
Semiparametric Mixed Model for

Detection of Rapid Disease Progression

Leo L Duan1,2, John P Clancy1, Rhonda D Szczesniak1*

Abstract

Semiparametric regression provides a more flexible mean structure
to analyze longitudinal data through penalized regression splines and
mixed modeling. This representation provides smooth estimates of
nonlinear mean functions and derivatives while preventing overfitting.
Meanwhile, covariance structures must be included to account for re-
peated measurements collected on multiple subjects. An additional
complication arises in the case of unequally spaced measurements,
which are common in observational settings. We propose and imple-
ment a semiparametric mixed effects model that fits a complex mean
function while incorporating subject-specific random effects and an ex-
ponential correlation function to account for irregularly observed mea-
surements from multiple subjects. We illustrate the model using serial
lung function measurements from the United States Cystic Fibrosis
Foundation Patient Registry. This database has clinical encounter in-
formation that has been collected over the lifetimes of more than 30,000
individuals. We present our longitudinal model fit and its derivatives
to show how this method can provide further insights into the degree
and timing of disease progression.

Keywords: Semiparametric Mixed Model, Longitudinal Data, Intra-
subject Correlation, Functional Data Analysis

1 Introduction

Disease progression data are repeated measurements collected over time from
multiple subjects. Methods of longitudinal analysis are commonly used in
this area. On the other hand, two unique features in disease progression
distinguish itself from traditional longitudinal or repeated studies: the data
are collected at different time points or within different time intervals. As
a result, the observations are unbalanced and unequally spaced; the change
of severity over time is usually nonlinear and complex, which reflects the
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different stages of disease progression. Therefore, the modeling of disease
progression needs to accommodate these characteristics.

A typical longitudinal model of disease progression for ith subject and
time t, denoted as yi(t), consists of two components: a common mean process
as a function of time; an individual stochastic process that measures the
deviation from the mean.

yi(t) = f(t) + εi(t)

Traditional methods model the mean process f(t) with a parametric
function. The choice of parametric forms ranges from simple linear or poly-
nomial functions to more advanced exponential, logarithmic functions, etc.
The decision of functional form may be arbitrary. A more serious caveat
of parametric function is that it only achieve global fit. Important local
changes, such as different rates of decline in different time periods will be
neglected.

On the second component εi(t), it is natural to incorporate correlation
within subject. One common practice is the use of a random intercept,
specific to subject or cluster. As random intercept models assume uniform
effects under the same index, a more realistic model incorporates time series
covariance to measure the stochasticity over time [?]. Common time se-
ries models include autoregressive (AR(p)) or autoregressive-moving-average
(ARMA(p,q)), etc. While these models provide a more flexible framework
to describe the individual deviation, they have two major limitations: 1) the
treatment of time is rigid. Since the computation of correlation are based on
lags, it is necessary to force unequally-spaced time points into discrete time
intervals. 2) the degree of flexibility is restrained by the number of parame-
ters, such as p and (p+ q). Correlation over longer interval will demand an
increased number of parameter, which is undesirable.

In this article, we propose a novel longitudinal model that provides a flex-
ible and realistic fit to disease progression data. In our model, the common
trend exhibited in the population can be subtly captured through localized
fit; the individualized correlation can be flexibly described with covariance
functions.

2 Methods

An observation in the disease progression data yi(t), collected from subject
i at time t, can be decomposed into two parts:
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yi(t) = f(t) + εi(t)

where f(t) is the common but unobserved process in the population. We
propose the use of semiparametric mixed models. One model choice is the
truncated cubic spline:

f(t) = βTX + γ0 + γ1t+ γ2t
2 + γ3t

3 +
κ∑
k=1

θk(t− tk)3+

where βTX and the cubic polynomials are the covariates effects and the
time effects, respectively. This parametric component is the same as tra-
ditional approaches, where global fit is achieved. In the second part, tk’s
are the knots selected based on the quantiles of observation time span; (.)+
is a truncation function and only takes value when the inside is positive
and is otherwise zero. This nonparametric component not only ensures the
continuity and smoothness of f(t), it also enables the local fittig of curves
to different periods of time. The derivatives of f(t) can be easily extracted
in polynomial differentiation. These derivatives provide important inference
to the disease progression rate.

One potential caveat of any nonparametric approach is overfitting. How-
ever, this can be avoided by mixed modeling. The treatment of spline coeffi-
cients as random effects will penalize overfitting [?]. In this case, we assume

θk
iid∼ N(0, σ2θ).
A comparison between semiparametric and simple cubic polynomials

models is shown in Figure 1. The semiparametric method captures the
subtle change in mean process, especially the rapid decline during the on-
set; while cubic function fails to do so since the two thirds of data on the
right have dictated an overall linear fit.

The error term εi(t) is the individual deviation from the mean process.
We use parametric covariance function to model this process. For exam-
ple, it can be modeled as ε(t) ∼ N(0, σ2ε + σ2n) and Cov(ε(t1), ε(t2)) =

σ2ε exp(−
(t1−t2)2

λ ) for t1 6= t2. This covariance function is known as double
exponential function [?]. Compared with traditional time series models, the
benefits of using covariance functions include: 1) the observation time can
be adopted directly and the function of correlation is continuous, rather
than step function; 2) the degree of flexibility is determined by the magni-
tude of one parameter (λ), instead of number of parameters. The increased
flexibility is illustrated in Figure 2.
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(a) Fitting with cubic function
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(b) Fitting with semiparametric function

Figure 1: Comparison of data fitting with cubic and semiparametric func-
tions.
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(a) Fitting with
ARMA(1,1)
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(b) Fitting with
double exponential function

Figure 2: Comparison of covariance fitting with simple time series structure
and covariance function.

3 Data Analysis

We apply the proposed model to the study of a disease named cystic fibro-
sis (CF), a genetic lung disease that affects over 70,000 people worldwide.
Currently no cure exists besides lung transplantation. The data were ob-
tained from the United States Cystic Fibrosis Foundation Patient Registry
[?]. Forced expiratory volume percentage in 1s (FEV1%) (adjusted with re-
spect to childhood/adulthood, height, gender) is a common measure of CF
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lung function, thus we use it for the data analysis. For the regressive nature,
the loss of function is non-recoverable; clinical study also demonstrates that
the lung condition deteriorates more rapidly during adolescence and early
adulthood [?].

To study the population level FEV1% loss rate over time, we implement
the proposed model in combination with a subject random intercept. This
produces an affine transformation of the population curve and increases the
robustness of the model. The fitted plots are shown in figure 3. The first
derivative shows the magnitudes of disease progression rates. Consistent
with clinical findings, the rates are all negative and indicate the monotoni-
cally declining nature of lung function. More importantly, the severity be-
tween age 10 and 20 is also detected by the model. The signs of the second
derivative mark the acceleration or the slow-down of the deterioration.

Comparison of fit statistics shows that the combination of the semipara-
metric model and covariance function has better fit than each component
(Table 1).We also carry out 10-fold cross-validation. The final model has
lower error and higher correlation in prediction (Table 2).

Cubic&RI SP&RI Cubic&CFRI SP&CFRI

AIC 4320076 4313630 4139814 4138807
BIC 4320278 4313827 4140039 4139025

Table 1: Fit statistics of different combinations of mean processes and covariance
structures: Cubic polynomial mean (Cubic) or Semiparametric mean (SP); Ran-
dom intercept only (RI) or Covariance function with random intercept (CFRI).
Lower is better.

Cubic SP&CFRI

MAD 10.51 9.81
RMSE 16.80 16.26

RMSE/
√
X̄2 0.23 0.21

Correlation 0.77 0.79

Table 2: Average of 10-fold cross-validation results: for first three rows, lower is
better; for last row, higher is better.

5

JSM 2013 - Section on Statistics in Epidemiology

1907



4 Conclusions and Discussions

Semiparametric mixed modeling provides a flexible fit to the nonlinear mean
process and a better estimate of the covariance within individual. The
derivatives of the mean process enable realistic estimation of the disease
progression rate. The model provides improved fit and increased precision
in prediction.

Due to the unequal monitoring lengths and irregular observation time in
disease progression data, it is reasonable to debate the effects of missingness
to the model estimates. In this study, we assume the data are missing at
random (MAR). Under this context, the linear mixed model formulation
is valid for the analysis, as the missing data is ignorable in the likelihood
[?]. In the case of missing not at random (MNAR), such as disease-induced
death, joint modeling of longitudinal and survival data may be considered
[?].

One possible extension to this method is to include an additional semi-
parametric component on the individual level. This will provide predicting
and forecasting ability to the model. The population estimates can serve
as a guiding trend for each subject. And the individual level estimates and
covariance function will regulate and refine the progression trajectory.
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Figure 3: Fitting semiparametric mixed model in cystic fibrosis data. The
second derivative is piecewise linear since the function contains cubic poly-
nomials.
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