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Abstract
In the univariate case, the popular measures of skewness, β1, and kurtosis, β2, have been proved to
be useful measures in developing a test for normality and investigating the robustness of the standard
normal theory procedures. In the multivariate case, we have a p-dimensional skewness vector,
β12, introduced by Mardia in 1970, as multivariate skewness measure. In this work, the skewness
measure has been derived for the Multivariate Epsilon Skew Laplace Distribution (MESL), the
MESL is the multivariate version of the Epsilon Skew Laplace distribution (ESL) that have been
introduce recently by Elalloukh (2008) and revised by Al-Mousawi et al (2012A, 2012B) . The
MESL is an asymmetric distribution that can handle both symmetric, asymmetric, and heavy tail
data. The p-dimensional skewness vector is introduced by using the Mardia’s measures of skewness.
Moreover, we provide a test for goodness of fit test to pick distributions that can fit the data correctly.
We provide theoretical proofs and a Monte carlo simulation study to compare the ESL distributions
to normal and Epsilon Skew Normal distributions (ESN), in the univariate cases when modeling
data

Key Words: Epsilon skew Laplace distribution, Measure of skewness, Multivariate distributions,
heavy tail distributions

1. Introduction

It is prudent before doing any statistical modeling to verify that the data satisfy the under-
lying distribution assumption. The multivariate normal distribution plays an important role
in the analysis of multivariate data and multivariate regression models, especially when
the multivariate analysis of variance (MANOVA) is used. Most of the techniques of mul-
tivariate statistical analysis are based on the assumption that the data are generated from
multivariate normal distributions because the normal distribution is a useful approximation
to the true population distribution. Hence, it is important to determine whether the data that
are being used for statistical inference are from multivariate normal or other distributions
such as skewed or asymmetric distributions. Based on published work, testing multivari-
ate normality or symmetry can be done through using the well known Mardia’s measures
(1970) of skewness and kurtosis or other tests for normality such as Henze-Zirkler et al
(1990).

Mardia (1970), introduced the multivariate skewness and kurtosis and are denoted by
β1,p and β2,p, respectively. They became the standard characteristics of a multivariate
distribution. These measures are defined as follows in Mardia (1970, 1974), let X be a
random p-vector with E(X) = µ and variance-covariance matrix Σ, then the p-variate
skewness and kurtosis are, respectively

β1,p(X) =
∑
i,j,k

{E(XiXjXk)}2 and β2,p(X) = {E(XiXjXkXℓ)} − p(p+ 2),
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or, equivalently
β1,p(X) = E

(
(X − µ)′Σ−1(X − µ)

)3 (1)

and
β2,p(X) = E

(
(X − µ)′Σ−1(X − µ)

)2
. (2)

Gutjahr (1999) studied Mardia’s formula (1) and pointed out that the skewness measure
β1,p equals zero in case of multivariate normality and other symmetric distributions. Re-
cently, several new skew distribution families have been introduced for modeling skew data,
such as the multivariate skew normal distribution introduced by Azzalini (1996), the mul-
tivariate skew t-distribution (2003), and the asymmetric multivariate Laplace distribution
introduced by Kotz (2001). These families are presented by three parameters, in addition
to the location parameter vector and the variance-covariance scale parameter matrix, there
is also a skewness vector. In recent years, several suggestions and generalizations for Mar-
dia’s measure have been made to modify multivariate skewness and kurtosis measures. For
example, Móri, Rohatgi and Sźekely (1993) defined the multivariate skewness as a p-vector
and multivariate kurtosis as p× p-matrix, respectively, as

β1(X) = E
(
∥Y ∥2Y

)
and β2(X) = E

(
Y Y ′Y Y ′)− (p+ 2)Ip,

where E(X) = µ and Σ are the mean and the variance-covariance matrix, respectively.
Moreover, Y = Σ−1/2(X − µ) and Σ−1/2 is a square root of Σ. Kollo and Srivastave
(2004) represented β1,p via the third order of multivariate moments as

β1,p(X) = tr
(
m′

3(Y )m3(Y )
)
, (3)

where m3 represents the third moments of Y . Kollo (2008) gave b(X) = 1p×p ⋆ m3(Y ),
where (⋆) represents the star product between two matrices, as another measure of the
skewness of X . Another way to find the skewness or kurtosis is to use the cumulant func-
tion. The cumulant function of a random variable (or random p-vector) is defined as

ψX(t) = lnϕX(t) , (4)

where ϕX(t) is the characteristic function of X . We can find the skewness or kurtosis of
a random p-vector X by using the third and fourth cumulants, where the kth cumulant is
obtained from the partial differentiation of the cumulant function matrix (4), that is

Ck =
1

ik
∂kψX(t)

∂t∂t′...∂t

∣∣∣∣
t=0

. (5)

Note that, the relationship between the cumulants and the moment is one-to-one and is
given by the next proposition.

Proposition 1. Kollo (1991), Let X be a random p-vector with m4(X) <∞, then
1- C1(X) = E(X).
2- C2(X) = m̄2(X).
3- C3(X) = m̄3(X).
where m̄k(X) presents the centered moment.

In this paper, the skewness measure of a multivariate p-dimensional MESL is introduced
by using the Mardia’s measures of skewness. Moreover, we provide a test for goodness of
fit to pick distributions that can fit the data correctly. In particular, we generalizes Kundu’s
(2004) procedure to skewed data. We provide theoretical proofs and a Monte carlo simu-
lation study to compare normal to ESL distributions and ESN to ESL distributions, in the
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univariate cases when modeling data.

The rest of the paper is organized as follows. In Section 2, a brief introduction of the
MESL distribution is provided along with some of its properties. In Section 3, we derive
the skewness measure for the MESL distribution. In Section 4, we derive a goodness of
fit test for univariate cases, in particular, fitting the ESL distribution to normal and ESN
distributions. Finally, in Section 5, simulation study demonstrates the test for fitness is
provided.

2. Introduction and Basic Information of The MESL Distribution

Al-Mousawi et al (2011, 2012B) provided a new asymmetric multivariate distribution
called the Multivariate Epsilon-Skew Laplace distribution (MESL), with density function
defined by:

Definition 2.1. : Al-Mousawi et al (2012B), A random vector X in Rp, for p ≥ 1, is said
to have p-dimensional Multivariate Epsilon-Skew Laplace distribution denoted by X ∼
MESL(Θ,Σ,Υ), if its density function is given by

f(x,Θ,Σ,Υ) =
|Σ|−1/2

23P/2
exp

{
− 1√

2

{[
(x−Θ)′ (I −Υ)−2WΣ−1 (x−Θ)

]1/2
+
[
(x−Θ)′ (I +Υ)−2W1Σ

−1 (x−Θ)
]1/2}}

, (6)

where x ∈ Rp, Θ ∈ Rp is the location vector, Υ ∈ Rp is the diagonal skewness parameters
matrix, Σ is the positive definite scatter matrix parameter, I is a p× p identity matrix, and
W and W1 are the indicator diagonal matrices defined as

W =


I(x1≥θ1) 0 0 0 0

0 I(x2≥θ2) 0 0 0

0 0
. . .

...
...

0 0 0 0 I(xp≥θp)

 (7)

and

W1 =


I(x1<θ1) 0 0 0 0

0 I(x2<θ2) 0 0 0

0 0
. . .

...
...

0 0 0 0 I(xp<θp)

 , (8)

where I(z) is the indicator function defined as

I(z) =

{
1 for z is true
0 for z is false.

(9)

Note that the pdf (6) has fatter tail regions than that of the multivariate normal distribution,
and hence, it can be used as an alternative when the data are highly skewed. When Υ = 0,
(6) reduces to the multivariate Laplace distribution defined by Kotz (2001). When p = 1,
(6) reduces to the Epsilon Skew Laplace (ESL) distribution defined by Elsalloukh (2005,
2008), with density function given by

fESL(x) =
1

2
√
2σ
e

{(
−|x−θ|√
2(1−ε)σ

)
I(x≥ θ)+

(
−|x−θ|√
2(1+ε)σ

)
I(x<θ)

}
, (10)
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where θ, σ, and ε, are the location, scale, and skewness parameters, respectively, and I(z) is
the indicator function as defined in (9). The MESL distribution is the multivariate version
of the ESL distribution that can handle both symmetric, asymmetric, and heavy tail data.
The multivariate moment generating function (MMGF) for the MESL, is given by AL-
Mousawi at el (2012B) by

MX(t) =
et

′Θ

1− 2t′(I −Υ2)Σt+ 2
√
2t′Σ1/2Υ · 1

, (11)

where t′ = (t1, t2, ..., tp) and 1′ = (1, 1, ..., 1) is a vector of one’s. While the mean and
variance are respectively given by

E(X) = Θ− 2
√
2Σ1/2Υ · 1 (12)

and
Var(X) = 4 (I + (2 p− 1)Υ2)Σ. (13)

Proposition 2. Al-Mousawi et al (2012B), If X ∼ MESLp(Θ,Σ,Υ) and Y = AX + b,
where A ∈ Rq×p and b ∈ Rq , then Y ∼ MESLq(AΘ+ b, AΣA′,Υ).

3. Skewness Measurement of the MESL Distribution

In this section, we derive the multivariate skewness parameters for the MESL using Mar-
dia measures of skewness (1970). First, we transform the random variable X to standard
random variable Z, we then use the random variable Z1, Z2, ..., Zp to measure the skew-
ness, where Z = var(X)−1/2(X − E(X)). The transformation leads to E(Z) = 0 and
E(Z ′Z) = var(Z) = Ip.

Proposition 3. LetX be a random p-vector from MESL(0,Σ,Υ), withE(X) and variance-
covariance matrix var(X) as defined in (12) and (13) respectively. Let Z = (var(X))−1/2

(X−E(X)), then the random p-vectorZ has MESL distribution given by: Z ∼ MESL(
√
2(I+

(2p− 1)Υ2)−1/2Υ1,
(
4(I + (2p− 1)Υ2)

)−1
,Υ).

Proof. Let Z = (4(I+(2p−1)Υ2)Σ)−1/2(X+2
√
2Σ1/2Υ1), equivalently, we can write

Z as Z = AX +B, where

A = (4(I + (2p− 1)Υ2)Σ)−1/2 = 2−1(I + (2p− 1)Υ2)−1/2Σ−1/2

and

B = (4(I + (2p− 1)Υ2)Σ)−1/22
√
2Σ1/2Υ1 =

√
2(I + (2p− 1)Υ2)−1/2Υ1 ,

where A ∈ Rq×p and B ∈ Rq. Note that A and B satisfy proposition (2), thus Z ∼
MESLq(AΘ+B,AΣA′,Υ). Since Θ = 0, and

AΣA′ = 2−2(I + (2p− 1)Υ2)−1/2Σ−1/2ΣΣ−1/2(I + (2p− 1)Υ2)−1/2

=
(
4(I + (2p− 1)Υ2)

)−1
,

it follows that Z ∼ MESL(
√
2(I+(2p−1)Υ2)−1/2Υ1,

(
4(I + (2p− 1)Υ2)

)−1
,Υ).

Note that, the random vector Z has E(Z) = 0, V ar(Z) = I .
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Proposition 4. Let Z ∼ MESL(
√
2AB, 4CAA′,Υ), then the third cumulants of Z is

C3(z) = −
√
2
(
(AB ⊗ CA2) + 4(AB ⊗AB(AB)′) + vecA2CAB

−(CA2 ⊗AB)
)
, (14)

where

Ap×p = (I + (2p− 1)Υ2)−1/2

Bp×1 = Υ1

Cp×p = (I −Υ2) (15)

Proof. Using the MMGF (11), the MMGF of Z is

Mz(t) =
exp(

√
2 t′AB)

1− 1
2 t

′CAA′t+
√
2 t′AB

= exp(
√
2 t′AB)w(t) , (16)

where A,B, and C are as defined in (15), and w(t) is

w(t) =
1

1− 1
2 t

′CAA′ t+
√
2 t′AB

.

Thus, the characteristic function of Z is

Ψz(t) = exp(i
√
2 t′AB)w(i t)

and the cumulant function (4), becomes

ψz(t) = i
√
2 t′AB − ln(1 +

1

2
t′CA2 t+

√
2 i t′AB) . (17)

To find the third cumulant, we need to find the third derivative of (17) with respect to t, so
that

∂ψz(t)

∂t
= i

√
2AB −

(
t′CA2 + i

√
2AB

)
w(i t) ,

∂2ψz(t)

∂t∂t′
= −CA2w(it) + (t′CA2 + i

√
2AB)(A2C ′t+ i

√
2B′A′)w2(it)

= i2
(
CA2w(it)− (t′CA2AC ′t− 2AB(AB)′

+ i
√
2(t′CA2(AB)′ +ABA2Ct))w2(it)

)
,

and

∂3ψz(t)

∂t∂t′∂t
= i2

{
∂(w(it)⊗ (CA2 + 2ABw(it)(AB)′))

∂t
− ∂(tw2(it))

∂t
A2C2A2t′

− (Ip ⊗ tw2(it))
∂A2C2A2t′

∂t
− i

√
2

[
∂A2CABt

∂t
w2(it)

+ (Ip ⊗ABA2Ct)
∂w2(it)

∂t
+
∂w2(it)

∂t
t′CA2(AB)′

+ (Ip ⊗ w2(it))
∂t′CA2(AB)′

∂t

]}
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= i2
{
∂w(it)

∂t
⊗ (CA2 + 2AB2w(it)(AB)′)− ∂t

∂t
w2(it)A2C2A2t′

− (Ip ⊗ t)
∂w2(it)

∂t
A2C2A2t′ − (Ip ⊗ tw2(it))A2C2A2

− i
√
2
[
vec A2CABw2(it)− (Ip ⊗A2CABt) 2w3(it)(t′CA2 + i

√
2AB)

− ((t′CA2 + i
√
2AB)⊗ Ip) 2w

3(it)t′CA2(AB)′

+ (Ip ⊗ Ip)w
2(it)CA2(AB)

]}

= i2
{
− w2(it)(t′CA2 + i

√
2AB)⊗ (CA2 + 4ABw(it)(AB)′)

− w2(it)A2C2A2t′ + 2w3(it) (Ip ⊗ t) (t′CA2 + i
√
2AB)A2C2A2t′

− w2(it) (Ip ⊗ t)A2C2A2 − i
√
2
[
w2(it)vecA2CAB

− 2w3(it) ((t CA2 + i
√
2AB)⊗AB tCA2)− 2w3(it)

((t′CA2 + i
√
2AB)⊗ Ip)t

′CA2(AB)′ + (CA2(AB)′ ⊗ Ip)w
2(it)

]}
.

When t = 0, we have w(it) = 1, and

C3(z) =
1

i3
∂3ψz(t)

∂t∂t′∂t

∣∣∣
t=0

= −
√
2 (AB ⊗ CA2)− 4

√
2 (AB ⊗AB(AB)′)

−
√
2 vec A2CAB +

√
2 (CA2 ⊗AB)

= −
√
2
[
(AB ⊗ CA2) + 4 (AB ⊗AB(AB)′) + vecA2CAB

− (CA2 ⊗AB)
]
.

Proposition 5. Let X ∼ MESL(0,Σ,Υ), then the skewness parameter for the MESL is

β1,p(X) = 2 a
[
16 a2 + 8 a+ (3 p− 2)

]
, (18)

where a = 1Υ(I −Υ2)−1Υ1.

Proof. Using equation (3), we have

β1,p = tr
[
C ′
3(z)C3(z)

]
. (19)

Let
h = (A2C)−1/2AB = C−1/2B = (I −Υ2)−1/2Υ1

and
a = h′ h = B′C−1/2C−1/2B = 1 Υ (I −Υ2)−1Υ 1 ,

where A,B,C, and C3(z) are as defined in (15) and (14) respectively. Substituting the
value of h and a in (14), we have

C3(z) = −
√
2
[
(h⊗ Ip) + 4 (hh′ × h)− (Ip ⊗ h) + vec Ip h

′
]
.
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To find the skewness of the multivariate distribution, we first simplify (19)

C ′
3(z)C3(z) = 2

[
(h′ ⊗ Ip) + 4 (hh′ ⊗ h′)− (Ip ⊗ h′) + (h′ vec Ip)

]
×
[
(h⊗ Ip) + 4 (hh′ ⊗ h)− (Ip ⊗ h) + (vec Ip h

′)
]

= 2
[
D′ + 4E′ − F ′ +G′

]
×

[
D + 4E − F +G

]
= 2

[
G′G+ 16E′E +D′D + F ′F + 2G′D + 8G′E + 8E′D

− 2G′F − 8E′F − 2F ′D
]
.

Using G = vec Ip h
′, E = hh′ ⊗ h, F = Ip ⊗ h and D = h⊗ Ip. Then

β1,p = 2tr
[
G′G+ 16E′E +D′D + F ′F + 2G′D + 8G′E + 8E′D

− 2G′F − 8E′F − 2F ′D
]
.

Note that

F ′F = (I ⊗ h′) (I ⊗ h) = (I ⊗ h′ h) =⇒ tr (F ′F ) = tr (I ⊗ h′ h) = a p,

tr
(
G′G

)
= tr

(
F ′F

)
= tr

(
D′D

)
= tr

(
I ⊗ h′ h

)
= a p ,

tr (E′E) = tr (hh′ ⊗ h′) (hh′ ⊗ h) = tr (hh′ hh′ ⊗ hh′) = tr (hh′)3 = a3 ,

and
tr (G′E) = tr (E′F ) = tr (E′D) = tr (hh′ ⊗ hh′) =

(
tr (hh′)

)2
= a2

while

G′F = (vec Ip h
′) (Ip ⊗ h) = hh′ and F ′D = (Ip ⊗ h) (h⊗ Ip) = hh′ ,

with
tr (G′F ) = tr (G′D) = tr (F ′D) = tr (hh′) = a .

Then (19) becomes

β1,p(x) = 2
[
a p+ 16 a3 + a p+ a p+ 2 a+ 8 a2 − 2 a− 8 a2 + 8 a2 − 2 a

]
= 2 a

[
16 a2 + 8 a+ (3 p− 2)

]
.

Note that, when Υ = 0, the skewness parameter in (18) will be zero, which indicates the
multivariate distribution is symmetric.

4. Goodness of Fit Test for Univariate Distribution

One of the important assumptions when dealing with data is choosing the best distribution
that fits the data. The normal and Laplace distributions are used to fit symmetric data. The
laplace distribution is used to model long tails data, while the normal distribution is used
to model data with short tails. Although these two distributions may provide similar data
fit for moderate sample size, the problem is which distribution is best and more closely fits
the data.
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Cox (1961) studied the accuracy of goodness of fit among two probability distributions.
Kundu (2004) considered a study between the normal and Laplace distributions, using the
Ratio of the Maximized Likelihoods entitle “RML”, the algorithm of RML depends on
finding the value of G, where G is defined as

G = ln

{
LN (µ̂, σ̂)

LL(θ̂, ϕ̂)

}
,

where LN (µ̂, σ̂) and LL(θ̂, ϕ̂) represent the likelihood functions for a random sample from
a normal and Laplace distributions, respectively. The (µ̂, σ̂) and (θ̂, ϕ̂) are the MLE of
(µ, σ) and (θ, ϕ) respectively, which are the MLE of the normal and Laplace distributions
parameters, respectively. The procedure that was used is to choose the normal distribution
in favor of the Laplace distribution when the value of G > 0.

4.1 A Goodness of Fit Test for ESL VS Normal Distributions

Let X1, ..., Xn be a random sample from an ESL (10) or a normal distribution, then the
likelihood function, respectively,

LESL(θ, ε, σ) = Πn
i=1fESL(xi, θ, ε, σ), (20)

or
LN (µ, ϕ) = Πn

i=1fN (xi, µ, ϕ) .

Define the statistics

T = ln

{
LN (µ̂, ϕ̂)

LESL(θ̂, ε̂, σ̂)

}
, (21)

where, (µ̂, ϕ̂) and (θ̂, ε̂, σ̂) represent the MLEs of (µ, ϕ) and (θ, ε, σ) of the normal and
ESL distribution, respectively. The MLEs of the normal distribution parameters are

µ̂ = X̄ and ϕ̂2 =
1

n

n∑
i=1

(Xi − µ̂)2 . (22)

While Al-Mousawi et al (2012A) showed that the maximum likelihood estimator (MLE)
for the ESL parameters θ, ε and σ, are respectively given by

θ̂k = Xj(n), (23)

ε̂k =

√∑n
i=k+1 (x(i) − θ̂)− −

√∑k
i=1 (x(i) − θ̂)+√∑k

i=1 (x(i) − θ̂)+ +
√∑n

i=k+1 (x(i) − θ̂)−
, (24)

and

σ̂2k =

∑k
i=1 (x(i) − θ̂)+
√
2n(1− ε̂)

+

∑n
i=k+1 (x(i) − θ̂)−
√
2n(1 + ε̂)

, (25)

where where x(i) represents the order statistics, j(n) = [n(1 + ε)/2] + 1, [x] denotes
the integer part of x, k is a random integer such that x(k) < θ < x(k+1) and satisfies
[0 ≤ k ≤ n, k = k(x(1), x(2), ..., x(n), θ), and ranges over (0, 1, ..., n)].
Note that, when k = 0 or k = n, the MLE for θ, ε are given respectively by x(1) or x(n)
and −1 or 1.
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Using the MLE of ESL distribution (23), (24), and (25) with the MLE of the normal distri-
bution (22) in equation (21) we get

T = ln

 (2π)−n/2ϕ̂−ne
−1

2ϕ̂2

∑n
i=1(xi−µ̂)2

(2
√
2)−nσ̂−ne

−1√
2σ̂2

[∑k
i=1

(xi−θ̂)+

(1−ε̂)
+

∑n
i=k+1

(xi−θ̂)−

1+ε̂

]
 . (26)

Thus
T =

1

n
+ n ln(2)− n

2
lnπ − n ln ϕ̂+ n ln σ̂. (27)

If T > 0, we choose the normal distribution, otherwise, we choose the ESL distribution as
the preferred model.

4.2 A Goodness of Fit Test for ESL VS ESN Distributions

The Epsilon Skew Normal (ESN) distribution introduced by Mudholkar and Hutson (1999),
with a pdf given by

fESN (x) =
1

2
√
2ϕ

exp

{(
−(x− µ)2

2(1− τ)2ϕ2

)
I(x≥µ) +

(
−(x− µ)2

2(1 + τ)2ϕ2

)
I(x<µ)

}
, (28)

where θ, σ and ε are location, scale, and skewness parameters, respectively.

In this section, we provide a test to be able to determine which of ESL (10) and ESN (28)
best fits a data set. LetX1, ..., Xn be a random sample from an ESL or an ESN distribution.
The likelihood function of the ESL is defined in (20), while the likelihood function of the
ESN is defined by

LESN (µ, τ, ϕ) = Πn
i=1fESN (xi, µ, τ, ϕ),

where fESN (x) are define in (28), define the statistic

T = ln

{
LESN (µ̂, τ̂ , ϕ̂)

LESL(θ̂, ε̂, σ̂)

}
, (29)

where (µ̂, τ̂ , ϕ̂) and (θ̂, ε̂, σ̂) represent the MLEs of the ESN and ESL distributions, respec-
tively. Mudholkar et al (1999) show that, the MLEs of the ESN parameters are,

τ̂2 =

[∑k
i=1(x(i) − µ̂)2

](1/3)
−

[∑k
i=1(x(i) − µ̂)2

](1/3)
[∑k

i=1(x(i) − µ̂)2
](1/3)

+
[∑k

i=1(x(i) − µ̂)2
](1/3) (30)

and

ϕ̂2 =
1

n

[∑k
i=1(x(i) − µ̂)2

(1 + τ̂)2
+

∑n
i=k+1(x(i) − µ̂)2

(1− τ̂)2

]
, (31)

where X(i) represents the order statistics. Using (30), (31), and (23), (24), and (25) in
equation (29), we have

T = −n
2
ln 2− n

2
lnπ − n ln ϕ̂− n ϕ̂2

2 ϕ̂2
+ n ln 2− n

2
ln 2 + n ln σ̂ +

n σ̂2

σ̂2
,

=
n

2
− n

2
lnπ − n ln ϕ̂+ n ln σ̂. (32)

If T > 0, we choose the ESN distribution, otherwise we choose the ESL distribution as the
preferred model.
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5. Simulation Study

In this section, we provide a discriminant analysis simulation study between the ESL and
the ESN or normal distributions. Using PROC IML and PROC NLP, in SAS, we generate
data from normal, ESL, and ESN distributions. We use (27) to test for better model fitting
between normal, ESL, and (32) between ESN and ESL. The simulation algorithm for the
program is as follows

Step (1): Generate Data of 1000 observations from ESL, ESN and Normal distribution.
Find the MLEs for the parameters using PROC NLP and PROC IML and equations (25)
for ESL, (31) for ESN, and (22) for Normal distribution.

Step (2): calculate the test statistics T (27) and (32).

Step (3): Simulation Results: The simulation result show that,

• Using the data generated from the normal distribution, the test statistic T , (27), was
greater than zero, which indicates that the normal distribution is a better fit for the
data than the ESL distribution

• Using the data generated from ESL, the test statistic T , (27), was less than zero,
which indicates that the ESL distribution is a better fit of the data than the normal
distribution.

• Using the data generated from ESL, the test statistic T , (32), was less than zero,
which indicates that ESL is a better fit of the data than the ESN

• Using the data generated from ESN, the test statistic T , (32), was grater than zero,
indicating that the ESN is a better fit than the ESL distribution.
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