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Abstract 

This paper extends the authors' earlier work, on the power and robustness 

of multiple comparison procedures when assumptions of normality and equal 

variance do not hold, to underlying distributions that are normal mixtures, 

violating both assumptions. Normal mixtures can represent an incorrectly 

specified design that results in a one-way layout rather than a two way design 

with a normally distributed response. We examine two approaches: ANOVA F 

followed by Tukey-Kramer comparisons with the Hayter-Fisher adjustment in 

degrees of freedom (HFF) and Mehrotra’s modification of the Brown-Forsythe F 

test (changing numerator degrees of freedom as well as the Brown-Forsythe 

modification of the denominator degrees of freedom) followed by Games-Howell 

multiple comparisons which adjust Tukey-Kramer comparisons for unequal 

variances along with the Hayter-Fisher adjustment in Tukey-Kramer degrees of 

freedom (EHF).  
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1. Introduction 

 

Multiple comparison procedures were introduced in the 1940’s and 1950’s 

by David Duncan, S.N. Roy,  Henry Scheffe, and John Tukey, although ideas 

appear much earlier in the works of Fisher, Gossett,  

and others (Harter 1980, Rao and Swarupchand, 2009). However, conflicts about 

the importance of controlling family  

 

wide Type 1 error rates with pairwise comparison procedures were still appearing 

in the literature (especially medical research methodology) 50 years later 

(Rothman, 1990). The recent explosion of research in genetics and the human 

genome and brain mapping with functional magnetic resonance imaging (fMRI) 

have revived an interest in simultaneous procedures such as pairwise comparisons 

and have motivated the development of relatively new metrics in addition to 

family wide error rates (FWER) for comparing competing procedures. These new 

metrics include all pairs (conjunctive) power, any pair (disjunctive) power, and 

the false discovery rate (FDR) (Bretz, et al 2010).   

ANOVA F followed by Tukey-Kramer pairwise comparisons of all means (HSF) 

is a frequently recommended procedure for analysis of variance in texts (Kutner et 

al 2004) and software (Hintze, 2012). HSF assumes normal distributions with 
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equal variance. A recent paper by Ramsey et al (2011) compares the performance 

of HSF to five other procedures with various non-normal distributions and 

unequal variances. They conclude that there is not one “best” procedure but that 

HFF (a significant ANOVA F followed by the Tukey-Kramer test with the 

Hayter-Fisher adjustment (degrees of freedom k for the Studentized range 

distribution replaced by (k-1)) avoids problems of complexity and is both robust 

with respect to alpha and relatively powerful on average. Our paper compares the 

HFF of Ramsey (2011) with Mehrotra’s modification of the Brown-Forsythe F 

test (changing numerator degrees of freedom as well as the Brown-Forsythe 

modification of the denominator degrees of freedom for the F test) followed by 

Games-Howell multiple comparisons which adjust Tukey-Kramer comparisons 

for unequal variances along with the Hayter-Fisher adjustment in Tukey-Kramer 

degrees of freedom (EHF). 

 

2. Design of the study 

 

 Our simulation is for a one-way layout with k = 4 levels. The four 

variances are {1, c, c
2
, c

3
} where c=1, 1.6, 2, as in Ramsey (2011) and similar to 

Dunnett (1980). The design of the study is as follows: 

normal mixture  - 7 levels 

 wt.=1, c=1 

 wt.= .5, .2, .058824 x c=1.6, 2 

sample size - 3 levels 

 n=5, 10, 15 

Cohen effect size – 6 levels 

 0, .5, 1, 1.5, 2, 2.5 

configuration of means – 2 levels 

OEM   -m, 0, 0, 0  

one extreme mean 

 TEM   -m, 0, 0, m 

 Two extreme means. 

This results in 252 factor level combinations: 6 under H0: 1= 2= 3= 4 

with normality and equal variance assumptions satisfied, 30 under H1 with 

normality and equal variance assumptions satisfied, 36 under H0 with assumptions 

violated and 180 under H1 with assumptions violated. For each factor level 

combination we simulated 500,000 runs. 

The following metrics were used to compare the HFF and EHF 

methodologies for the four cases described above:  

COVERAGE = average proportion of the six simultaneous 95% confidence 

interval estimates containing the true pairwise difference in means 

SIGNIFICANCE OF OMNIBUS = proportion of runs where the initial F test 

rejected the null of all means equal 

ANY PAIR POWER = proportion of runs where the procedure detected at 

least one true difference in means 

ALL PAIRS POWER = proportion of runs where the method detected all truly 

different group means 
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FAMILY WIDE ERROR RATE (FWER) = proportion of times that the 

methodology makes at least one Type I error 

AVEARGE TYPE I ERROR RATE = average proportion of Type I errors 

given all comparisons 

FALSE DISCOVERY RATE (FDR) = average proportion of Type I errors 

given all significant differences 

 

3. Results and conclusions 

 

 In order to make some overall comparisons, we have constructed ratios of 

these metrics so that EHF out performs HFF when the ratio is greater than one 

and conversely HFF out performs EHF when the ratio is less than one. Figures 1 

depicts these results for the third of the four cases previously described. 

 For the first case, where there are no differences in means and both 

assumptions are valid, EHF outperforms HFF on average (across factor levels 

other than n) for n=5 with all four metrics and never underperforms HFF.  For the 

second case, where there are differences in means and both assumptions are valid, 

EHF outperforms HFF on average for n=5 as measured by FWER and 

AVERAGE TYPE I ERROR RATE. For the other metrics and sample sizes the 

two approaches are similar or HFF outperforms EFF. For the third case, 

where there are no differences in means and both assumptions are violated, EHF 

outperforms HFF on average (across factor levels other than n) for all n with all 

four metrics and never underperforms HFF. For the fourth case, where there are 

differences in means and both assumptions are violated, EHF underperforms HFF 

with all metrics and sample sizes with the exception of average ALL PAIRS 

POWER for n=15. 

 The initial conclusion from these results is that EHF does generally 

provide more protection against Type 1 errors under H0 for the cases when all 

means are equal but not for the cases when both Type 1 and Type 2 errors are 

possible The FDR is consistently worse with EHF. Future work will be to 

examine these results without averaging across factor level combinations. 

 

Figure 1: 
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