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Abstract

When choosing a software package for conducting seasonal adjustment as part of their daily rou-
tines, decisions of many statistical agencies are based on pragmatic reasons. Then, usually all time
series, or at least broad subsets thereof, are seasonally adjusted according to the approach imple-
mented in the chosen software package. Recent releases of X-13ARIMA-SEATS and (J)Demetra+
may change habits as these programs include both a combination of the nonparametric X-11 ap-
proach with ARIMA forecasts and the parametric SEATS approach. Hence, users may choose
between both methods for each particular time series under review. Accordingly, the question natu-
rally arises which criteria this selection should be based on. We develop a decision tree that relies
on both theoretical and empirical issues. In particular, the latter include visual inspection of squared
gains of final X-11 and SEATS seasonal adjustment filters as well as calculation of diverse revision
measures, which is illustrated using German turnover data. Thereby, we also show that running the
SEATS algorithm in X-13ARIMA-SEATS with default options may lead to results that are some-
what misleading.

Key Words: ARIMA model-based approach, signal extraction, unobserved components, X-11
approach

1. Motivation

Many macroeconomic time series sampled usually at a monthly or quarterly frequency
share the property that they exhibit a considerable amount of seasonal variation, i.e. fluc-
tuations that recur each year in the same period with similar intensity. Since it is gen-
erally agreed that economic developments are best judged from indicators revealing new
information, seasonal adjustment has become a standard tool in both official statistics and
academic research. Unsurprisingly, different strategies for estimating seasonal movements
have been set up over the last decades, see Bell et al. (2012), Ghysels and Osborn (2001)
and Hylleberg (1992), among others, for an overview of both theoretical developments and
applications to real-world data. In practice, however, the X-11 and SEATS core developed
originally by Shiskin et al. (1967) and Gémez and Maravall (1996), respectively, have
probably been the two methods applied most frequently. Since both cores have been im-
plemented in individual software packages, such as X-12-ARIMA and TRAMO/SEATS,
decisions of many practitioners at statistical agencies on the method employed have been
directly depended on the choice of their preferred seasonal adjustment program. Often, the
latter has been based on pragmatic reasons, such as employees’ individual backgrounds,
data users’ demands (e.g. for low revisions) and the program’s suitability for statistical
mass production. Then, basically all time series have been seasonally adjusted according
to the approach implemented in the favourite software package.

Recent releases of X-13ARIMA-SEATS and (J)Demetra+ may change habits as they
jointly incorporate the X-11 and SEATS core. Users of these programs may thus choose be-
tween a nonparametric and the parametric ARIMA model-based (AMB) method for each
particular time series under review without the need to switch software packages. This
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immediately raises the question of which criteria one should focus on when making this
choice. For that purpose, we suggest a decision tree that combines theoretical considera-
tions regarding conceptual differences between the philosophies underlying the X-11 and
AMB approach with empirical findings.

The remainder of this paper is organised as follows. Section 2 provides the notational
framework as well as basic ideas of both seasonal adjustment methods considered. The
decision tree for choosing between them is presented in Section 3, followed by an empirical
illustration using selected turnover data for Germany in Section 4. Section 5 enlarges on
this illustration as it demonstrates that employing the SEATS core with default options as
implemented in X-13ARIMA-SEATS may lead to results that are somewhat misleading.
Finally, Section 6 concludes.

2. Preliminaries

2.1 Notations

Let {x;} denote the time series under review. We assume that it can be decomposed into
two orthogonal unobserved components according to

Tt = St O Ny, (D

where signal {s;} and noise {n; } are supposed to capture all nonseasonal and seasonal vari-
ations, respectively, of {x;}. In most cases, the decomposition is additive or multiplicative,
i.e. o € {+,-}. Either way, seasonal adjustment is interpreted as a signal extraction prob-
lem which can be solved by linear filtering.! To see this, let x = (z1,...,27)" denote
a finite realisation of {x;}. We may then express any estimator of the seasonally adjusted
time series as

§ =Wx, 2)
where § = (81,..., §T)T and W € RT*T is a matrix whose t-th row, W), contains the
filter weights employed to estimate s;. We may thus rewrite (2) for eacht € {1,...,T} as

T
a=W0x =3 W"a; 3)
j=1

Hence, weights stored in JV do not only depend on ¢ but also on the number of observations
available, T'. Assuming for simplicity that the latter is odd, i.e. 7" = 2k+1 for some k € N,
the (symmetric) central seasonal adjustment filter WD) and the (asymmetric) concurrent
seasonal adjustment filter W(T) are usually of greatest interest. The whole matrix W can
be easily derived from seasonally adjusting the set of T" unit vectors. This impulse response
method is comprehensively described in Section 3.4 of Ladiray and Quenneville (2001).

Often, the performance of any seasonal adjustment filter occurring in (3) is better
judged in the spectral rather than the time domain. To see this, let ¢ denote any linear
filter transforming data {x;} into output {3} via y; = >_;1; z,—;. For monthly data, its
gain is defined by

gp(N) = > gy e 0 )
J

'In practice, seasonal adjustment is a highly nonlinear data transformation as it comprises, for example,
temporary removal of outliers which may disturb estimation of any unobserved component. We shall thus
assume for convenience that {z } has already been linearised appropriately.
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where A € [0, 6] is in units of cycles per year. If {z;} is a stationary time series with spec-
tral density f,(\), then the spectral density of {y;} is given by f,(\) = gfp()\) fz(A). The
squared gain of v thus signals suppression or amplification of its output’s variance com-
ponent of frequency A when gi()\) < 1 and gi()\) > 1, respectively. Regarding seasonal

adjustment, both input x and output § of respective filters W) are typically nonstationary.
However, the principle outlined above also applies in a more general way to this kind of
time series, see Section 2 of Findley and Martin (2006) for a brief discussion.

To handle nonstationarity, seasonal ARIMA models are usually employed even though
the motivation is quite different for both seasonal adjustment approaches considered here.
A time series {x;} is called seasonal ARIMA process if there exists a white noise {; } such
that

¢(B)®(B")VIVL ({2:}) = 6(B)O(B7)({&1}), )

where B is the backshift operator, i.e. B¥z; = x,_j, forany k € Z, 7 is the seasonal period,
e.g. 7 = 12 for monthly data, V =1 — B, V, = 1 — B" and (d, D) € N2. Furthermore,
¢(B)=1—¢1B— - — ¢,BP, where ¢, # 0,and ®(B") =1 - & B" —--- — ¢pB™F,
where ®p # 0, denote the nonseasonal and seasonal AR polynomial. Analogously, §(B) =
1-6B—---0,B?withf; # 0and ©(B") = 1 — 0,B7 — --~@QBTQ with ©¢g # 0
are the nonseasonal and seasonal MA polynomial. Thereby, & € N U {oco} for each
k € {p,q, P,Q}. We additionally assume that all roots of each of these polynomials lie
outside the unit circle, i.e. both AR polynomials are stationary and both MA polynomials
are invertible. To indicate a seasonal ARIMA model of type (5), we shall use the standard
notation f (pdq)(PDQ), in what follows, where f is any particular Box-Cox transforma-
tion that might be applied to the values of {x;} prior to model fitting.

To account for outliers and calendar effects prior to seasonal adjustment of {x; }, a time-
varying mean function is typically included in (5). Since this model coincides with a linear
regression model with (seasonal) ARIMA errors, it is usually referred to as a regARIMA
model. This modelling capability is common to both seasonal adjustment approaches im-
plemented in X-13ARIMA-SEATS. We shall thus assume for convenience that calendar
effects have already removed from {xz; }, as opposed to (nonseasonal) outliers which should
generally remain visible in seasonally adjusted figures.

2.2 X-11 approach

Within the X-11 framework, the signal of model (1) is composed of a trend-cyclical compo-
nent {¢;} and an irregular component {4, }. The former conceptually accounts for long-term
movements as well as periodic fluctuations around it whose cycles last longer than one year,
while the latter captures nonseasonal short-term random shocks. Assuming a multiplicative
decomposition, model (1) can thus be rewritten as

Tt = tt cNg . ’it. (6)

Estimation of all unobserved components occurring in (6) is achieved through an iterated
application of various predefined linear filters. Each iteration step comprises several sub-
routines which basically follow a set pattern. The trend-cyclical component is extracted
first by smoothing the subroutine’s “input” series with either a simple moving average or a
Henderson filter, depending on the particular subroutine. The latter type of filter can be cho-
sen automatically according to the I/C ratio or manually by the user. After removal of these
trend-cyclical movements, an estimate of the seasonal component is obtained from smooth-
ing the corrected “input” series (also called seasonal-irregular component) for each period

with a weighted 3 x k moving average, where k € {1,3,5,9,15}. As for Henderson filters,
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seasonal filters can be chosen automatically based on the (global) I/S ratio or manually. In
the latter case, different seasonal filters may be selected for different periods. To reduce
the size of distortions potentially caused by extreme values in the seasonal-irregular com-
ponent, the X-11 routine is also equipped with an automatic detection and down-weighting
procedure of such extremes. Eventually, removal of estimated seasonal fluctuations from
the “input” series yields an estimate of its seasonally adjusted version. Throughout each
subroutine, symmetric trend and seasonal filters are considered whenever possible. In case
of boundary problems, asymmetric versions are automatically applied.

Final X-11 seasonal adjustment filters, whose weights are stored in WV of (2), thus re-
sult from the convolution of all trend and seasonal filters chosen during each iteration step.
Several programs, such as X-12-ARIMA and X-13ARIMA-SEATS, provide additional fea-
tures to enhance the basic X-11 principle outlined above. Most prominently, regARIMA
forecasts of unadjusted figures can be used to mitigate boundary problems by enabling ap-
plication of less asymmetric X-11 filters, especially at the current end of the time series
under review. Further details are provided by Findley et al. (1998), Section 4 of Ghysels
and Osborn (2001) and Ladiray and Quenneville (2001), among others.

2.3 AMB approach

Within the AMB framework, nonseasonal intra-year variability in unadjusted figures is
further specified as the irregular component of model (6) is decomposed according to

it:rtowt.

Thereby, {w;} is white noise, which is primarily assumed to facilitate testing and sta-
tistical interpreting. To also capture fluctuations not persistent enough to be considered
trend-cyclical but still too persistent to reflect white noise like behaviour, the transitory
component {r;} is introduced as a rather technical necessity. Assuming an additive decom-
position, model (1) thus turns into

mt:tt+nt+7"t+wt. (7)

AMB theory’s key assumption states that each unobserved component of (7) is driven by
an individual ARIMA process. For the sake of brevity, however, we shall stick to model
(1) instead of (7) in what follows and assume that ARIMA models for signal and noise are
given by

oO(B)({ke}) = 00 (B) ({<}).

where k € {s,n} and #*) and %) are AR and MA polynomials of orders p*) and ¢(*),
respectively. Their roots are assumed to lie on or outside the unit circle, however, they do
not share common roots for each k. Similarly, both AR (MA) polynomials do not have
common (unit) roots. Eventually, both innovation sequences are uncorrelated Gaussian
white noise processes. By construction, {x;} then admits the ARIMA representation

¢ (B)({:}) = 09 (B)({e}),
where ¢(*)(B) = ¢(*)(B)¢(™ (B) and

0 (B)({=1}) = o (B9 (B) ({7 }) + 6B (B) ({"}).  ®

In theory, the minimum mean squared error (MMSE) estimator of the signal, i.e. the esti-

mator {5;} that minimises E [(st - §t)2‘ x} , can be easily obtained if x is infinite and both
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signal and noise are stationary. As shown by Whittle (1963), {5;} = v(B)({z:}) in this
case where v is the Wiener-Kolmogorov (WK) filter given by

02 09 (B)™(B) 6 (B~1)p™ (B~
o2 0@(B) 0 (B-1)

Thereby, variances belong to the innovation sequences ({59}) and {e;} occurring in

(8). Several authors, including Bell (1984) and Maravall (1988), demonstrate that the WK
filter still yields the MMSE estimator if x is finite, as in (2), and both signal and noise are
nonstationary.

In practice, however, the quantities forming the numerator of (9) are unknown and have
to be derived from the ARIMA model fitted to the observed time series. To this end, the
decomposition algorithm developed originally by Burman (1980) and improved by Bell
and Hillmer (1984) and Hillmer and Tiao (1982) is employed. Basically, this is a two-step
procedure. By analogy with (5), (]3(”3) is factorised first. Using the identity

H(B)B(BT)VIVY =60,

V(B) = ©)

(unit) roots of all polynomials occurring on the left hand side are assigned to either signal or
noise according to their associated frequencies. For example, the nonseasonal unit root of
V is associated with the trend frequency A = 0 and thus assigned to the signal. In a second
step, unknown MA polynomials and variances appearing in the right hand side of (8) are
derived from a partial fraction expansion. At this point, the canonical assumption has to be
made to achieve a unique decomposition. The latter basically states that the variance of the
white noise component is maximised. If this assumption cannot be met, which is likely to
happen for rather complex ARIMA models, several approximations can be considered. (A
detailed documentation of these approximations is currently work in progress at the Bank
of Spain.)

Eventually, unknown quantities of (9) are replaced with estimates obtained from the
decomposition sketched above to yield the estimated WK filter. Its weights thus directly
constitute the weighting matrix W of (2) for the final SEATS seasonal adjustment filter.
Further details are given by Gémez and Maravall (2001) and Maravall (1995), inter alia.

3. Decision tree

We suggest the three-step procedure illustrated in Figure 1 to choose between the X-11
and AMB approach for any observed time series. For obvious reason, the latter should be
examined for presence of stable seasonality in the first step to ensure that it actually is in
need for seasonal adjustment.

If so, conceptual differences between both methods can be regarded in a second step,
which is labelled “first empirical considerations” in Figure 1. Its basic idea is that the X-11
approach has advantages whenever the AMB method’s key assumption of the data gener-
ating process (DGP) coinciding with an ARIMA model (with time-constant coefficients)
is likely to be too restrictive to adequately account for all dynamics of the observed time
series. This might be the case for various phenomena but we shall only focus on two of
them here. First, seasonal heteroskedasticity cannot be modelled explicitly within the AMB
framework and has to be captured as good as possible by seasonal ARIMA models instead.
In contrast, GARCH-type effects may be taken into account, at least up to some degree,
within X-11’s built-in extreme value detection procedure by considering period-specific
variances of the irregular component. If their importance, however, is not sufficiently high,
reliance on the X-11 or AMB approach usually does not really make a difference as far as
seasonal heteroskedasticity is concerned, at least according to our experience. In addition,
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The choice between the X-11 and AMB approach to seasonal adjustment
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Figure 1: Decision tree.
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it should be kept in mind that this phenomenon is somehow related to sample size as it is
less likely to be apparent in short and moderate-length time series. Consequently, the AMB
approach may look more viable a priori for those kind of series.

The second situation where the X-11 method might be more preferable emerges when
major causes of (moving) seasonality in observed unadjusted figures are substantially dif-
ferent across periods. A prime example is given by German retail sales. Their usual peak in
December attributable to the Christmas business has decreased faster than seasonal move-
ments in other months in the recent past. A widely accepted explanation is that Christ-
mas bonuses have been paid by fewer firms or have been cut steadily compared to regular
salaries. Unadjusted retail sales for December should thus be treated somewhat individu-
ally by, for example, application of shorter seasonal filters in X-11 as compared to other
months which are unlikely to be affected by this change. As for seasonal heteroskedasticity,
the AMB approach is intentionally not capable of modelling such effects explicitly.

In practice, many observed time series behave rather less exceptionally and, hence, the
considerations outlined so far do usually not suffice to select an appropriate seasonal ad-
justment approach for all of them. Accordingly, further criteria summarised as “advanced
empirical considerations” in Figure 1 should be employed in a third step. At first, squared
gains of (selected) final X-11 and SEATS seasonal adjustment filters are compared. The
key idea is that any “acceptable” seasonal adjustment filter should completely eliminate
seasonal fluctuations without altering movements associated with nonseasonal frequencies.
Assuming stable seasonality, the squared gain of an ideal seasonal adjustment filter would
thus be equal to one for all frequencies except the seasonal ones where it immediately drops
to zero. However, virtually all seasonal adjustment filters derived from observed time series
display squared gains that deviate from this ideal, mainly due to the finite length of and the
amount of moving seasonality inherent in the latter. Therefore, the minimum requirement
any “acceptable” seasonal adjustment filter should meet is that its squared gain stays close
to one at all nonseasonal frequencies and exhibits dips at all seasonal ones. Since final
X-11 seasonal adjustment filters pass this spectral inspection by construction, it has to be
checked only for their WK counterparts. If both approaches still perform equally well, we
suggest further comparison with respect to revisions they generate in seasonally adjusted
figures and their period-on-period changes. The main reason for including the latter is that
statements on economic developments typically focus on them rather than seasonally ad-
justed figures themselves. Eventually, the method which yields lower revisions on average
is chosen, which according to our experience should be in line with demands of many data
users.

4. Tllustration

We run X-13ARIMA-SEATS with default options for both the X-11 and the AMB method,
using its Windows companion Win X-13 (version 1.0 build 150). In addition, R (version
2.14.1) is employed to calculate squared gains of X-11 seasonal adjustment filters as these
are not provided by any Win X-13 output.

4.1 Data

We consider monthly turnover of industry (IND), producers of capital goods (CAP) and
producers of consumer goods (CON) at current prices as available in May 2013.> These
time series cover the period as of January 1991 up to December 2012 with their annual

The latter two items are defined in Regulation (EC) No 656/2007 and “industry” is defined as their aggre-
gate plus producers of intermediate goods.
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Table 1: Results of selected tests.

Stable seasonality Homoskedasticity
Series F-test  Kruskal-Wallis-test Cochran-test
IND 424.440 246.908 0.137
CAP 291.641 240.373 0.153
CON 256.609 219.077 0.175

averages of 2010 being set to 100. Also, they have already been adjusted for calendar
effects using linear regression techniques.

As reported in Table 1, standard tests provide strong evidence of the presence of stable
seasonality for each series as their test statistics are larger than respective critical values at
any conventional level of significance. A similar conclusion can be drawn from spectral
analysis. Estimated spectra of month-on-month changes of the linearised series universally
exhibit visible peaks at all seasonal frequencies, even though they are somewhat less pro-
nounced at the first one, see Figure 2. In addition, the DGP of each series is found to be
well approximated by a seasonal ARIMA model, see Table 2 below. Seasonal adjustment
of these three series thus makes perfect sense.

4.2 First empirical considerations

The last column of Table 1 shows results of (one-sided) tests for equality of month-specific
variances of the irregular component (as given in output table B13 of X-13ARIMA-SEATYS).
Since the critical value is 0.15 for a series of 264 monthly observations at a 5 % level of
significance, this test suggested originally by Cochran (1941) does not indicate presence
of seasonal heteroskedasticity in IND but provides some evidence for CAP and CON. This
evidence, however, is rather weak and extreme value detection is barely affected by it for
both series. The AMB approach is thus not ruled out on these grounds.

Differenced log turnover

= IND

Cycles per year

Deutsche Bundesbank

Figure 2: Periodograms (in decibel).
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Even though additional knowledge about each turnover indicator’s DGP includes de-
tailed information on how data are regularly collected, it does not give statistically sufficient
hints of the need for application of different month-specific seasonal filters. We hence can-
not decide on an appropriate seasonal adjustment method for any turnover series at this
early stage. Accordingly, advanced empirical considerations have to be employed for that
purpose.

4.3 Advanced empirical considerations

In the first step, we fit a regARIMA model to the log of each indicator to take outliers
into account and to obtain two years of forecasts. The log transformation is preferred
by the automatic log-level test implemented in X-13ARIMA-SEATS. To account for the
strong economic downturn starting in 2008, we introduce a series of level shifts over the
crisis’ period. In addition, we make use of automatic outlier detection based on default
critical values. Regarding final ARIMA model choices, we similarly rely on the program’s
automatic model selection procedure. Respective results are summarised in Table 2, where
parameter estimates are reported in the order of their appearance in the regARIMA model.
To exemplify, the regARIMA model fit to turnover of industry, {x;}, is (approximately)
given by

(1-0.37B —0.08B% — 0.26 B*)VV15({#:}) = (1 — 0.64B)(1 — 0.62B?)({&:}), (10)

where {Z;} is the outlier adjusted version of {log x}.

In a second step, we compare squared gains of both central and concurrent seasonal
adjustment filters obtained from X-11 and SEATS. To derive the weighting matrix W oc-
curring in (2) according to the impulse response method for X-11, we note that the 13-term
Henderson filter is chosen automatically for IND and CAP, whereas the 23-term Henderson
filter is selected for CON. In addition, the 3 x 5 seasonal moving average is automatically
applied to all three series. Squared gains of respective X-11 seasonal adjustment filters are
then calculated according to (4). Regarding both WK seasonal adjustment filters, no further
calculations are necessary since their squared gains are directly provided by X-13ARIMA-
SEATS.

Figure 3 shows that both central and concurrent X-11 filters perform reasonable well
as their squared gains stay close to one at nonseasonal frequencies and decrease rapidly to

Table 2: RegARIMA modelling summary.

Parameter estimates (standard errors in parentheses)
Series ARIMA model Nonseasonal Seasonal Residual variance
IND log(311)(011)12 0.3744 (0.15140) 0.6197 (0.05149) 0.0002 (0.00002)
0.0798 (0.07031)
0.2619 (0.06144)
0.6407 (0.15043)
CAP  log(011)(011)12 0.4587 (0.05539) 0.5959 (0.05212) 0.0008 (0.00007)
CON log(311)(011)12 —1.2608 (0.67744) 0.7947 (0.04012) 0.0002 (0.00002)
( )
( )
( )

—0.7593 (0.44801
—0.2276 (0.23323

—0.5910 (0.68214
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Figure 3: Squared gains of seasonal adjustment filters.

zero in the vicinity of seasonal frequencies, regardless of the series considered. For cen-
tral X-11 filters, the latter display oscillatory behaviour between seasonal frequencies that
is typical of finite filters, signaling potential amplification of fluctuations associated with
those frequencies in seasonally adjusted figures. Amplification is also reflected in squared
gains of concurrent X-11 filters which stay above one at many nonseasonal frequencies.

Regarding the AMB approach, WK filters perform somewhat poorly for IND and CON,
even though they still remove all seasonality contained in unadjusted figures. For IND,
squared gains of both central and concurrent WK filter display an awkward U-shaped cur-
vature between the second and fifth seasonal frequency (excluding seasonal frequencies)
as they drop to 0.2 and 0.4, respectively, near the fourth seasonal frequency. For CON,
squared gains of both WK filters look even worse as they start to decrease immediately
behind the first seasonal frequency and do not manage to exceed 0.2 (central) and 0.3 (con-
current) behind the third seasonal frequency. Hence, WK filters heavily suppress many
fluctuations in IND and CON not associated with seasonal behaviour, resulting in season-
ally adjusted figures that are much smoother than those obtained from X-11, see Figure
5 below for the latter series. The X-11 approach is preferred for both turnover indicators
as its overall performance is closer to what a satisfactory seasonal adjustment procedure
should achieve.

When looking at CAP, things are completely different. WK seasonal adjustment filters
now also yield acceptable results as their squared gains exhibit a smooth curvature that is
somewhat close to the ideal described in Section 3. This is particularly true for the central
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Table 3: Revision analysis.

Changes in seasonally adjusted

Seasonally adjusted figures figures compared with previous

(as a percentage) period (in percentage points)

Series Core MR MAR STD MR MAR STD
IND X-11 0.0412 0.3668 0.4747 0.0142 0.4443 0.5792
SEATS* 0.0060 0.3478 0.4300 0.0062 0.4136 0.5266
CAP X-11 0.0432 0.6192 0.7711 0.0006 0.7683 0.9951
SEATS  —0.0259 0.5546 0.7041 —0.0009 0.6531 0.8445
CON X-11 0.0448 0.3302 0.4281 —0.0049 0.5235 0.6546
X-11* 0.0376 0.3296 0.4252 —0.0070 0.5211 0.6510

SEATS* 0.0273 0.2881 0.3807 0.0015 0.4837 0.7014

WK filter whose squared gain does not signal amplification of any frequency due to oscil-
latory behaviour (which is the case for the central X-11 filter). Even though the concurrent
WK filter’s squared gain indicates minor suppression of nonseasonal intra-year cycles by
dropping to 0.8 at respective frequencies, the AMB method seems to be advantageous for
CAP. Since this advantage is rather slight than huge, we shall also compare both approaches
with respect to revisions before making a final decision.

For that purpose, we calculate diverse revision measures for CAP in a third step. Since
we are primarily interested in the way revisions are induced by application of a particu-
lar seasonal adjustment method, we do not study them in real-time, excluding corrections
of unadjusted figures from our analysis. Instead, we seasonally adjust truncated versions
of CAP to generate revisions in its seasonally adjusted figures and their month-on-month
changes. During this procedure, the regARIMA model is reestimated for each truncated
series. Revisions are then calculated over the time span as of January 2000 up to Decem-
ber 2007, allowing for a “burn-in” period of nine years and excluding an atypical revision
pattern that may be caused by the economic downturn starting in 2008. Table 3 reports
mean revisions (MR), mean absolute revisions (MAR) and revisions’ standard deviations
(STD) for CAP that result from both approaches.® Since these measures tend to be slightly
smaller when seasonal adjustment is carried out with SEATS, the AMB approach is finally
chosen for CAP. It should be noted, however, that these seasonally adjusted figures do not
substantially differ from the ones obtained from X-11. For example, mean difference and
mean absolute difference between both seasonally adjusted CAP series amount to 0.02 and
0.26 index point, respectively.

5. Cautionary remarks

As shown in the previous section, seasonal adjustment according to the AMB approach
turns out to be problematic for IND and CON, two series not fit by an airline model. In
both cases, squared gains of WK seasonal adjustment filters exhibit an awkward curvature
that signals noticeable suppression of nonseasonal movements whose periods are shorter
than six months. One may thus suppose that some transitory effects have been falsely

3Table 3 also shows these measures for IND and CON even though the X-11 approach has already been
selected for both series. This is done in preparation for our discussion of modified X-13ARIMA-SEATS runs
in Section 5. Rows corresponding to such modifications are marked with an asterisk.
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Figure 4: Squared gains of WK seasonal adjustment filters.

attributed to the seasonal component in both cases. To verify this conjecture, we now ex-
amine the stationary AR polynomials of both series’ regARIMA models. Bearing in mind
that we have run X-13ARIMA-SEATS with default options so far, rerunning the SEATS al-
gorithm with appropriate modifications is thus likely to improve the results obtained under
the former setting.

5.1 Industry

The stationary AR polynomial of (10) factorises as
(1 —0.84B)(1 4 0.47B + 0.31B?). (11)

In fact, the SEATS decomposition algorithm correctly assigns the real positive root of (11)
to the trend-cyclical component since its (reciprocal) modulus is larger than the default
threshold 0.5. However, the complex root of (11) is assigned to the seasonal component
since its associated frequency is approximately 0.64 7 which, under default settings, is
sufficiently close to the fourth seasonal frequency, 27/3. We thus reduce this range of
“near-seasonal” frequencies by lowering the epsphi argument of the SEATS spec to en-
force introduction of an additional transitory component that accounts for the complex root
of (11). As a result, the seasonal component captures only “true” seasonal fluctuations as
its assigned AR polynomial now coincides with the annual aggregation operator that is part
of V12 in (10). As shown in the top row of Figure 4, WK seasonal adjustment filters per-
form much better under this modification than under default settings as their squared gains
somehow retain their overall curvature but stay significantly closer to one at virtually all
nonseasonal frequencies.

What is more, the X-11 and AMB approach now yield very similar results when com-
paring squared gains shown in Figure 3 and Figure 4. A further study of revisions gener-
ated for both methods seems thus sensible. As reported in Table 3, the latter are slightly
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Figure 5: Seasonally adjusted figures.

smaller on average for both seasonally adjusted figures and their month-on-month changes
in case SEATS is used. However, this advantage might be considered insignificant by some
users. We thus conclude that (based on our decision tree) both methods seem to be equally
appropriate for IND after certain changes of default options controlling the SEATS decom-
position.

5.2 Consumer goods

Beside false assignment of transitory effects, investigation of the regARIMA model fit to
CON reveals an additional effect that may cause severe problems. As shown in Table
2, all nonseasonal parameter estimates combine with exceptionally high standard errors.
Cancellation of a common nonseasonal AR and MA factor might be held responsible for
this kind of instability. In fact, the stationary AR polynomial factorises as

(14 0.63B)(1 +0.63B + 0.36B2). (12)

The real negative root of (12) is associated with the sixth seasonal frequency, 7, as is the
nonseasonal MA polynomial (1 4+ 0.59B). Since both roots have approximately the same
modulus, they nearly cancel and we thus drop them from the model. Reestimation of a
reduced version of type log (210)(011);2 for the CON series, {x:}, leaves all parameter
estimates basically unchanged as it yields

(14 0.66B + 0.36B*)VV12({#:}) = (1 — 0.79B2)({&:}), (13)

where {Z;} is the outlier adjusted version of {log z; }. However, in model (13), standard er-
rors associated with both nonseasonal parameter estimates are greatly reduced now as they
are given by 0.05914 and 0.05796, respectively. Still, the stationary complex root of (13)
is assigned to the seasonal component since its associated frequency, 0.69 7, is sufficiently
close to 27 /3 under default settings. We therefore apply the same modification as for the
IND case. Eventually, this complex root is captured by a transitory component addition-
ally introduced and, hence, seasonal adjustment according to the AMB approach provides
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Figure 6: Changes in seasonally adjusted figures compared with previous period.

results that are much more sensible than under default settings. As for IND, both WK
seasonal adjustment filters display squared gains that look now much more like the ideal
described in Section 3 even though it stays slightly below 0.9 behind the third seasonal fre-
quency for the concurrent filter, see the bottom row of Figure 4. Nevertheless, a comparison
with Figure 3 reveals that the huge advantage formerly gained by X-11 becomes negligible
as differences between squared gains of X-11 and WK seasonal adjustment filters become
significantly smaller. Dips at seasonal frequencies are even narrower for the latter. Con-
sequently, seasonally adjusted figures obtained from SEATS are less smooth than under
default settings. As illustrated exemplarily in Figure 5 for the span as of January 2003 up
to December 2012, this effect remains visible throughout the whole period covered but is
especially apparent in times of high volatility, such as the year 2003. As a result, seasonally
adjusted CON figures are barely distinguishable when comparing X-11 and SEATS. Slight
differences, however, may be recognised if their month-on-month changes are considered
instead, see Figure 6 for the observation period’s current end.

As for IND, revisions should thus be studied in addition to complement our spec-
tral analysis. Since the regARIMA model has been changed for CON, they have to be
(re)calculated for both approaches considered. Table 3 shows that this has virtually no
effect on revisions obtained from the X-11 method. More importantly, it also uncovers
that revisions tend to be generally smaller on average for the AMB approach. The only
exception, however, is revisions’ volatility of month-on-month changes. In sum, seasonal
adjustment with X-11 may still be preferred by some users for CON. The AMB approach,
however, seems to perform equally well when run with appropriate modifications of default
settings.

6. Summary

We suggest a decision tree for choosing between the X-11 and SEATS seasonal adjustment
core for any particular observed time series. Running X-13ARIMA-SEATS with default
options for either core, the X-11 approach is preferred for turnover of industry and produc-
ers of consumer goods, while the AMB method is recommended for turnover of producers
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of capital goods. Based primarily on visual inspection of squared gains, we further demon-
strate that SEATS, when run in default mode, may suffer from transitory effects being
falsely assigned to the seasonal component when the regARIMA model fit to the observed
time series does not belong to the class of airline models. Appropriate modifications of
default settings may thus prevent SEATS from yielding results that are somewhat mislead-
ing. When employing such modifications, the AMB approach may also be selected for both
turnover series seasonally adjusted with X-11 so far.

Future research should thus focus on further improvements of our decision tree. First
of all, the recursive structure of our advanced empirical considerations could be elaborated
especially with regard to the SEATS core. Similarly, the observed time series’ length could
be included more explicitly as it directly relates to the seasonal heteroskedasticity issue
that is part of our first empirical considerations. In practice, more attention should be paid
to short and moderate-length time series as the rather problematic log (311)(011);2 model
found for two out of three turnover indicators studied here appears to be some sort of last
resort for longer time series. Further criteria, such as time shifts of final seasonal adjustment
filters, could be additionally incorporated into the decision-making process. Apart from our
decision tree, future research may also focus on issues not covered here. For example, the
SEATS algorithm automatically makes use of certain approximations to ARIMA models
which do not admit an admissible decomposition to enforce admissibility. In this case, one
may ask if these approximations still yield acceptable representations of the true DGP.
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