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Abstract

It is common to have misbalance in longitudinal data sets, i. e. an unequal number of repeated

observations for different subjects. For longitudinal data sets with time-dependent covariates, the

Generalized Method of Moments (GMM) is the preferred method for estimating parameters in a way

that accounts for the associations between responses and time-dependent covariates. However, for

unbalanced longitudinal data, current GMM techniques suggest the estimator covariance structure

and weight matrix should be estimated using only complete-case subjects. This paper presents

a method of analyzing unbalanced longitudinal data such that all subjects are accounted for in the

estimator covariance structure and weight matrix, thus reducing bias in both the parameter estimates

and standard errors. This paper presents a data example with count response and programs intended

for binary and for count response data.

Key Words: longitudinal; unbalanced; non-continuous; time-dependent covariates; generalized

method of moments

1. Introduction

Unbalanced longitudinal data occur often in practice. For example, attrition of subjects

in any study over time leads to varying numbers of responses per subject. Records of

patient length of stay vary according to the number of times patients are admitted. Self-

report longitudinal surveys can easily lead to misbalance in the number of observations per

subject. It is important to have trustworthy analysis methods that takes this misbalance into

account.

When longitudinal data include time-dependent covariates, the Generalized Method of Mo-

ments (GMM) is the preferred method of estimation (Lai and Small (2007), Lalonde et al.

(2013)). This method allows the researcher to account for the autocorrelation inherent in

longitudinal data as well as the correlation associated with relationships between responses

and changing covariates. However, current GMM implementations for unbalanced data use

only full-data subjects for the GMM weight matrix and the estimator covariance structure

(Lai and Small (2007)). For data situations in which only a few subjects are observed at

all times, this approach will not use the data from most of the subjects in finding parameter

estimates and in calculating standard errors.

In this paper the existing GMM method for unbalanced longitudinal data is extended so

that all subjects are used in both the weight matrix and standard error calculations. We

show that when the data from incomplete subjects are ignored, both the point estimates of

parameters of interest as well as the standard errors are biased. This can lead to faulty inter-

pretations and inferences. The rest of this paper is organized as follows. Section 2 presents

a description of the existing GMM estimation methods for balanced and unbalanced lon-

gitudinal data with time-dependent covariates. Section 3 presents a modification to the

existing methods that allows for all subjects to be incorporated into the weight matrix and

covariance estimates within GMM. A data example is presented and analyzed using both
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existing and modified GMM methods in Section 4. Section 5 includes some discussion and

concluding remarks.

2. The Generalized Method of Moments for Longitudinal Data with

Time-Dependent Covariates

A major advantage of a longitudinal study is its capacity to separate change over time

within subjects and differences among subjects (Diggle et al. (2002)). However, when

dealing with longitudinal data not only do the response variables change over time, but

the predictor variables or covariates can also change over time. The treatment of time-

dependent covariates in the analysis of longitudinal data allows strong statistical inferences

about dynamical relationships and provides more efficient estimators than can be obtained

using cross-sectional data (Hedeker and Gibbons (2006)).

The Generalized Method of Moments (GMM) approach for longitudinal data with fitted

time-dependent covariates provides more efficient estimates than using Generalized Esti-

mating Equations (GEE) with the independent working correlation under certain condi-

tions (Lai and Small (2007)). Lai and Small (2007) maintained that the GEE approach

for time-independent covariates is an attractive option as it provides consistent estimates

under all correlation structures for subjects’ repeated measurements. Pepe and Anderson

(1994) suggested the use of the independent working correlation when using GEE with

time-dependent covariates as a safe choice of analysis. However, when there are time-

dependent covariates, some of the estimating equations combined by GEE with an arbi-

trary working correlation structure may not be valid, meaning some estimating equations

applied will not have zero expected value. More so, when there are time-dependent covari-

ates, Hu (1993) and also Pepe and Anderson (1994) have pointed out that the consistency

of GEE estimators is not assured with arbitrary working correlation structures unless a key

assumption is satisfied, that a subject’s repeated measurements are independent (meaning

the independent working correlation structure is appropriate). The GMM process proposed

by Lai and Small (2007) for longitudinal data with time-dependent covariates follows.

For each subject i of a longitudinal study, consider a response vector Yi = [Yi1 . . . YiT ]
T ,

where T is the number of observations for subject i, let Zi indicate the associated design

matrix for the time-independent covariates, and let Xi indicate the associated design matrix

for the time-dependent covariates for subject i. Given a vector of valid estimating expres-

sions gi(yi, xi,β) for each subject, such that E[gi(yi, xi,β)] = 0, the GMM process is as

follows (Hansen (1982), Lai and Small (2007), Hansen (2007), Lalonde et al. (2013)). For

an average vector of valid moment conditions,

G(β) =
1

N

N
∑

i=1

gi(yi, xi,β),

and an optimal weight matrix,

Ŵ = V−1 = [Cov(gi(yi, xi,β0))]
−1 ,

where β̂0 indicates initial estimates of the mean parameters, the GMM estimators β̂ are

obtained by minimizing the quadratic form

Q(β) = G(β)T ŴG(β).

The number of components of the vector of valid moment conditions for each subject de-

pends on both the “type” of time-dependent covariate and also on the number of replications
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for that subject (Lai and Small (2007)). A time-dependent covariate xj is said to be of Type

I if

E

[

∂µis

∂βj
(Yit − µit)

]

= 0

for s = 1, . . . , T and t = 1, . . . , T . In this case all combinations of times for the derivative

and the residual terms in the moment conditions have zero expected value. Type I time-

dependent covariates tend to arise in situations in which the response components Yit are

independent, or if all subjects are exposed to a common random effect. A time-dependent

covariate xj is said to be of Type II if

E

[

∂µis

∂βj
(Yit − µit)

]

= 0

for s ≥ t and t = 1, . . . , T . In this case the moment conditions have zero expected value

only when the time for the derivative term is at or beyond the time for the residual term.

Type II time-dependent covariates tend to arise in time-series models in which covariate

values xis affect future response components Yit, but response values do not affect future

covariate values. A time-dependent covariate xj is said to be of Type III if it is not Type I

or Type II, or if

E

[

∂µis

∂βj
(Yit − µit)

]

6= 0

for some s > t. In this case the product is only assured to have zero expected value if both

times are equivalent. Type III time-dependent covariates tend to arise in situations with

feedback from both covariates and responses. A time-dependent covariate xj if said to be

of Type IV if

E

[

∂µis

∂βj
(Yit − µit)

]

= 0

for s ≤ t and t = 1, . . . , T . Here the moment conditions have zero expected value only

when the time for the derivative term is less than or equal to the time for the residual

term. Similar to Type II time-dependent covariates, Type IV time-dependent covariates tend

to arise when responses affect future covariate values, but covariates do not affect future

response values. Types of time-dependent covariates can be selected by the researcher, or

the individual valid moment conditions can be selected using the data though the Extended

Classification process (Yin et al. (2013)).

The “Two-Step GMM” (TSGMM) process starts with an initial estimate of the weight

matrix Ŵ using consistent estimates β̂0, usually using Independent GEE. Then updated

estimates β̂ are obtained by minimizing the quadratic form Q(β) (Lai and Small (2007)).

Hansen (1982) and also Hansen (2007) argued that GMM estimators are asymptotically

normal and unbiased with variance-covariance structure

Σ =

(

E

[

∂gi
∂β

]T

V−1E

[

∂gi
∂β

]

)

−1

,

which can be consistently estimated using

Σ̂ =





(

1

N

N
∑

i=1

∂ĝi
∂β

)T

V̂
−1

(

1

N

N
∑

i=1

∂ĝi
∂β

)





−1

,
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evaluating the derivatives at β̂, and using a consistent estimator V̂
−1

for V−1. Optimal

efficiency is attained using the consistent estimator

V̂ =
1

N

N
∑

i=1

gi(yi, xi, β̂0)gi(yi, xi, β̂0)
T .

For unbalanced replication in a longitudinal study, Lai and Small (2007) have recom-

mended adjusting the vector of average valid moment conditions to include only contribut-

ing subjects. Thus each component of the vector of averaged valid moment conditions,

(G(β))j =
1

|Ij |

∑

i∈Ij

gi(yi, xi,β),

where Ij is the set of all subjects whose observation times allow a valid moment condition

contribution to be calculated for the jth component of G(β). Calculation of the weight

matrix is made using only full-data subjects,

V̂F =
1

NF

∑

i∈IF

gi(yi, xi, β̂0)gi(yi, xi, β̂0)
T ,

where IF is the collection of subjects observed at all times, and NF is the number of

such subjects. However, if this weight matrix is used within the TSGMM process, both

the quadratic form Q(β) and the standard errors will be calculated using only full-data

subjects. This ignores the contributions from incomplete-data subjects in all steps except

for the calculation of average valid moment conditions, and may lead to bias in parameter

estimates and standard errors.

3. A Modified GMM Method for Unbalanced Data

The Generalized Method of Moments (GMM) approach for parameter estimation within

a Generalized Linear Model with time-dependent covariates requires minimization of the

quadratic form, Q(β) = G(β)T ŴG(β), where the vector G(β) represents an average

of valid moment conditions across all subjects. In the balanced data case, this equates

to the sum of all moment conditions for each component of the vector G(β), divided by

the number of subjects N . In the unbalanced data case, subjects who are not observed

at time t would not contribute to any moment conditions involving time t. An appropriate

average would include only the subjects with valid moment conditions to contribute to each

parameter estimate. Define Ij to be the set of all subjects whose observation times allow

a valid moment condition contribution to be calculated for the jth component of G(β).
According to Lai and Small (2007), the jth component of G(β) for unbalanced data can be

written

(G(β))j =
1

|Ij |

∑

i∈Ij

gi(yi, xi,β).

However, instead of calculating the inverse weight matrix V̂ using only the subjects whose

observations allow valid moment condition contributions for all parameters, construct V̂ to

use information from each subject that contributes to each respective weight matrix compo-

nent. Define Ijk to be the set of all subjects whose observation times allow a valid moment

condition contribution to be calculated for both the jth and kth components of G(β). Then

define each component of the inverse weight matrix V̂,

(

V̂
)

jk
=
∑

i∈Ijk

(gi)j(gi)k
|Ijk|

.
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In this way each component of V̂ represents an average over all subjects contributing to

both moment conditions involved in any weight matrix component. If subject i does not

contribute to either one of the jth or kth components, then subject i does not contribute to

the weight matrix estimate involving these two moment condition components. For data

sets in which a relatively low number of subjects are observed for all times, this allows

for more subjects to contribute to variance-covariance calculations than using only subjects

who have been observed for all times.

4. Example: Transitional Housing Facility

As an example of the implementation of the adjusted GMM for unbalanced longitudinal

data with time-dependent covariates, an analysis of client length of stay in a transitional

housing facility (THF) is presented. The THF of interest is designed to provide temporary

housing to families in need, and is located in the urban center of a small midwestern city

with about 100,000 residents. The THF services only families that include children, and

imposes a limit of 60 days for each family’s stay. Monthly data have been recorded from

January, 2006 through December, 2010, representing 415 families. Data for each family

are recorded at the end of each month, including variables such as family size, education

level, and employment status. In addition to housing, the THF staff provide services to

leading family members to help their transition from living within the THF to maintaining

a sustainable lifestyle outside of the facility. Two of these services are case management

hours and job training. Case management hours represent the number of hours spent with

a staff member of the THF, covering topics such as home food preparation, health care

options, and basic financial strategies to help keep the family out of need. Job training

programs provide advice and practice for common available local jobs, and is recorded in

the data as a binary indicator of participation.

It is of interest to model the probability that a family will stay for longer than two weeks

(14 days) in the facility in any given month. If THF management can predict that a family

is likely to stay for less than two weeks, then monthly service for the space used can double

in a given month. Management of the THF would like to know whether the number of chil-

dren, employment status, education level, case management hours, and job training have an

impact on the probability of staying for less than two weeks. In modeling probability of a

stay of longer than two weeks, logistic regression will be the appropriate generalized linear

model, with the probability of staying longer than two weeks treated as the mean response.

Because data are recorded monthly, each family is observed multiple times and therefore

a longitudinal binary logistic regression model is applied. Appropriate estimation meth-

ods will need to account for the autocorrelation in the multiple responses from the same

families. Since the participation in case management and job training can fluctuate across

months, these two variables are treated as time-dependent covariates. Thus the GMM will

be applied to account for the potential correlation between responses and these two chang-

ing predictors. According to the definitions of Lai and Small (2007) and Yin et al. (2013),

both case management hours and job training will be treated as “Type II” time-dependent

covariates.

A family that stays for 60 days can have data for up to three different months. But not all

families stay for an entire 60 days and not all families are observed across three different

months, leading to an unbalanced data set. A small number of families have been allowed

to stay in the THF for a second time, leading to a small number of families that have data for

four, five, or six months. However, there is a very small number of families that have stayed

in the THF during 6 different months, the maximum number of observations possible for
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Table 1: Results of Existing GMM Analysis

Existing GMM

Parameter Estimate Standard Error p-Value

Number of Children 0.1769 (0.000165) < 0.0001
Unemployed 0.7936 (< 0.000001) < 0.0001
Education Level 0.1110 (0.000059) < 0.0001
Case Management -1.0379 (0.000348) < 0.0001
Job Training -0.3864 (0.000007) < 0.0001

Table 2: Results of Modified GMM Analysis

Modified GMM

Parameter Estimate Standard Error p-Value

Number of Children 0.0644 (0.000550) 0.0030

Unemployed 0.5630 (0.000409) < 0.0001
Education Level -0.0537 (0.001895) 0.0109

Case Management -0.9896 (0.000145) < 0.0001
Job Training -0.5918 (0.006368) < 0.0001

a single family. In fact, fewer only 4 of the 415 observed families have data for a full 6

months. Therefore we will consider the misbalance to be severe for analysis of the THF.

The following logistic regression model will have parameters estimated using both the ex-

isting GMM approach from Section 3 as well as the modified GMM of Section 4.

logit(π) = β0+β1(Children)+β2(Unemployed)+β3(Ed Level)+β4(Case Hours)+β5(Job Training),

where π represents the probability of staying longer than two weeks. Table 1 presents

the parameter estimates, standard errors, and p-values for the existing GMM method for

unbalanced longitudinal data. Table 2 presents the same for the modified GMM method

proposed in Section 4 of this paper.

Notice that the standard error estimates are very small using this estimation technique.

Correspondingly, all of the p-values show high levels of significance, suggesting that all

variables have a meaningful impact on the probability of a length of stay less than two

weeks. But these standard errors are based only on those observations from the 4 families

that were observed for a full 6 different months.

Using the modified GMM analysis, both standard errors and parameter estimates change.

The standard errors are no longer noticeably small and the p-values no longer show the

same extreme significance, as seen using the existing GMM method. In fact, the standard

error for unemployment status has increased by more than three orders of magnitude, the

standard error for education level has increased by two orders of magnitude, and the stan-

dard error for job training has increased by three orders of magnitude. Notice also that the

standard error for case management hours decreased. This shows that it is unreasonable
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to expect a unidirectional change in standard errors when using all applicable subjects to

calculate variance components. Instead, it should be expected that the standard errors cal-

culated using the existing GMM method will themselves show great variation and cannot

be trusted. It is expected that standard errors calculated using the modified GMM method

will show less variation and thus be more reliable.

The parameter estimates have also changed from those of the existing GMM method. The

effect of education level has changed direction but has lost significance at the 0.01 level.

Most parameter estimates who a decreased magnitude using the modified GMM, although

the job training parameter estimate shows an increase in magnitude. Like the standard

errors, the effect on parameter estimates cannot be predicted. It is expected that the param-

eter estimates calculated with contributions to the weight matrix from all subjects using the

modified GMM will be more reliable and show less bias than those calculated using the

existing GMM.

5. Conclusions

In this paper an alternative generalized method of moments estimation method is presented

for the case of unbalanced longitudinal data with time-dependent covariates. Existing meth-

ods use only full-data subjects for many steps of the calculation. This new method can

greatly increase the number of subjects whose information is used in calculation the key

quadratic form of the generalized method of moments as well as calculation of estimator

standard errors. It is expected that use of data from as many subjects as possible will reduce

the chance of committing errors in hypothesis tests and reduce bias in parameter estimates.

To exemplify the two estimation methods presented, an example data set was analyzed. In

modeling the probability of a length of stay greater than two weeks, there are noticeable

differences in the results between the existing method and the proposed method. The pro-

posed method shows larger standard errors in some cases but smaller standard errors in

others. Parameter estimates differ between the two methods.

Overall it is expected that the proposed method is associated with more reasonable stan-

dard errors, as the standard errors calculated using the existing method are based on very

few subjects and thus are subject to a large amount of variation themselves. This is noted

in the example by seeing that not all of the parameters show significance in the proposed

method. It is also expected that the proposed method is associated with less bias in param-

eter estimates, although in the data example values are close. Future research will include

a simulation study to evaluate the empirical bias, power and Type I error rates associated

with parameter estimates and hypothesis tests for the two methods.
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