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Abstract

A performance slam is a competition among a �xed set of performances
whereby pairs of performances are judged by audience participants. When
performances are recorded on electronic media, performance slams be-
come amenable to audiences that watch online and judge asynchronously
(�crowdsourced�). In order to better entertain the audience, we want to
show the better performances (�exploitation�). In order to identify the
good videos, we want to glean a least some information about all videos
(�exploration�).

Our approach has three elements: (1) We take our preference model
from Bradley and Terry (1952). (2) Its parameters we calculate by rewrit-
ing the likelihood gradient into a �xed point estimate, one which mimics
the estimate of Mantel and Haenszel (1959). (3) Each pair of performances
is chosen sequentially, always chosen to minimize the weighted variance of
(the logarithms of) the Bradley-Terry parameter estimates. Our preferred
weights consist of the logrank weights proposed by Savage (1956).

Key words: Bradley-Terry model, exploration and exploitation, mo-
jovian, optimal ranking, preference modeling, Savage scores.

1. Background

1.1 Slams on YouTube

YouTube is a popular website devoted to sharing videos. The repository con-
sists of billions of videos of widely varying quality and mass appeal. It is said
that Justin Beeber got his start to fame through YouTube videos supplied by
his family. Recently, Gangham Style demonstrated the viral nature and mass
appeal of video content. Identifying such content among the millions of new
videos entering the repository each week is an important challenge and key to
the continued success of YouTube. This paper focuses on the latter, and in
particular, on one approach to measuring the quality of the user experience.

A slam consists of a certain kind of competition in which the audience rates
a series of performances; like most competitions, the goal is to determine the
winner, and more generally to rank the competitors. Marc Smith is credited
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with the �rst slam, for poetry, in Chicago, in 1984. Over time, the slam format
has generally converged to pairs of performances: Cognitively, slams of size two
are easier to compare, tasking as they do the audience members' recollections
less. In cultural assumptions and by data format, slams of size two align with
sports competitions, with each round resulting in a winner and a loser.

In late 2011 into early 2012, YouTube ran a series of slam tournaments within
�ve genre: comedy, music, dance, cute, and one other (�bizarre�). Viewers would
watch a pair of videos, and those who had signed into YouTube could vote for
the one they liked better.

Note that the slam format on YouTube di�ers from slams with live audiences
in at least four ways: First, YouTube performances are video recordings, so a
second or third performance by the same artist is always identical to the �rst
(�perfect replicability�). Second, any given pair of performances is always seen
by only one user (�audiences of size one�), so each slam receives only one vote.
Third, in the YouTube format, the decision of a winner can be delayed, since
there is no mutually visible collective awaiting for the �nal outcome (�delayed
tournament outcome�). Fourth, in common with other electronic media, voting
on YouTube has the potential of being undesirably manipulated by automatic
voting programs (�the spam issue�).

In spite of such di�erences, for YouTube the two central challenges of the
slam format remain: (1) Someone has to pair up some performances to create
the slams (�the scheduling problem�). (2) Somehow one has to determine the
winner(s) and/or identify the better ones (�the ranking problem�).

1.2 Models of Pairwise Competition

When Thurstone (1927) introduced his law of comparative judgment, he o�ered
three ideas: (a) Humans �nd the task of judging pairs of objects easier than
directly ranking longer lists. (b) One can recover the underlying ranking by
modeling a single underlying interval scale µ(A); the probability of preferring
object A over object B is a function of the arithmetic di�erenceµ(A) − µ(B).
(c) The probability can be modeled by the CDF of any symmetric distribution,
and Thurstone picked the �xed-variance Gaussian. Turner and Firth (2012)
implement Thurstone's model in the CRAN package BradleyTerry2.

Bradley and Terry (1952) developed a model similar to Thurstone's, re-
placing the Gaussian CDF with that of the CDF associated with continuous
logistic. In their model, the di�erence µ(A)− µ(B) acquires the interpretation
of the logarithm of a preference odds. We detail this further in section 2. Note
that BradleyTerry2 supports this model by o�ering a logit link function.

Elo's (1978) chess rating system is essentially a linearized Bradley-Terry
model with participants-only updates. Glickman (1993, 1999) modi�es Elo's
model to include a variance function. Such a variance function recognizes, for
example, that players who have not played for a while have greater uncertainty
about their true ability. Glickman's algorithms are fundamentally Bayesian,
and use MCMC machinery to calculate updates to player strengths.
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1.3 Best k of n Selection

The theory of ranking and selection is largely an outgrowth of work by Wald
(1939, 1950) and Blackwell and Girshick (1954). Their focus on decision theory
provides an alternative formulation to the classical topic of statistical hypothesis
testing.

Wetherill and Ofosu (1974) distinguish between minimax, minimax regret,
and Bayesian methods. The early literature is dominated by assumptions of
normal populations (Gibbons, Olkin, Sobel, 1999). For our purposes, Dunnett's
(1960) approach, blending Bayesian and decision theoretic elements, deserves
mention: his Bayes risk function is a linear function of the population parame-
ters.

Ranking and selection is intimately tied to sequential statistical procedures.
Robbins (1952) introduces the multi-armed bandit problem. Glickman and
Jensen (2005) exploit the glicko model framework to propose tournament rounds
that maximize Kullback-Liebler distance, and apply it to tournament chess.

1.4 Locally Most Powerful Rank Tests

One class of rank tests involves linear combinations of ranks, for example, to
test whether two groups are statistically di�erent. Within this class, there is no
uniformly most powerful rank test. However, Lehmann (1959) identi�es locally
most power rank (LMPR) tests. The rationale for the principle of locality is
that any increase in statistical power in such hard-to-discriminate circumstances
should have reasonably attractive properties when applied to less demanding
settings. By LMPR theory, the optimal weights depend on the underlying dis-
tribution, f , and are of the form

−
∂ log f(x(i))

∂x(i)
,

where x(i) denotes the i -th order statistic drawn from distribution f .
For example, the van der Waerden weights are asymptotically LMPR-optimal

for the normal distribution and Wilcoxon's linear ranks are asymptotically
LMPR-optimal for the continuous logistic. For right-skewed distributions, re-
ciprocal ranks are LMPR-optimal for the Pareto distribution and the so-called
log-rank or Savage weights are likewise LMPR-optimal for the exponential dis-
tribution.

2 Bradley-Terry Model Estimates

2.1 Notation

We have n performances, indexed by a, b = 1, 2, ..., n, and T slam pairs, indexed
by t = 1, 2, ..., T . Each such slam t has two performances, at and bt, and a
preference yt, which takes the value 1 if performance at is preferred to bt, 0 when
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performance bt is preferred to at, and is otherwise unde�ned. It is convenient
to de�ne the complementary response of zt = 1− yt, that is, zt = 1 when bt is
preferred to at, 0 when at is preferred to bt, and otherwise unde�ned. Bradley
and Terry (1952) assert this model:

Pr{yt = 1} = ω(at)

ω(at) + ω(bt)
, (1)

or, equivalently,
Pr{yt = 1}
Pr{yt = 0}

=
ω(at)

ω(bt)
. (2)

In this notation, each item a has a strength, worth, or mojo ω(a) > 0. By
equation (2), these parameters are seen to be log-odds, and de�ned only up to
a constant multiplier.

This set notation proves convenient: a = {t : at = a} ` {t : bt = a}.

2.2 The BT Gradient Estimate

We assume the slams are independent, and index them by t. The likelihood can
be written as

`(ω)=
∏
t

ω(at)
ytω(bt)

zt

ω(at) + ω(bt)
, (3)

and log-likelihood

log `(ω) =
∑
t

yt log ω(at) + zt log ω(bt)− log (ω(at) + ω(bt)). (4)

Di�erentiating (4) with respect to ω(at) and setting it equal to zero results in
this equation, ∑

t∈a
[
yt

ω(at)
− yt + zt
ω(at) + ω(bt)

] = 0, (5)

which Hunter (2004) then solves for ω(a),

ω(a) =

∑
t∈a yt∑

t∈a
1

ω(a)+ω(bt)

, (6)

inviting a �xed-point algorithm. Note that equation (5) essentially asserts the
total wins for object a equals the expected wins per model (1).

2.3 The BT MH Estimate

In at least one sense, the �xed-point equation (6) is curious, in that it is not
obviously symmetric between wins and losses. Indeed, wins by a immediately
bene�t the numerator of (6), while losses require propagating an update through
the network of all other outcomes, and ultimately depend on enforcing the global
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constraint such as
∏

a ω(a) = 1.These considerations suggest that an improved
estimate might be available

Toward this goal. let us de�ne p(a|a, b) =ω(a)/(ω(a) + ω(b)). Rewrite the
likelihood gradient (5) as

0 =
∑
t

yt − (yt + zt) p(a|a, bt) =
∑
t

yt (1− p(a|a, bt))− zt p(a|a, bt)

=
∑
t

yt p(bt|a, bt)− zt p(a|a, bt) (7)

or, as an equation set to unity,

1 =

∑
t yt p(bt|a, bt)∑
t zt p(a|a, bt)

=

∑
t yt ω(bt)/[ω(a) + ω(bt)]∑
t zt ω(a)/[ω(a) + ω(bt)]

. (8)

The form (8) is recognizably that of the estimate proposed by Mantel and Haen-
szel (1958). Equation (8) points toward the following �xed-point equations, with
superscripts indexing interactions:

ω0(a) = 1; υ0(a) = 1

υk+1(a) =

∑
t yt ω

k(bt)/[ω
k(a) + ωk(bt)]∑

t zt ω
k(a)/[ωk(a) + ωk(bt)]

. (9)

ωk+1(a) = ωk(a)υk+1(a).

Under equations (9), current estimates ωk(a) are used to determine residual
updates υk(a) via a Mantel-Haenszel expression. As an update expression, (9)
is visibly symmetric between wins and losses, and empirically we observe that
it converges rather quickly.

2.4 Regularization by Pseudo Player

Suppose in a given data set, player a always wins. In this case, the denominator
of equation (8) is zero, and the corresponding estimate ω̂(a) =∞. An analogous
case happens in the case where player a always loses, with the resulting estimate
ω̂(a) = 0. Numerically, both cases are awkward, and some regularization is
clearly warranted.

Our regularization scheme is motivated by analogy to the conjugate priors
of the binomial. If our prior is a beta distribution with shape parameters α
and β, then the Bayes estimate of the underlying proportion π after observing
k counts of n is

π̂ =
k + α

n+ α+ β
, (10)

or, alternately, its associated odds is π̂/(1− π̂) = (k+α)/(n− k+ β). This can
be seen as taking two complementary counts, k and n− k and adding α and β
to them, respectively. Symmetry arguments suggest α and β be chosen equal,
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and the denominator of expression (10) establishes α+β to equal an increment
in sample size. These considerations motivate the following modi�cation of
estimating equation (8):

1 =

∑
t yt p(bt|a, bt) + λp(a0|a, a0)∑
t zt p(at|a, bt) + λp(a|a, a0)

=

∑
t yt ω(bt)/[ω(at) + ω(bt)] + λ/[ω(a) + 1]∑

t zt ω(at)/[ω(at) + ω(bt)] + λω(a)/[ω(a) + 1]
, (11)

with the natural convention that the mojo of the pseudo-player a0 has mojo
ω(a0) pinned at 1. Equation (11) essentially creates 2λ pseudo games with each
other player a, which are won and lost in equal proportion. 2λ is typically≈ 1.

2.5 The BT Standard Error

Finally, we note that the estimates of the Bradley-Terry model are amenable
to closed-form expressions of its standard errors. This calculation utilizes the
delta method, and its derivation �ows most easily from equation (8).

V ar{log(ω̂(a))} .= 1/[
∑
t∈a

p(at|at, bt)p(bt|at, bt)]

= 1/
∑
t∈a

ω(at)ω(bt)

[ω(at) + ω(bt)]2
. (12)

The interpretation of equation (12) is straightforward. The relative precision
of the estimates ω̂(a) is improved (a) by playing a in more slams, and (b) by
playing a in slams in which it is more closely matched.

Simon and Yao (1999) o�er a correction to expression (12) that accounts for
the use of pseudo raters.

3 The Play-Next Rule

3.1 Objective Function

Our core idea is inspired by Dunnett's (1960) Bayes risk. Consider the linear
function ∑

a

c(a) log(ω̂(a)), (13)

where ω̂(a) denotes the ath smallest estimate of BT mojos ω1, ω2, ..., ωn. Taking
0 < c(1) ≤ c(2) ≤ ... ≤ c(n), expression (13) allows us to emphasize the items
that are ranked higher. The coe�cients c also provide the means to encourage
more data acquisition for the higher ranked items; we refer to the function c(•)
the mojovian. Consider the variance of expression (13):

V ar{
∑
a

c(a) log(ω̂(a))}
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=
∑
a

c(a)2V ar{log(ω̂(a))}+
∑
a 6=b

c(a)c(b)Cov{log(ω̂(a)), log(ω̂(b))}. (14)

Motivated by (12), we de�ne the precision v(a):

v(a) ≡ 1/V ar{log(ω̂(a))} =
∑
t∈a

ω(at)ω(bt)

[ω(at) + ω(bt)]2
. (15)

For the moment, we drop the covariance term of expression (14), it can be
re-expressed as ∑

a

c(a)2/v(a), (16)

where we have implicitly aligned the indices of the functions c and v.

3.2 Most Informative Single Slam

Consider adding that single slam that pairs the performances (a, b). As a func-
tion of true parameters, the objective function (16) changes from its current
value to one that bene�ts from this slam. In an asymptotic sense, we can as-
sume also that the rank weights c do not change (much), and the most material
di�erence is in the addition of the term p(a|ab)p(b|ab) = ω(a)ω(b)/[ω(a)+ω(b)]2

that is added to the corresponding terms for v(a) and v(b). In particular,

OBJFN{now} −OBJFN{now + (a, b)}

= c(a)2[
1

v(a)
− 1

v(a) + p(a|ab)p(b|ab)
]

+c(b)2[
1

v(b)
− 1

v(b) + p(a|ab)p(b|ab)
], (17)

which simpli�es to

pq[
c(a)2

v(a)[v(a) + pq]
+

c(b)2

v(b)[v(b) + pq]
], (18)

where pq = p(a|ab)p(b|ab). An asymptotic argument would have v(a) � pq, so
one can approximate expression (18) by

p(a|ab)p(b|ab)[ c(a)
2

v(a)2
+
c(b)2

v(b)2
]. (19)

A more lengthy derivation, one that accounts better for the covariance terms in
objective function (14), results in this rather similar form:

OBJFN{now}−OBJFN{now+(a, b)} ≈ p(a|ab)p(b|ab)[ c(a)
v(a)

+
c(b)

v(b)
]2. (20)
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By maximizing the right hand side of (20), we are (modulo any approx-
imations) identifying the single next game pair (a, b) that most reduces our
variance-based objective function. To that end, we refer to

{(a, b) : OBJFN{now} −OBJFN{now + (a, b)}

= max
(a,b)

p(a|ab)p(b|ab)[ c(a)
v(a)

+
c(b)

v(b)
]2 (21)

as the play-next rule.

3.3 Components of the Play-Next Rule

We propose minimizing expression (20) as a serviceable and rational approxi-
mation. The terms of (20) o�er these natural interpretations:

• pq = p(a|ab)p(b|ab) = ω(a)ω(b)/[ω(a)+ω(b)]2 is largest when ω(a) ≈ ω(b).
This term points to the bene�t of pairing players that are rather equally
matched. (The opposite position is obviously false: one does not learn
much about the strength of a major league baseball team from playing it
against one from the farm system.)

• Larger (c(a), c(b)) correspond to larger (ω̂(a), ω̂(b)). By this property, rule
(20) injects the bene�t of playing higher ranked teams.

• Likewise, smaller (v(a), v(b)) correspond to larger standard errors of (ω̂(a), ω̂(b)).
This element of (20) points to the bene�t of playing teams for which the
certainty about their mojo estimates is less.

3.4 Nomenclature for Mojovian Functions

These are all appealing properties. That said, this formulation leaves open one
important issue�the choice of mojovian function. The LMPR-theory outlined
in section 1.4 gives us some general guidance. The monotone nature of c, sug-
gests consideration of

• rank: linearly increasing (Wilcoxon) weights, of the form c(r) = r;

• reciprocal: the reciprocal (Pareto) weights, of the form c(r) = 1/(n−r+1);

• Savage: the so-called log-rank (Savage) weights of the form c(1) = 1/n; c(r) =
c(r − 1) + 1/r.

(Savage weights assign weight 1/n to all n performances, add weight 1/(n− 1)
to the largest n− 1 performances, add 1/(n− 2) to the largest n− 2, and so on
until we add 1/2 to the top 2 performances and 1 to the highest rated one.)

The above examples of mojovian functions are all functions of the ranks of
the performances; we investigate also mojovian functions that act directly on
the value of ω, in particular, its linear value c(a) = ω(a) (identity) and square
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root c(a) =
√
ω(a) (sqrt). Rounding out the ensemble, we consider the square

root of ranks (sqrt rank) and the constant function with c = 1 (constant).
We devote much of the remainder of this paper to exploring the best mojo-

vian function and to comparing the scheduling using the play-next rule (20).

3.5 Aside: Reduced Memory Form

The natural algorithm to �nd the next-play pair would calculate (20) for all
possible pairs of performances, so is of o(n2). An algorithm of smaller order is
possible: It involves identifying the highest k values c(a)/v(a) and recognizing
that the pq-term is bounded above by 1/4.

4 Simulations

We study the play-next rule and the value of di�erent mojovian functions by
simulation. This removes us from the direct and interesting context of the
YouTube slams. At the same time, simulation-based methods allow us to in-
vestigate more algorithmic options, while minimizing the release of proprietary
data.

4.1 Study Design Elements

Our simulation involves 256 videos, (1) whose log ω(a) are drawn from the
continuous logistic distribution. (b) These 256 videos are then paired into 128
initial matches, that is, each video participates in one slam with a randomly
assigned opponent; the results are determined randomly in a way consistent
with the Bradley-Terry probabilities. (c) Using the play-next rule, which is
parametrized by di�erent choices for the mojovian c(•), we form 3072 additional
slam pairs, making for a total of 3200 total slam pairs. For each of steps (a),
(b), and (c), we preserve the random numbers generated, thereby controlling
better for the comparisons of the various mojovian functions c(•). We replicate
steps (a), (b), and (c) �ve times.

The seven mojovian we assess can be divided naturally into two groups: those
that are direct functions of the Bradley-Terry parameters ω(•) and those that are
functions of ω(•) only through their ranks, rankω(•). Of the former category,
we consider the constant function, c(a) = 1, the identity function c(a) = ω(a)
and its square root c(a) = ω(a)1/2. For the latter, we consider the Wilcoxon
(linear) rank function, c(a) =rankω(a), its square root, c(a) = (rankω(a))1/2,
the reciprocal rank c(a) = 1/(n + 1−rankω(a)), and the Savage rank, de�ned
above. Normalized so that maxima are 1, these functions we illustrate in Figure
1.
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Figure 1. The seven mojovian functions investigated.

For evaluation criteria, we consider three: (1) First, as a function of estimated
mojo, we want to assess the frequency with which videos are entered into plays.
In this regard, we �nd the precision of estimated log mojo, v(a) from expression
(15), a useful measure. (2) Second, we would like to learn how quickly our
estimates of videos converge. (3) Thirdly, from Figure 2, we observe some
tendency toward bias at the high end. Therefore, we want to measure the bias
associated with each choice of mojovian function.

Figure 2. Estimated β̂ ≡ log ω̂ plotted vs the true value β ≡ logω based on

the constant mojovian. Note the bias at the higher and lower ends.

4.2 Simulation Results

Figure 3 address the �rst issue, how the choice of mojovian a�ects the slam
participation over the spectrum of video strength ω.We plot log precision versus
log mojo.

Figure 3. Precision in the form of log v(a) versus estimated β̂ = log ω̂(a).
Higher values on the y-axis therefore correspond to additional slam activity.
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As expected, the constant mojovian suggests roughly constant slam activity
across the spectrum of videos and their di�erent levels of mojo. More intriguing,
the two mojovians that are powers of mojos (leftmost panel) imply a propor-
tional relationship between slam activity and strength. In Figure 3's middle
panel, the mojovian functions that are powers of the Wilcoxon ranks illustrate
a di�erent pattern: those roughly below-median mojo receive less play, while
those above that level all receive about the same amount of play. By the right-
most panel of Figure 3, we see the results for the reciprocal rank and Savage
score mojovian functions. Forming a convex increasing curve, the reciprocal
rank score plays those at the higher end with increased activity; the convexity
has the �avor of best-of-k elimination tournaments. In contrast, the curve cor-
responding to Savage ranks balances two properties: (1) It increases the slam
views of videos with higher mojos, and (2) its concave shape suggests a sustained
residual interest in the good-but-second-tier performers.

Observe also how Figure 3 charts the the slam activity of low-strength videos:
Naturally, the constant c = 1 allocates the most attention to the low end. The
mojovians of

√
ω, square root rank, and (not shown) square root of reciprocal

all give uncomfortably high view activity in the lower range.
In summary, Figure 3 suggests a natural ordering of the mojovian functions

considered: constant, square root of rank, rank, Savage, square root of mojo,
mojo (identity), and reciprocal.

Figure 4. y-axis is estimated log mojo, β̂ = log ω̂ for the 10 strongest videos;
the x-axis denotes the slam performance index, ranging from 1 to 3200. Plotted
here are estimates of the �rst of the �ve replicates.

In Figure 4, we see the evolving estimates of the mojos of the 10 videos
with the largest mojos ω. Across various mojovians, we see generally good con-
vergence after about 2000 slams, with notable consistency for the mojovian
functions c(a) = ω(a) (identity) and Savage.
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Figure 5. Relative to the constant function, the relative log precision of the

estimated log mojos, for slam performance indices≥ 2000. Higher values are

better.

We can quantify the convergence behavior observed in Figure 4 by con-
sidering the precision of estimates with slam performance indices≥ 2000; this
summary allows us also to pool across the �ve simulation replicates. The result
is presented in Figure 5. We observe essentially the same ordering: constant,
square root of rank and rank, Savage, square root of mojo, mojo (identity), and
reciprocal rank.

Figure 6. Relative to the constant function, the relative -log bias the 7 mo-

jovian functions, for the top 2, top 10, top 40, and all 256. Higher values are

better.
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Finally, as motivated by Figure 2, one can consider the bias that the choice
of mojovian induces. Figure 6 plots estimates of bias for the top 2, top 10, top
40, and �nally for all 256 videos. As one can see, square root of rank shows
especially good bias characteristics for the top 2 and top 10 videos. Focusing
on the top 40, two almost-peers emerge, Wilcoxon rank and Savage scores.

4.3 Conclusions

This simulation study indicates that the seven mojovians considered de�ne a
spectrum. At one end, emphasizing the goal of estimating all strengths well,
and, implicitly, maximizing variety, is the constant function. At the other end,
emphasizing the goal of determining the best few and playing them is the re-
ciprocal rank function. The implied order is as follows: constant, square root of
rank, rank, Savage, square root of mojo, mojo (identity), and reciprocal rank.

If we have a favorite, it is the Savage (aka log-rank) score�not because
it excels at any criterion, but because it strikes a comfortable median: From
Figure 3 we see that it appropriately shies from showing low-mojo videos, and
also that it plays the more highly ranked videos more. At the same time, it
shows enough downward convexity that it implicitly encourages some level of
variety. From Figures 4 and 5, we see the bene�t of playing better videos more
in its favorable convergence characteristics. Finally, from Figure 6, we observe
that Savage scores have reasonable performance with respect to top-40 bias.

Of course, these latter remarks are intended as generic. Particular applica-
tions may require either more variety or greater high-mojo play, and therefore
another choice of mojovian may be warranted.

5 An Extension

We conclude by sketching an extension to the play-next rule to non-paired con-
ditions. For concreteness, suppose we have treatments a, a', ..., and we wish to
identify the best few of these treatments. Further, suppose the parameters of
interest is the Bernoulli probability of success, π(a), .for each a. Designate the
associated odds parameter, ψ(a) ≡ π(a)/(1− π(a)), its mojo.

The analogous objective function to (13) is∑
a

c(a) log ψ̂(a), (22)

for which we wish to minimize the variance. The delta-method approximation
to the variance of the estimated log odds log ψ̂(a) is [n(a)π(a)(1−π(a))]−1. For
a concrete but interesting example, take c(a) = B(a)π(a), a proportion-domain
analog to the identity function described above, times B(a), the quanti�ed bene-
�t given the Bernoulli success. (Under this formulation, there is no monotonicity
assumption, and the bene�t payo� belongs to treatment a.) In this case, the
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variance of expression (22) becomes∑
a

B(a)2π(a)2
1

n(a)π(a)[1− π(a)]
=

∑
a

B(a)2

n(a)

π(a)

1− π(a)
=

∑
a

B(a)2

n(a)
ψ(a).

(23)
By the same logic that leads to the play-next rule (19), we seek to play that
treatment a such that B(a)2ψ(a)/n(a)2 is largest. In equilibrium across treat-
ments, this implies that any treatment a would be played roughly n(a) times,
such that

n(a) ∝ B(a)
√
ψ(a). (24)

Rule (24) is plausible, corresponding playing a treatment in proportion to its
bene�t and to the (square root of) estimated mojo; in particular, n(a)/n(a′) ≈
B(a)/B(a′)

√
ψ(a)/ψ(a′). Note, however, that next-play rule (24) di�ers some-

what from the so-called probability matching rule, which suggests n(a) ∝ π(a)
instead. Ignoring any B(a)/B(a′) term, and concentrating on π(a)-values that
correspond to relatively rare events, rule (24) gives relatively �atter allocations,
roughly n(a)/n(a′) ≈

√
π(a)/π(a′).
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