiny (2008). So our result nearly
recovers the best possible rate of convergence in this setting.

4. Testing and automatic selection of the threshold

In this section a procedure of selecting the adaptive estimator 6, = 6_;  from the family

of fixed threshold estimators é\z,t, t > x is proposed. Here the adaptive threshold %\z,n
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is obtained by a sequential testing procedure followed by a selection using a penalized
maximum likelihood. This motivates our condensed terminology testing-pursuit-selection
used in the sequel. The testing part is actually a multiple goodness-of-fit testing for the
proposed parametric-based models, while the threshold tAzn can be seen as a data driven
substitute for the theoretical threshold ¢, ,, defined in Theorem 3.1. For a discussion on the
proposed approach we refer the reader to Section 3 of Grarna and Spokoiny (2008). In the
sequel, for simplicity of notations, we abbreviate t. =1, -
Define a semiparametric change-point distribution by

F (x]z), v € [w0, 5],
Flsou(x]z) = 1—(1=F(s|z))exp (—%% x € (s,t],
L= (1= F(sl)esp (<5 ep (- 57) . >,

for ;1,0 > 0, 9 < s < tand F (-|z) € F. As in Section 3 we find the maximum quasi-
likelihood estimators é\z,t of 6 and i, ¢ of p for fixed z € Z and g < s < t, which are
given by (3.2) and R R

ﬁz,sgz,s - h\z,tez,t

Hz,st = = )
nz,s,t

where n, s ; = ZS<Ti<t7 - A; and by convention 0 - oo = 0 and 0/0 = oo

Consider a constant D > 0, which will be the critical value in the testing procedure
below. Let kg > 3 be a starting index and kg, be an increment for k. Let &, 6" be two
positive constants such that 0 < ¢’,8” < 0.5. The values ko, kgtep, ¢',0” and D are the
parameters of the procedure to be calibrated empirically. Without loss of generality, we
consider that the 7;’s are arranged in the decreasing order: 17 > ... > T},. The threshold ¢
will be chosen in the set {717, ..., T}, } .

The testing-pursuit-selection procedure which we propose is performed in two stages.
First we test the null hypothesis Hr, (2) : F' = Fy 1, (-|2) against the alternative ﬁTk (2) :
F = F, 1.0 (-|z) for some 0’k < 1 < (1—0")k, sequentially in k = ko + ikstep,
i =0,...,[n/kstep|, until Hr, (2) is rejected. Denote by k. the obtained break index and
define the break time s, = TEZ' Second, using EZ and s, define the adaptive threshold by

t, = T7 with the adaptive index

I = argmax {ETZ (é\le|Z) L, <GZ 8Z|z)} “4.1)
8k, <I<(1—6")k.
where the term L, <5zgz |z> is a penalty for getting close to the break time s,. The re-

sulting adaptive estimator of 6, is defined by é\z =0 .., and the semiparametric adaptive-
threshold Kaplan-Meier estimator (SAKM) of the survival function is defined by §;z (+|z) .
For testing Hr, (z) against ﬁTk (z) we use the statistic

LRmax (Telz) = || max LR (T}, Til2) (4.2)

where LR (s, t|z) is the quasi-likelihood ratio test statistic for testing H (z) : F' = Fy 5 (+|2)
against the alternative H, ¢ (2) : ' = F, 50, (-|2) . To compute (4.2), note that by simple
calculations, using (3.1) and (3.2),

L, (§27t|z) — L (0]2) = T K (az " 9) , 4.3)
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where by convention 0 - co = 0. Similarly to (4.3), the quasi-likelihood ratio test statistic
LR (s,t|z) is given by

LR (S, t|2:) = ﬁz,s,tlc (ﬁz,s,h é\z,s) + ﬁz,tlc (5z,t7 52,5) (44)

with the same convention. Note that, by (4.3), the second term in (4.4) can be viewed as
the penalized quasi-log-likelihood

~

LRpen (5,t]2) = Ly (é;,tyz)—,ct (ezﬁs\z)
= K (020.0)

Our testing-pursuit-selection procedure reads as follows:
Step 1. Set the starting index k = k. _
Step 2. Compute the test statistic for testing 7, (z) against Hr, (2) :

LRmax (Ti|2) = et LR (T, Ti|2)

Step 3. If & < n — kytep and L Ryax (7]

k|2) < D, increase k by k., and go to Step 2.
If K > n — kgep of LRiax (Ti|2) > D, letk, =

k,

l, = argmax L Rpen (TE ,Tl|z) ,
5B <I<(1—6")R. :

take the adaptive threshold as t. = TTZ and exit.

It may happen that with k& = ko it holds LRyax (Tk,|2) > D, which means that the
hypothesis that the tail is fitted by the exponential model, starting from T}, is rejected. In
this case we resume the procedure with a new augmented ko, say with k¢ replaced by [voko],
where vy > 1. Finally, if for each such kg it holds LRyax (Tk,|2) > D, we conclude that
the tail of the model cannot be fitted with the proposed parametric tail and we estimate the
tail by the Kaplan-Meier estimator. Therefore our testing-pursuit-procedure can be seen as
well as a goodness-of-fit test for the tail.

Note that the Kullback-Leibler entropy K (6', 0) is scale invariant, i.e. satisfies the iden-
tity K (6,0) = K (b, af), for any o > 0 and €', 6 > 0. Therefore the critical value D
can be determined by Monte Carlo simulations from standard exponential observations.
The choice of parameters of the proposed selection procedure is discussed in Section 5.

5. Simulation results

We illustrate the performance of the semiparametric estimator (3.3) with fixed and adaptive
thresholds in a simulation study. The survival probabilities Sp (z|z) , for large values of z,
are of interest.

The mean squared error (MSE) of an estimator S (|z) of the true survival function

~ 2
Sk (+|2) is defined by MSEg (z[z) = E (S (z|z) — Sp (:z:]z)) . The quality of the es-
timator S (|z) with respect to the Kaplan-Meier estimator Sk (+|) is measured by the
ratio Rg (z[2) = MSEg (z]2) /IMSEg  (]2).
Without loss of generality, we can assume that the covariate Z takes a fixed value z. In
each study developed below, we perform M = 2000 Monte-Carlo simulations.

We start by giving some hints on the choice of the parameters ko, kstep, 0', 0" of the
testing-pursuit-selection procedure in Section 4. The initial value kg controls the variability
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Figure 3: The top line displays the root (of type I) MSE’s of the Kaplan-Meier estimator (KM), semi-
parametric adaptive-threshold Kaplan-Meier estimator (SAKM) with D = 1,2, 3,4, 5 and of the exponential
model (which coincides with the semiparametric fixed-threshold Kaplan-Meier estimator (SFKM) with thresh-
old fixed at 0). The bottom line displays the same but with D = 5,6,7,8,9,10,11,12. The two columns
correspond to low and high mean censoring rates.

of the test statistic LRy,ax (T%|2) , k > ko. We have fixed kg as a proportion of the initial
sample size: kg = n/10. The choice kgp = 5 is made to speed up the computations. The
parameters ¢’ and ¢ restrict the high variability of the test statistic LR (T}, T;|z) when the
change point 7; € [T}, T,] is close to the ends of the interval. The values &' = 0.3 and
0" = 0.1 are retained experimentally. Our simulations show that the adaptive procedure
does not depend much on the choice of the parameters ko, kstep, 9, 6"

To choose the critical value D we analyze the type I MSE of the SAKM estimator, i.e.
the MSE under the null hypothesis that the survival times X7, ..., X, are i.i.d. standard ex-
ponential. We perform two simulations using i.i.d. exponential censoring times C1, ..., Cy,
with rates 0.5 and 3.5. The size is fixed at n = 200, but the results are quite similar for other
sizes. The root MSE’s as functions of the time x are given in Figure 3. For comparison,
in Figure 3 we also included the MSE’s corresponding to the parametric-based exponential
modeling which coincides with the SFKM estimator having the threshold fixed at 0. Note
that the MSE’s calculated when the critical values are D = 1, 2, 3,4, 5, decrease as D in-
creases (see the top displays), while for D = 5,6,7,8,9,10,11,12 the MSE’s almost do
not depend on D (see the top and bottom displays). The simulations show that the type
I MSE decreases as D increases and stabilizes for D > 5. From these plots we conclude
that the limits for the critical value D can be set between Dy = 5 and D7 = 7 without
important loss in the type I MSE.

It is interesting to note that the adaptive threshold t.is relatively stable to changes of D.
A typical trajectory of the test statistic L Ryax (T%|2) as function of T}, is drawn in Figure 6
(left). Despite the fact that the break time 5, = TEZ strongly depends on the critical value D

(in the picture D = 5.8), we found that the adaptive threshold tAZ =T, which maximizes
the penalized quasi-log-likelihood L Rpen (TEZ : Tl|z> in Figure 6 (right), is stable to the

local changes of the break time s, = 73 and thus is also quazi stable to relatively small
changes of D.
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Figure 4: The top line displays the root (of type IT) MSE’s of three estimators: Srcar (KM), S, (SFKM) and
Sz, (SAKM). The bottom line displays the corresponding ratios of the root MSE’s on the top line. The critical
value D in the SAKM is set to 6.

For our simulations we fix the value D = 6. Below we give some evidence that the
SAKM estimator with this critical value has a reasonable type II MSE, under the hypothesis
that the X;’s have a distribution F' alternative to the standard exponential. Our simulations
show that the type II MSE’s are quite similar for several families we have tested. We have
chosen the following two typical cases which are representative for all these families.

Study case 1 (low tail censoring rate). We generate a sequence of n = 200 i.i.d. sur-
vival times X;, ¢ = 1,...,n from the re-scaled Cauchy distribution K, ¢, with location
parameter ux = 40 and scale parameter 0x = 5 (see Section 2). The censoring times
Ci, i = 1,...,n are i.i.d. from the re-scaled Cauchy distribution K, o, with location
parameter uc = px — 20 = 20 and scale parameter 0 = 20x = 10. The (overall)
mean censoring rate in this example is about 88%. However, the censoring rate for high
observation times is about 33%.

Study case 2 (high tail censoring rate). As before, let us fix n = 200. The Xj’s,
i =1,...,nareiid. from K, g, with ux = 30 and x = 20. The C;’s,7 = 1,...,n are
iid. from K, o, with pc = px + 10 = 40 and ¢ = 0x /10 = 2. The (overall) mean
censoring rate in this example is about 40%, however, the censoring rate among the high
observation times is about 91%.

We evaluate the performance of the SFKM and SAKM estimators Sy (z|z) and 3’@ (z|2)

with respect to the KM estimator Sg 7 (z|z). In Figure 4 we display the root M .S Eg(z|2)

and the ratio Rg (z|z) for the three estimators as functions of the time . From these plots

we can see that both root MSEg (z|z) and root MSEg (x|z) are equal to the root
t

MSEg  (x|z) for small values of  and become smaller for large values of x, which
shows that the SFKM and SAKM estimators improve the KM estimator.

In Figure 5 (top displays), for each fixed x, we show the confidence bands containing
90% of the values of Sk s (z]2) and S (x|2). From these plots we see the ability of the
model to fit the data and at the same time to give satisfactory predictions. Compared to
those provided by the KM estimator which predicts a constant survival probability for large
x, our predictions are more realistic.
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Figure 5: The top line displays the true survival Sr and the estimated means of § xknm (KM) and §?z
(SAKM). We give confidence bands containing 90% of the trajectories for each fixed time x. The bottom line
displays the corresponding biases square and variances.

Table 1: Simulations with gamma distributions for survival and censoring times

T 5 6 7 8 9 10 11 12 13
Sr (z]z) 0.9682 0.9161 0.8305 0.7166 0.5874 0.4579 0.3405 0.2424 0.1658
Mean of sz (z]2) 0.9679 0.9159 0.8318 0.7107 0.5686 0.4504 0.3575 0.2853 0.2287
Mean of §K M (z]|z) 0.9679 0.9159 0.8306 0.7160 0.5875 0.4581 0.3399 0.2472 0.1888
Root A{SE§A (z]z) 0.0135 0.0225 0.0336 0.0461 0.0552 0.0606 0.0702 0.0831 0.0940
t
Root IWSEngM (z]z) 0.0135 0.0225 0.0345 0.0466 0.0604 0.0758 0.0933 0.1144 0.1284
x 14 15 16 17 18 19 20 21 22
S (z]z) 0.1094 0.0699 0.0433 0.0261 0.0154 0.0089 0.0050 0.0028 0.0015
Mean of S;Z (z]2) 0.1841 0.1487 0.1205 0.0979 0.0798 0.0652 0.0534 0.0439 0.0361
Mean of §K1\4 (z]z) 0.1586 0.1453 0.1411 0.1403 0.1402 0.1402 0.1402 0.1402 0.1402
Root A{SEgA (z]z) 0.0997 0.0998 0.0952 0.0876 0.0785 0.0690 0.0599 0.0515 0.0441
t
Root ZVISEngM (z]z) 0.1384 0.1503 0.1627 0.1731 0.1804 0.1850 0.1877 0.1893 0.1902

In Figure 5 (bottom displays) we show the bias square and the variance of Skm (+|2)
and Sz_(+|2) . From these plots we see that the variance of 57 (+[2) is smaller than that of

S & M (+|z) in the two study cases. We conclude the same for their biases. However, the bias
of § kM (+]2) is large in the study case 2 (right bottom display) because of a high censoring
rate in the tail.

The case of non constant hazards (see Example 2 of Section 2). The previous study is
performed for models satisfying conditions (2.3) and (2.4). Now we consider the case when
these conditions are not satisfied. Let X and C be generated from gamma distributions
whose hazard rate function can be easily verified not to be asymptotically constant (in fact
it is slowly varying at infinity). The survival time X is gamma with shape parameter 10
and rate parameter 1 and the censoring time C' is gamma with shape parameter 8.5 and rate
parameter 1.2. The mean censoring rate in this example is about 77%. The results of the
simulations are given in Figure 2 (n = 20 left picture, n = 500 right picture) and Table 1
(n = 500) for Sk s (|z) and §;Z (+|z) . They show that for these distributions the SAKM
estimator gives a smaller root MSE than the KM estimator even when the sample size is
low (n = 20) and z is in the range of the data.
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Figure 6: For the placebo group of PBC data we display the test statistics L Rmax(T%|2) as function of Ty
(left) and LRpen (7%, T1|2) as function of T; (right). The tested interval and the testing window are given by
(T3, To) and [T, 11y, T7] respectively. The critical value D is fixed to 5.8.

Table 2: Predicted survival probabilities for PBC data

T : years 3 4 5 6 7 8 9 10 11

x : days 1095 1460 1825 2190 2555 2920 3285 3650 4015
DPCA: KM 0.8256 0.7635 0.7077 0.6613 0.5842 0.5417 0.4778 0.4247 0.4247
DPCA: SAKM 0.8256 0.7635 0.7077 0.6595 0.5934 0.5340 0.4805 0.4323 0.3890
Placebo: KM 0.7911 0.7398 0.7146 0.6950 0.6566 0.6055 0.5461 0.4563 0.3604
Placebo: SAKM 0.7911 0.7398 0.7146 0.6950 0.6566 0.6055 0.5497 0.4619 0.3881
T :years 12 13 14 15 16 17 18 19 20

x : days 4380 4745 5110 5475 5840 6205 6570 6935 7300
DPCA: KM 0.3186 0.3186 0.3186 0.3186 0.3186 0.3186 0.3186 0.3186 0.3186
DPCA: SAKM 0.3501 0.3150 0.2834 0.2550 0.2295 0.2065 0.1858 0.1672 0.1505
Placebo: KM 0.3604 0.3604 0.3604 0.3604 0.3604 0.3604 0.3604 0.3604 0.3604
Placebo: SAKM 0.3260 0.2739 0.2302 0.1934 0.1625 0.1365 0.1147 0.0964 0.0810

6. Application to real data

As an illustration we deal with the well known randomized trial in primary biliary cirrhosis
(PBC) from Fleming and Harrington (1991) (see Appendix D.1). PBC is a rare but fatal
chronic liver disease and the analyzed event is the patient’s death. The trial was open for
patient registration between January 1974 and May 1984. The observations lasted until
July 1986, when the disease and survival status of the patients where recorded. There
where n = 312 patients registered for the clinical trial, including 125 patients who died.
The censored times where recorded either for patients which had been lost to follow up
or had undergone liver transplantation or was still alive at the study analysis time (July
1986). The number of censored times is 187 and the censoring rate is about 59.9%. The
last observed time is 4556 which is a censored time. Ties occur for the following three
times: 264, 1191 and 1690. So there are 122 separate times for which we can observe at
least one event. Two treatment groups of patients where compared: the first one (Z = 1)
of size n1 = 158 was given the DPCA (D-penicillamine drug). The second group (Z = 0)
of size ng = 154 was the control (placebo) group. In this example we consider only the
group covariate. We are interested to predict the survival probabilities of the patients under
study in both groups.

The survival curves based on the KM and SAKM estimators for each group are dis-
played in Figure 1. The numerical results on the predictions appear in Table 2. In this
table, the time is running from 3 years (x = 1095 days) up to 20 years (x = 7300) with the
step 1 year equivalent to 365 days for convenience.

Based on the usual KM estimator, the following two conclusions can be made: Al)
The constant predictions for extreme survival probabilities in both groups appear to be too
optimistic after the largest (non censored) survival time. B1) The DPCA treatment appears
to be less efficient than placebo in the long term. The statistical analysis with the SAKM
estimator leads to more realistic conclusions: A2) The survival probabilities of each group
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extrapolate the tendency of the KM estimator as the time is increasing, and B2) the DPCA
treatment is more efficient than placebo. For example, from the results in the Table 2 we
obtain that the survival probability in 20 years is about 2 times higher for the DPCA group
than for the control group.

From the left picture of Figure 6 we see that the test statistic LRyax (7%|0) for the con-
trol group (Z = 0) reaches the critical value D = 5.8 € [Dy, D] for k = %0 = 90. Thus
the hypotheses H., (0) was rejected for the break time 5p = 77, = 1542. The adaptive

threshold 7 is chosen via the maximization of the penalized quasi-log-likelihood (4.1). In
the right picture of Figure 6 we see that the maximum is attained for the adaptive index
le — 30 and threshold 7y = TTO = 3149. Thus, our testing-pursuit-selection procedure has
captured the “convex bump” on the control Kaplan-Meier curve (for Z = 0) between the
times 2000 and 3500, which is easily seen in the right picture of Figure 1.

7. Conclusion

This article deals with estimation of the survival probability in the framework of censored
survival data. While the Kaplan-Meier estimator provides a flexible estimate of the survival
function in the range of the data it can be improved for prediction of the extreme values,
especially when the censoring rate in the tail is high. We propose a new approach based on
the Kaplan-Meier estimator by adjusting a parametric correction to the tail beyond a given
threshold .

In applications the threshold ¢ usually is not known. To overcome this we propose
a testing-pursuit-selection procedure which yields an adaptive threshold ¢ = tAZ,n in two
stages: a sequential hypothesis testing and an adaptive choice of the threshold based on the
maximization of a penalized quasi-log-likelihood. This testing-pursuit-selection procedure
provides also a goodness-of-fit test for the parametric-based part of the model.

We perform numerical simulations with both the fixed and adaptive threshold estima-
tors. Our simulations show that both estimators improve the Kaplan-Meier estimator not
only in the long term, but also in a mid range inside the data. Comparing the fixed thresh-
old and adaptive threshold estimators, we found that the adaptive choice of the threshold
significantly improves on the quality of the predictions of the survival function. The im-
provement over the Kaplan-Meier estimator is especially effective when the censoring rate
in the tail is high.
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