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Abstract 
In designing a longitudinal study one needs to decide on two critical components: 
duration of study and frequency of visits. In addition, other issues involving sample size, 
power, number of observations per subject must be addressed. If the study is meant to be 
completed within a certain time frame, would it better to have a fixed time between 
observations (which might allow the study to terminate early if its objectives are met) or 
to spread out the observations over the entire study period? At some point during the 
study, it may be of interest to see if additional data points would contribute substantially. 
Assume that the longitudinal data will be analyzed using a linear mixed-effects model. In 
this investigation we use the standard errors of estimates of model parameters as the 
criterion. We seek to address the issues using three approaches. First, subsets of a data set 
are constructed in a number of ways and the standard errors are examined. Second, using 
a variety of designs, the covariance matrix of the fixed-effects is computed and the 
standard errors are examined. Finally, a simulation study is conducted. 
 
Key Words: Linear Mixed-Effects Model 
 
 

1. Introduction 
 
In designing a longitudinal study one needs to decide on two critical components: the 
duration of the study and the frequency of visits. In addition, other issues involving 
sample size, power, number of observations per subject must be addressed. When a study 
is being designed, the researchers might wish the study to be completed within a certain 
time frame. In this situation a choice could be made between having a fixed time between 
observations (which might allow the study to terminate early if its objectives are met) or 
to spread out the observations over the entire study period. In addition, as the study 
progresses, at some point it may be of interest to see if additional data points would 
contribute substantially.  
 
A number of authors have considered issues related to planning longitudinal studies. In 
early work in a series of papers, Schlesselman (1973a, 1973b) addressed sample size 
determination and frequency of measurements and study duration. The first paper focuses 
on differences between the means of independent groups so does not address the repeated 
measures issue inherent to ongoing longitudinal studies. The second paper in the series 
assumes longitudinal trends can be modeled by a linear function that will be fit separately 
to the data from each individual. He shows how the standard error of the average of the 
slopes is related to the variability in slopes among subjects, the error variance, the design 
points and the number of subjects which, for design purposes, allows one to solve for the 
number of subjects given values of the other quantities. In a study of bone loss, Davis et 
al. (1991) use this approach to address the precision of long term bone loss.  
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Overall (1994) addresses issues in the design of clinical trials where the data will be 
analyzed using a repeated-measures ANOVA approach. He points out that “increasing 
the number of equally spaced repeated measurements spanning a specified total treatment 
period does not generally enhance the probability of detecting a true treatment effect.”  
 
Hedeker, Gibbons, and Waternaux (1999) discuss sample size estimation for comparing 
two groups when there is attrition and the data will be analyzed using a multilevel 
hierarchical model or mixed effects model. They provide tables of the number of subjects 
depending on the effect size, number of time points, and the correlation structure for the 
repeated measurements. 
 
Tu et al. (2004) reviewed and extended power analysis approaches for clustered data 
analyzed by the generalized estimating equations or linear mixed-effects approaches. 
They base their formulae on the asymptotic distribution of the model estimates. 
 
Recently Spiegelman and colleagues have published three papers on this topic (Basagaña 
and Spiegelman (2010); Basagaña, Liao, and Spiegelman (2011); and Barrera-Gomez, 
Spiegelman, and Basagaña (2013)). They provide a general framework for sample size 
calculations as well as an approach to obtain the optimal combination of number of 
repeated measurements and number of subjects. Software (OPTITXS) is available to 
apply their approach.  
 
Since the study will consist of longitudinal observations on a number of subjects, we 
assume that the data will be analyzed using a linear mixed-effects model. One issue that 
must be addressed is how to assess the effect of the number of observations. In this study 
we choose to consider the standard errors of the longitudinal and cross-sectional effects 
in the model.  
 
We seek to address the issues using two approaches.  

1. Using a variety of designs, the covariance matrix of the fixed-effects is computed 
and the standard errors are examined.  

2. Subsets of a data set are constructed in a number of ways and the standard errors 
are examined.  

 
2. Methods 

 
The aim of this study is to use longitudinal data sets of different sizes and to examine 
how the standard errors of the parameter estimates are affected by the particular study 
design. The linear mixed-effects model is used to model the longitudinal data sets 
(Verbeke and Molenberghs, 2000). The linear mixed-effects model for the vector of data 
for the ith individual is 
 yi = Xiβ + Zibi + ei, i = 1,...,N (1) 
where yi is the ni×1 vector of observations for individual i, N is the number of individuals 
in the study, and Xi and Zi are the design matrices for the fixed (β) and random (bi) 
effects, respectively. It is assumed that the errors ei ~ N(0, 2σ I) are independent of the 

random effects bi ~ N(0, D ), where D = �𝑑11 𝑑12
𝑑12 𝑑22

� is a q × q positive definite 

covariance matrix of the random effects where q is the number of random effects 
included in the mixed-effects model. The random components, σ2 and D, are estimated by 
maximum likelihood or restricted maximum likelihood. Once these are random 
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components are estimated the fixed effects are obtained as the generalized least squares 
estimator,  

�̂� =  ��𝑋𝑖𝑇𝑉𝑖−1𝑋𝑖

𝑁

𝑖=1

�

−1
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where 𝑉𝑖 =  𝜎2𝐼 +  𝑍𝑖𝐷𝑍𝑖𝑇 so that the covariance matrix of these estimates is given by  

𝐶𝑜𝑣��̂�� =  ��𝑋𝑖𝑇𝑉𝑖−1𝑋𝑖
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For the purposes of this study we consider a very simple mixed-effects model:  
yi = β0 + bi0 + β1FAge + (β2 + bi1)Time + εi. 
For this model β1 represents the cross-sectional effect and measures differences between 
subjects of different ages while β2 represents the longitudinal effect which measures 
average changes within individuals over time. We will investigate how the standard 
errors of these parameters change as the design of the study changes.  
 
2.1 Covariance Matrix Approach 
In this study we vary: N (the number of subjects), ni (the number of observations per 
subject), the design (the observations are added sequentially with a fixed between 
observation time or the observations are evenly spaced over the entire observations 
interval), the values of the variance components (σ2, d11, d22, and ρ12 = 𝑑12�𝑑11 × 𝑑22 , 
the correlation between the random effects). 
The design uses the following values for each of these parameters: 
N = 50, 100, 200, 500  ni = 2, 3, 4, 5 
σ2 =  1, 5, 10, 25 
d11 = 1, 5, 10   d22 = 0.5, 1, 2  ρ12 = -0.7, -0.4, 0, 0.4, 0.7 
This leads to 2880 sets of standard errors which must be examined to determine the 
relationships of these input variables to the standard errors. 
 
2.2 Data Analysis  
A data set is constructed from the Baltimore Longitudinal Study on Aging (BLSA) 
(Shock et al., 1984). The data set consists of 1809 male BLSA participants with exactly 
five observations on systolic blood pressure (SBP) with a maximum of eleven years of 
follow-up from the first to the fifth visit. The simple model described above is fit to 
various subsets of this data set. One approach is to begin with the first two observations 
and then sequentially add the 3rd, 4th and 5th observations. The second approach uses data 
over the maximum study period for each participant. Here we attempt to pick increasing 
subsets of the data with visits that are approximately evenly spaced throughout the 
interval. For two observations, we use the first and last observations; for three the 1st, 3rd, 
and 5th; for four we pick either the 1st, 2nd, 3rd, and 5th or the 1st, 3rd, 4th and 5th picking the 
additional observation (2nd or 4th) in the larger gap between the 1st and 3rd or 3rd and 5th; 
for five we use all five observations. The standard errors of the fixed-effects parameter 
estimates are examined from the models fit to the various subsets of the data. 
 

3. Results 
 
3.1 Covariance Matrix Approach 
The standard errors have been computed for all 2880 combinations of the parameters 
given above and for the two designs. Various plots and descriptive statistics were 
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constructed and computed. For illustration, the Figures 1 to 3, shows the relationships 
among:  
1. the cross sectional standard errors and the correlation between the random effects, the 

error variance, and the variance of the intercept random effect variance for 50 
subjects and two observations within subject and for the two designs. 

2. the longitudinal standard errors and the correlation between the random effects, the 
error variance, and the variance of the longitudinal random effect variance for 50 
subjects and two observations within subject and for the two designs. 

3. the standard errors for the two designs. 
 
Figure 1 shows that the cross sectional standard error: increases with the error variance, 
increase with the variance of the intercept random effect, and has a curved association 
with the correlation among the random effects, particularly for smaller error variances. 
Figure 2 shows that the longitudinal standard error: increases with the error variance, 
increase with the variance of the longitudinal random effect, but is unrelated to the 
correlation among the random effects. Figure 3 shows that the intercept and cross 
sectional standard errors are highly related for the two designs. However, the longitudinal 
standard errors are not as closely related but increase with the error variance (from 
bottom to top) and with the variance of the longitudinal random effect (from left to right). 
 

 
Figure 1. Illustrative plot showing the association between the cross-sectional standard 
errors (SE12 and SE22) and the correlation between the random effects (R12), the error 
variance (S2) and the variance of the intercept random effect variance (D11) for 50 
subjects and two observations within subject and for the two designs (sequential on the 
left and spread out on the right). 
 
 

JSM 2013 - Biometrics Section

1789



 
Figure 2. Illustrative plot showing the association between the longitudinal standard 
errors (SE13 and SE23) and the correlation between the random effects (R12), the error 
variance (S2) and the variance of the longitudinal random effect variance (D22) for 50 
subjects and two observations within subject and for the two designs (sequential on the 
left and spread out on the right). 
 

 
Figure 3. Matrix plot showing associations among standard errors for the two designs: 
sequential and spread out. 
 
Standard errors are frequently related to the square root of the sample size. Consequently 
we computed the correlation of the standard errors with a number of factors: the number 
of subjects (N), the number of observation within subject (ni), the total number of 
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observations (M = N×ni),   the square roots of N and M, and the variance components, σ2, 
d11, d22, and ρ12, the correlation between the two random effects. Table 1 provides the 
results. Most of the standard errors are most highly correlated with √𝑁 except for the 
standard error for the longitudinal change for the sequential design which is most highly 
correlated with √𝑀. Among the variance components, the error variance has the highest 
correlation. Interestingly, neither the random intercept variance nor the correlation among 
the random effects is associated with the longitudinal standard error for either design. 
This is, perhaps, not surprising as the variability in the intercept should not provide any 
information about the longitudinal effect. In addition, the variance of the longitudinal 
random effect is not significantly related to the standard errors for the intercept nor the 
cross-sectional effect for either design. Again the might be expected as the variability on 
the longitudinal trajectories should not have an impact on these two terms. 
 
Table 1. Correlations of the standard errors for the two designs (sequential (1) and spread 
out (2)) with a number of factors. SE11 and SE21 are the standard errors for the intercept, 
SE12 and SE22 are the standard errors for the cross sectional effect, and SE13 and SE23 
are the standard errors for the longitudinal effect. 
            

Pearson Correlation Coefficients, N = 2880 
Prob > |r| under H0: Rho=0 

           M        N       ni       √𝑀       √𝑁      S2     D11     D22     R12  

Sequential Design: 
SE11  -0.6107  -0.6671  -0.0604  -0.6714   -0.7087  0.4670  0.3208  0.0282  0.1395 
       <.0001   <.0001   0.0012   <.0001    <.0001  <.0001  <.0001  0.1302  <.0001 
 
SE12  -0.6084  -0.6657  -0.0559  -0.6687   -0.7072  0.4605  0.3213  0.0313  0.1546 
       <.0001   <.0001   0.0027   <.0001    <.0001  <.0001  <.0001  0.0931  <.0001 
 
SE13  -0.6379  -0.6107  -0.3762  -0.7134   -0.6488  0.3374  0.0000  0.2803  0.0000 
       <.0001   <.0001   <.0001   <.0001    <.0001  <.0001  1.0000  <.0001  1.0000 
 
Spread Out Design: 
SE21  -0.6106  -0.6536  -0.1089  -0.6727   -0.6943  0.5035  0.2831  0.0249  0.1130 
       <.0001   <.0001   <.0001   <.0001    <.0001  <.0001  <.0001  0.1808  <.0001 
 
SE22  -0.6089  -0.6515  -0.1096  -0.6709   -0.6921  0.5015  0.2800  0.0275  0.1243 
       <.0001   <.0001   <.0001   <.0001    <.0001  <.0001  <.0001  0.1403  <.0001 
 
SE23  -0.6636  -0.7394  -0.0129  -0.7278   -0.7855  0.1399  0.0000  0.4904  0.0000 
       <.0001   <.0001   0.4882   <.0001    <.0001  <.0001  1.0000  <.0001  1.0000  
 
To understand the association between the 2880 standard errors computed for each of the 
parameters with the various input factors used, the standard errors are modeled as a 
function of these factors using multiple regression. Since standard errors are frequently 
related to the square root of the sample size, we include various sample size-related 
variables in the regressions as follows: √𝑁 (or √𝑀 for �̂�2) and ni. Since the plots of some 
standard errors vs. the correlation in the random effects covariance matrix exhibited some 
curvature, 𝜌122  is entertained as a covariate in the regression models. Backward 
elimination is used to remove statistically nonsignificant factors from the models. At this 
time, only main effects have been entertained in the multiple regression models – there 
are no interaction terms.  
 
Table 2 presents the results of the final models. The intercept and cross sectional effect 
(Table 2a  and 2b) exhibit similar results: the standard errors decrease with √𝑁  and ni but 
increase with the three variance components (σ2, d11, and d22) and have negative curvature 
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with the correlation (𝜌122 ). The magnitudes of the various terms indicate the differences in 
the rates of change in the standard errors between the two designs. Interestingly, while d22 
did not have a significant bivariate correlation, after accounting for the other terms in the 
model it is highly statistically significant.  
 
Table 2c and 2d give the results for the longitudinal standard error. Table 2c includes √𝑁  
as a factor while Table 2d uses √𝑀 . For both designs, d11 and ρ12, fall out of the models. 
The longitudinal standard errors decrease with √𝑁  and ni but increase with two of the 
variance components (σ2 and d22). When  √𝑀 is used in place of  𝑁, the sequential design 
leads to similar results. However, for the spread out design, ni now has a positive 
regression coefficient. But one cannot interpret this as leading to an increase in the 
standard errors as one cannot hold √𝑀 constant while changing ni.  
 
Table 2. Multiple regression modeling of the standard errors as a function of input 
variables 
a) se(�̂�0) 

Factor SEQUENTIAL VISITS VISITS SPREAD OVER 
STUDY DURATION 

 Regression 
Parameter 
Estimate 

p-value Regression 
Parameter 
Estimate 

p-value 

Intercept 1.477 <0.0001 1.623 <0.0001 
ni -0.02895 <0.0001 -0.05516 <0.0001 
√𝑁 -0.06601 <0.0001 -0.06832 <0.0001 
σ2 0.02753 <0.0001 0.03135 <0.0001 
d11 0.04671 <0.0001 0.04354 <0.0001 
d22 0.02425 <0.0001 0.02265 0.0006 
ρ12 0.14662 <0.0001 0.12554 <0.0001 
𝜌122  -0.19234 <0.0001 -0.22905 <0.0001 
Model R2 85.2% 84.7% 

 
b) se(�̂�1) 

Factor SEQUENTIAL VISITS VISITS SPREAD OVER 
STUDY DURATION 

 Regression 
Parameter 
Estimate 

p-value Regression 
Parameter 
Estimate 

p-value 

Intercept 0.0280 <0.0001 0.0311 <0.0001 
ni -0.00051026 <0.0001 -0.00106 <0.0001 
√𝑁 -0.00125 <0.0001 -0.00130 <0.0001 
σ2 0.00051703 <0.0001 0.00059763 <0.0001 
d11 0.00089096 <0.0001 0.00082418 <0.0001 
d22 0.00051326 <0.0001 0.00047762 0.0002 
ρ12 0.00310 <0.0001 0.00264 <0.0001 
𝜌122  -0.00408 <0.0001 -0.00483 <0.0001 
Model R2 85.0% 84.5% 
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c) se(�̂�2) 
Factor SEQUENTIAL VISITS VISITS SPREAD OVER 

STUDY DURATION 
 Regression 

Parameter 
Estimate 

p-value Regression 
Parameter 
Estimate 

p-value 

Intercept 0.2581 <0.0001 0.1395 <0.0001 
ni -0.02486 <0.0001 -0.00056325 0.0482 
√𝑁 -0.00833 <0.0001 -0.00665 <0.0001 
σ2 0.00274 <0.0001 0.00074983 <0.0001 
d11     
d22 0.03321 <0.0001 0.03832 <0.0001 
ρ12     
𝜌122      
Model R2 75.5% 87.7% 

 
d) se(�̂�2) using √𝑀 in place of √𝑁. 

Factor SEQUENTIAL VISITS VISITS SPREAD OVER 
STUDY DURATION 

 Regression 
Parameter 
Estimate 

p-value Regression 
Parameter 
Estimate 

p-value 

Intercept 0.1971 <0.0001 0.0921 <0.0001 
ni -0.00929 <0.0001 0.01226 <0.0001 
√𝑀 -0.00426 <0.0001 -0.00350 <0.0001 
σ2 0.00274 <0.0001 0.00074983 <0.0001 
d11     
d22 0.03321 <0.0001 0.03832 <0.0001 
ρ12     
𝜌122      
Model R2 71.8% 85.9% 

 
3.2 Data Analysis  
The analyses of the SBP measurements from the male BLSA subjects yield the results in 
Table 3. It is clear that the standard errors decline with increasing ni. Not surprisingly, the 
longitudinal standard errors (for �̂�2) are smaller when the observations are more spread 
out, though the standard errors for the intercept and cross sectional terms are smaller for 
sequential visits. The intercept standard errors tend to be slightly smaller for sequential 
visits though do not change substantially as ni increases. This is not surprising as with a 
fixed number of subjects (N), additional longitudinal data does not have much effect on 
the intercept. Similarly, the standard errors for the cross sectional effects also declines 
with increasing ni and are slightly smaller for the sequential visits. As before, once we 
know the ages of the subjects in the study, additional longitudinal data does not add much 
to estimating the cross sectional effect which measures differences among subjects of 
different ages. Finally, the spread out design has much smaller standard errors for the 
longitudinal effect for few observations though both decline with increasing ni. The 
sequential design’s longitudinal standard errors decrease more dramatically than the 
spread out design’s longitudinal standard errors which only decrease modestly. Once data 
has been placed at the extremes, one does not estimate the longitudinal effect much better 
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by including additional intermediate observations. Of course, these additional points will 
be beneficial for checking whether the model is correctly specified via residual plots.  
 
Table 3. Standard errors for the intercept, cross-sectional effect, and longitudinal effect 
from the BLSA data as a function of number of repeated measurements. 
 

Number of 
visits, ni 

SEQUENTIAL VISITS VISITS SPREAD OVER 
STUDY DURATION 

 se(�̂�0) se(�̂�1) se(�̂�2) se(�̂�0) se(�̂�1) se(�̂�2) 
2 1.56 0.0283 0.264 1.64 0.0297 0.0677 
3 1.51 0.0275 0.125 1.57 0.0283 0.0672 
4 1.48 0.0268 0.079 1.54 0.0278 0.0654 
5 1.46 0.0266 0.062 1.46 0.0266 0.0624 

 
4. Conclusions 

 
As expected, the standard errors of the intercept, cross-sectional, and longitudinal effects 
all decline with increasing ni. The longitudinal standard errors are smaller when the 
observations are more spread out, though the standard errors for the intercept and cross 
sectional terms are smaller for sequential visits. 
 
When modeling the standard errors as a function of the sample sizes and variance 
components, all standard errors decline with increasing number of subjects (√𝑁) and 
increasing number of longitudinal observations, and increase with increasing error 
variance. The intercept and cross sectional standard errors increase with all increasing 
variance components while the longitudinal standard error increases with increasing 
variance of the longitudinal random effect. For the intercept and cross sectional standard 
errors there is a curved association with the correlation between the random effects – the 
standard errors are largest for zero or low correlations and decrease as the correlation 
deviates from zero.  
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