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Abstract

Educational questionnaires serve a number of purposes, one of
which is to better understand the performance of students so that
education delivery can be improved. Principal components analysis,
PCA, is often used to help examine a large number of variables to bet-
ter understand the relationships among them and to summarize into a
relatively few “score” the information in the data set. Singular value
decomposition, SVD, can also be employed to reduce the size of a big
data matrix. Our idea is to contrast a relatively new matrix factoriza-
tion method, non-negative matrix factorization, NMF, with PCA and
SVD with the goal of pointing to individualized education. We show
that NMF offers interpretive advantages.
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1 Introduction

This study investigates the current testing practices with respect to using
multiple-choice tests. Multiple-choice test result is designed to estimate stu-
dents’ knowledge. The items are derived from a representative sampling
of course content and the scores are presumed to be proportional to the
knowledge possessed by the examinees. The scores are the frequencies of
the designated acceptable (“right”) answers. This approach provides jus-
tification for assuming the remaining selections as unacceptable (“wrong”)
answers. These answers are assumed to contain no useful information and
are converted to zero (0) during scoring. In this traditional system, the
frequency of “right” answers provide a necessary and sufficient set of infor-
mation about examinees subject-matter knowledge ([6]). However, it can be
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assumed that the selection of any right or wrong answer is mostly a thought-
ful process instead of being random. Many researchers have been raising
questions about whether “wrong” answer selection is entirely random. In
1965, Jay Powell started to explore “wrong” answers selection rationale. His
interest in Piaget’s work led him to use Gorham’s ([3]) Proverbs Test. This
study investigates all possible answers of the test not knowing which one is
correct and by using two data reduction approaches it shows that NMF can
interpret the data more efficiently than SVD can.

The rest of the article is organized as follows. In Section 2, we investi-
gate a few statistical methods used in contingency data analysis including
SVD and NMF. In Section 3, we investigate an education data set by using
SVD and NMF with an aim of reducing the dimension of data. In Section 4,
we give our results. We conclude the paper with a summary of main findings
in Section 5.

2 Statistical Methods Used

Contingency tables of numeric data are often analyzed using dimension re-
duction methods like the singular value decomposition (SVD), and principal
component analysis (PCA)([5]). This analysis produces score and loading
matrices representing the rows and the columns of the original table and
these matrices may be used for both prediction purposes and to gain struc-
tural understanding of the data. We provide a short introductory description
of SVD and PCA.

2.1 Singular Value Decomposition

Singular Value Decomposition is based on a theorem from linear algebra.
Matrix A can be broken down into the product of three matrices - an or-
thogonal matrix U, a diagonal matrix D, and the transpose of an orthogonal
matrix V. Then the matrix A can be written as A = UDVT,

SDV is a strong technique to reduce the dimension of a given matrix. If
you take a picture with large pixel value (as an example 1200 x 800). Even-
though the picture has high quality, it takes a lot of storage. If the same
picture can be represent as a low dimension (low pixel value), it is more
memory efficient. If we think the pixel as a element of matrix A, SDV can
be used to reduce the dimension of the size of the picture. Also, analysis
can be faster if a low dimension representation of the information in the
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matrix is used. For each A€ R™of rank r, there are orthogonal matrices
Unmxcms Vaxn and diagonal matrix D,, = Diag(o1, 09,03, ...,0,) such that

0 0

are call the nonzero singular values of A. When r < p = min{m,n}, A is
said to have p — r additional zero singular values. The above factorization
is called a singular value decomposition of matrix A, and the column in U
and V are called left hand and right hand singular vectors for A respec-
tively.where UTU = I, VIV = I; (I is the identity matrix) the columns of
U are orthonormal eigenvectors of AA” | the columns of V are orthonormal
eigenvectors of AT A, and D is a diagonal matrix containing the square roots
of eigenvalues from U or V in descending order.

A:U<D0> VT with o7 > 09 > 03 > ... > 0, > 0 the oy’s
nxm

2.2 Non-negative Matrix Factorization

The pervasive nature of nonnegative data is obvious in many applications.
In many tables, the data entries are necessarily non-negative, and so the
matrix factors meant to represent them should arguably also contain only
non-negative elements. Lee and Seung in their seminal paper([8]) study in
detail two numerical algorithms for learning the optimal nonnegative fac-
tors from data. Extensive literature reviews on NMF have been provided
by Fogel et al. ([2])

We describe here the use of NMF, an algorithm based on decomposition by
parts that can reduce the dimension of data. Let A be a n X p non-negative
matrix, and k£ > 0 an integer. NMF consists in finding an approximation,

A~WH

where W, H are n X k and k X p non-negative matrices, respectively. We
consider the rows to be cases and the columns to be variables, thus then
the rows of H are the basis vectors and the rows of W say how they are
added together to make a row of A. In practice, the factorization rank k is
often chosen such that & << min(n,p). In general, k& can be bounded as
(n + p)k < np. The objective behind this choice is to summarize and split
the information contained in A into k factors: the columns of W. Depend-
ing on the application field, these factors are given different names: basis
images, metagenes, source signals. We will be using the term source sig-
nals in this article. We study the use of PCA, SVD, and NMF to reduce
the dimensionality of count data presented in a contingency table. Our pri-
mary goal is to remove noise and uncertainty by capturing the signal in
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the matrix. In theory, NMF can also be used for better interpretation of
factoring matrices ([2]). We find that as the rank k increases the method
uncovers substructures, whose robustness can be evaluated by a cophenetic
correlation coefficient. These substructures may also give evidence of nest-
ing subtypes. Thus, NMF can reveal hierarchical structure when it exists
but does not force such structure on the data. The cophenetic correlation
coefficient is based on the consensus matrix (i.e. the average of connectivity
matrices) and was proposed by [1] to measure the stability of the clusters
obtained from NMF. It is defined as the Pearson correlation between the
samples distances induced by the consensus matrix, seen as a similarity ma-
trix and their cophenetic distances from a hierarchical clustering based on
these very distances, by default an average linkage is used. The elements of
H can be used to cluster the objects. The cophenetic correlation measures
the consistency of the clustering; bigger (maximum of 1.0) is better.

2.2.1 Statistical Software Used

We use both R and JMP to estimate the value of k. The SAS JMP scripts
used in this study can be downloaded from www.niss.org/irMF.

3 Data

J. Powell ([6],[7]) and his colleagues designed various education studies.
Most of these studies were motivated by an observation made in the early
1960’s wherein some “wrong” answers given to multiple tests appeared to
reflect systematic logical analysis by test subjects.One of these studies has
used a multiple choice test (known as “the Proverbs Test”) contains 40
items, each with 4 alternatives. It is interesting to note that many questions
of “the Proverbs Test” are exemplified in a work of Pieter Brugel [Figure 1].
For example, question 32 can be explained by Figure 2.

Q32: Don’t cast pearls before swines (pigs)

a. Put your efforts where they are appreciated
b. Don’t give pearls to fools

c. Don’t be wasteful

d. Don’t always put yourself before everybody

Note that, “a” is the expected correct answer. However, “c” and “d” are

also correct, but not a resatement of the proverb. The data is from Canada
and at the time, Group 12 was college prep and qualitatively different from
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Figure 1: Pieter Bruegel the Elder, The Folly of the World 1559.

the other groups. The students ranged in age from less that 8 to about 18.
Raw percentage of student’s response to Q32 is given in Table 1.

The test was given twice in each year. The data set which is also known
as Windsor education data is represented by an expression matrix A of size
2293 x 160 whose rows contain 2,293 students and column contains 160 vari-
ables (40 questions with four alternatives). Matrix W has size 2293 x k, with
each of the k columns defining a source signal. Matrix H has size k x 160,
with each of the 160 columns representing a source signal expression pattern
of the corresponding sample. By grouping students of the similar age we
end up with a contingency table and reduce the computations of NMF.

4 Results

The consensus matrices are computed at £ = 2 to 10 for the Windsor ed-
ucation data (Figure 3,4,5). Samples are hierarchically clustered by using
distances derived from consensus clustering matrix entries, colored from
0(deep blue, samples are never in the same cluster) to 1 (dark red, samples
are always in the same cluster)
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rank = 10

Figure 3: Consensus Map of all questions for rank 2-10
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Table 1: Q32 Response in Percentage

Group | Age in months | a(%) | b(%) | ¢«(%) | d(%)
1 r < 96 17.1 | 26.8 | 19.5 | 34.1
2 96 < x <108 | 24.0 | 22.1 | 23.1 | 28.8
3 108 <& <120 | 20.5 | 21.2 | 27.8 | 29.8
4 120 < 2 <132 | 24.5 | 23.9 | 27.7 | 23.2
) 132 <x <144 | 32.2 94 21.6 | 34.5
6 144 <z <156 | 31.8 | 12.7 | 28.9 | 26.6
7 156 <2 <168 | 29.5 7.1 25.6 | 37.2
8 168 < <180 | 44.4 5.6 18.4 | 30.2
9 180 < 2 <192 | 53.1 19 | 156 | 27.8
10 192 < x <204 | 49.3 4.1 16.3 | 29.3
11 204 <x <216 | 57.5 0.9 12.3 | 28.8
12 216 <z 68.8 0.6 13.4 | 16.6

Although a visual inspection is important, it is also important to have
quantitative measure of the stability of clustering for each value of k. One
measure proposed by Brunet et al. ([1]) is cophenetic coefficient, which
indicates the dispersion of the consensus matrix, defined as the average
connectivity matrix over many clustering runs. Observe how cophenetic
coefficient changes as k increases. We select values of £ where the magni-
tude of cophenetic coefficient begins to fall. Hutchins et al. ([4]) suggested
to choose the first value where the RSS curve presents an inflection point.
Even though both cophenetic coefficeint and RSS curve is suggesting as
k = 2 the heatmap is not very supportive of the statement. Our impression
is that there could be three distinct groups so we decided to set k at three.

Considering k¥ = 3 we have observed that two groups of intermediate age
students (Group 7 & 8) are in the small 1st group (Figure 4 and Figure
5). Four groups of older age students are the middle group. Six groups of
younger students are the 3rd group. The variables are grouped into three
groups. The first group is almost entirely the expected correct answers. The
2nd group consists of correct answers, but the answer is not related to the
proverb. The 3rd group of answers is clearly wrong answers. We find that
Powel ([6]) is correct that the students are using reasoning when they come
up with a wrong answer.
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Figure 4: Combined heat map of NMF factorization, k = 3.
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Figure 5: NMF Organization of Age Groups. NMF with k=3 groups rows
1-2, rows 3-6 and rows 7-12.

Moreover, we have found that young students are on the lower left of
the Figure 6 and as age increases the groups move from left to right. Group
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8, marked with a “T” appears to be a transition group. The older groups,
marked with “O” move from right to left. Component 2 may be assessing
the students ability to distinguish the“expected correct answer” from the
“correct, but not related to the proverb” answer.
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Figure 6: A plot of Component 2 versus Component 1.

The reasoning of choosing k& = 3 fits with subject matter expert opinion
and can be observed in Figure 7. The opinion is that young students use
logic to try and figure out the world. Older students shift to memory and
authority. In summary, we think non-negative matrix factorization should
be considered as an analysis tool when examining contingency tables. Here,
as in other settings, the method often suggests relationships are appealing
to subject matter experts.
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Figure 7: Component 3 versus the student age.
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