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Quantifying Risks of Extremes

Ugur Tuncay Alparslah

Abstract

We study ruin probability, a commonly used performance mess actuarial science, as a risk
assessment tool for extreme events. Classical ruin probkrally assumes independent, identi-
cally distributed steps and a linear drift. However a momdistic setting in the context of climate
extremes requires temporal dependence in a given varisloeeover, empirical evidence showing
increased likelihood of extremes necessitates modelieggethiariables using heavy tailed probabil-
ity laws. The case of heavy tailed, dependent steps is alstesting from a purely mathematical
point of view as it raises the possibility of relating the dagence structure of heavy tailed stochas-
tic processes to the asymptotic behavior of the ruin prditablhis becomes particularly intriguing
when the variables are highly volatile so that it is not poigsto use traditional covariance based
measures to quantify the dependence structure of the [ods propose a probability model,
which uses dependent variables following infinite-var@stable distributions, and allows for non-
linear drifts. We then analyze the effects of range of depand on the ruin probability in this
setting.
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1. Introduction

The study of random walks with negative drifts is a populasjesct of the the theory of
stochastic processes. The tail behavior of the supremunuasf a random walk is of
particular interest in fields such as actuarial sciencen@mics and time series analysis,
queuing theory, biology, and earth sciences, includingrenmental science, geophysics
and climate modelling. For instance, in actuarial scietioe probability of the supremum
exceeding a certain threshold is known as ithiea probability, where the negative drift
random walk represents the excess of the total claim amouahiinsurance portfolio
over the loaded total premium. (SEenbrechts et al(1997), Chapter 1.) There is a vast
literature on ruin probabilities and a list of classicalereinces can be found Assmussen
(2000. This probability is also important in the context of sadais to stochastic recurrence
equations, including ARCH and GARCH processes. Babrechts et al1997), Chapter
8.) In queuing theory, this quantity is known as theerflow probabilityand is directly
related to the stationary solution of Lindley equation.gBaccelli and Bréemau¢2003.)

Classical models in the literature on random walks with tegadrifts usually deal
with independent, identically distributed (iid) steps lwitght tails. In most applications
however, the assumption of independent steps is clearlalistic. Additionally, the case
of dependent steps is of theoretical interest as it intredlbe possibility of gaining more
insight into the probabilistic structure of the processeseaulying the step sizes through the
study of such probabilities. This aspect becomes partigulatriguing when the steps are
heavy tailed with infinite second moments, in which case n@lrihe classical measures
of strength and range of dependence that mainly rely on @ like functions become
meaningless or ambiguous at best. The presence of heasynaleryday life has been
established through empirical evidence. In the light oere@nvironmental, geophysical,
and financial extremes that affected masses, the concemanf/ Hailed phenomena has
been attracting even more attention from academia andqoailite.
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The asymptotic behavior of the tail probability of the supten of a random walk with
negative drift and iid heavy tailed steps was giverEimbrechts and Veraverbek&982
in the greatest generality of the family of subexponentiep sizes. LateAsmussen et al.
(1999 showed that the results in the iid case still hold under dyfgieneral dependence
structure of the heavy tailed steps, yet the results areatiot for all dependent claim sizes,
(see, for instanc#likosch and Samorodnitsk20008).

In this paper we study the tail behavior of the supremum ofatiee drift random walk
with dependent (sum-)stable increments. Stable probalilivs are arguably the most im-
portant class of heavy tailed laws due to well known genegdlicentral limit results for
random sequences with infinite variance. Here we will asstinaiethe steps of the random
walk constitute a stationary, ergodic, symmetrie stable (%S) process withy € (1,2).
For this particular range of the tail index the step size gsschas a finite first moment,
however the the second moment does not exist. This allows fcts on the underly-
ing dependence structure when metrics based on covaridec@ihctions do not work.
Furthermore, the results for stable steps represent, te@ soend, provide a benchmark
for what can be expected for more general processes sucatiasnaty infinitely divisible
processes.

In the past decade there has been some effort to study theptiarbehavior of the
supremum with stationary, ergodiexS steps. Mikosch and Samorodnitsk{20003 es-
tablished certain results on the order of magnitude of th@tabability of the supremum
for negative drift random walks driven by different classéstationary, ergodic &S in-
crements. LateAlparslan and Samorodnitsk2007ab) extended some of these results in
discrete time and established the order of magnitude fotiraowus time approximations
for high frequency increments. All of these papers howeassume a constant drift rate
yielding a linear cumulative drift process.

Bravermarn(2004) established an asymptotic equivalence between a clagadidnals
acting on the sample paths of continuous times$rocesses and a deterministic process
based on the integral representation of the underlyindesaocess. One special case of
these functionals indeed gives the tail probability of tbpremum of a continuous time
negative drift &S random walk, where the drift rate is not necessarily constdowever,
this study does not provide any explicit results regardimgy drder of magnitude. Later,
Alparslan(2009 established the order of magnitude for certain classesrfraious time
SaS processes and accumulated drift processes following ooies.

Our primary objective in this paper is to establish an asptipequivalence between
the tail probability of the supremum of a negative drift rammdwalk with stationary, ergodic
SaS steps and a functional based on the integral representattithe step size process
in the fashion ofMikosch and Samorodnitsk{20003. However, here we will remove
the constant drift rate assumption and will allow a fairlyngeal class of cumulative drift
processes. A detailed description of the model and the reainits will be given in Section
2. In Section3 we will apply the main result to a class random walks with rtigggpower
drifts and stationary &S steps generated by dissipative flows to explicitly comphige
order of magnitude for the tail probability of the supremuBection4 will show how a
different order of magnitude emerges when one uses Seps generated by conservative
flows instead.
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2. TheMode and the Asymptotics of the Tail Probability

LetX = {X,, n € Z,,}, be a measurable (implicity assumed hereon), ergodi& S
process withv € (1,2). SinceX is SuS, one can utilize the representation given by

Xn :/ fn(w)M(dx)a ne Z++7 (21)
E

whereM is a SxS random measure on a measurable space€) with a o—finite control
measuren on &, (i.e. M is an independently scattered random measui@ such that

E lexp{idM(A)}] = exp{—|0|“m(A)}, 0 €R (2.2)

for every A € &€ with m(A) finite), and{f, }nez,, C L*(E,E,m). (See Section 3.3 of
Samorodnitsky and Taqd994) for details.)

Further, ifX is stationary then one can chogkgto be in a more descriptive form given
by
dm o ¢,

dm

Fole) = o) |

where{¢, },ez, . is anon-singular flow, (i.e. a family of measurable maps fiGonto £
such thatp, = ¢,_1 0o foralln € Z, ., ¢ is the identity function orF, and¢ is a non-
singular map orE), {a, }nez. , is a cocycle for this flow (i.eap(-) = 1, anda,,41(x) =
an(x)ay (¢n(z)) for m—a.a.z € E) taking values i{—1, 1}, andf € L*(E, &, m). (See
Rosihski(1995.)

This representation is noteworthy as it makes it possibtel&te the probabilistic struc-
ture of a stationary &S process to the properties of a deterministic flow and aeikeyinel.
(SeeAlparslan(2009; Alparslan and Samorodnitsik2007ab); Mikosch and Samorod-
nitsky (2000g; Samorodnitsky(2004) for examples in which this idea is utilized.) For
instance, Hopf decomposition of the flow,, },cz. . (see, for instanc&rengel (1989),
immediately implies that a stationaryxS processX, can be written (in distribution) as a
sum of two independent stationarwS processes

(.1'):| f O¢n($)7 T e E> ne Z++7 (23)

X =X 4 x(©), (2.4)

whereX () is given by representationg.() and @.3) with a dissipative flow, an&X(®) is
given by representation£.() and .3) with a conservative flow. We will focus on step
size processes of the for&i(d) in Section3 and on step size processes of the faHs) in
Section4.

Define a random wals = {S,,, n € Z, } whose steps are governed Kyas

Sp=_ Xy, n €Ly, (2.5)
k=1
and let .
ho(z) =Y ful@), n € Zy, (2.6)
k=1

(with the usual understanding thggzl - =0.) Then it follows from @.1) and Theorem
11.4.1 ofSamorodnitsky and Taqqd994) that

sn:/Vm@mﬂm%nez+ 2.7)
E
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Finally letD = {D,,, n € Z. } be a deterministic drift process taking positive values.
Then one can express the probability of ultimate exceedaheepositive threshold. by
the random walkS with negative driftD, as a function ot as

P(u) =P

sup (S, — Dp) > u] , u>0. (2.8)

nely

The main result of this paper, which we present below, estadd the asymptotic relation
betweery(u) and the functional

Ca [ ()] [~ D (2)]5
Yo (u) = 5> /E {5611211 WD) DnJ)FO‘ + nseuzp+ WD) Dn)z } m(dz), u>0, (2.9)

whereh,, is given by @.6) and

oo -1
Co = </ x~ sinwdw) , (2.10)
0

wherea € (1,2) is the tail index of the step sizes.

THEOREM 2.1. LetS = {S,, n € Z}, given by 2.5, be a random walk whose steps,
given by @.1), form a sequence of ergodiexS random variables with € (1,2). Also let
D = {D,, n € Z;} be a deterministic drift process such th@t, > dn?, n € Z, for
somed > 0 andp > 1.

(@) For ¢(u) andvy(u) given by 2.8) and @.9), respectively,

hunl) icgf 1;}/;((1;)) > 1.

(b) If in addition, X is stationary and|h,(-)||ze(g.em) = O(nY) asn — oo for some
€ (0,1) then
P(u) ~ o(u), as u— co.

Proof of Theoren?2.1(a). For the proof of the first part of the theorem we will use the
series representation &. Letmg be a probability measure a@hthat is equivalent to the
control measuren in (2.1) and defing := dm/dm. Then it follows from Section 3.10 of
Samorodnitsky and Taqqi994) thatX can also be represented (in distribution) by

Xp = CY N il VgV fu(Vh), € T, (2.11)
i=1

where{o; }icz. . is aniid sequence of Rademacher random variables, (i eegisuniform
random variables of—1,1}), {T'; }scz. , are the arrival times of a unit rate Poisson process
on the positive real line, (which are clearly dependent)] @i },cz, . is an independent
sequence oF—valued random variables with common probability law. Furthermore,
these three sequences are mutually independent: EaE define

Hy(x) = C/*g™1 (@) Y _ fulw), n € Zy. (2.12)
k=1
Then one can rewrite

P(u) =P

sup (Z o0 YV’ (V) — Dn> > u] . u>0. (2.13)

nely i=1
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and
Wo(u Z p

(Conditioning onl';s on the right hand side o2(14) and summing over gives €.9).)
It follows from (2.11) and @.12) that forn € Z.., the random wallS can be written as

nely

sup (alr Ve (vi) — Dn> > u] . u> 0. (2.14)

Sp =107 VO H, (V) + Yol H, (V) = S0 4 52 (2.15)
=2

Now fix § € (0,1). SetK?" := inf {n S/ St — (1+6)D, > (1+ H)u} and
define

YN0, u) =P

sup (S,(Ll) — HDn) > Qu] (2.16)

nELy

Then conditioning ok %, recalling the dependence structure{®¥, } ,cz_ ., and using
i (1) ()
the symmetry properties ({fSn }n€Z++ and{ n }HGZH we have

ziP( L 0D, > eu(K"“—k) P(K% = k)
1

TL€Z++

>

k=
> { inf P (S + 60D, > 9u>]ZPK9“:k)
k=1

inf P (s}? +6D, > —9u>] PM (1 +6,u)

nNEl4 4

- (2.17)
bD(1+0,u) inf [1-P (5,32) — 6D, > eu)]
n€Z++ L
=M1 +6,u) inf 1—2P<s<>—eD > Ou, o1 H, (Y)zo)}
n€Z++ L

=y (1+6,u) inf 1—2P<S()—6D > Ou, SO > )}

n€Z++ L
> D14 6,u) inf [1—2P (S, —0D, > 0u)].
nELy
Notice that the ergodicity oX and the assumptions dp imply that the stochastic
process(S,,/(0Dy)}nez, . is almost surely bounded and

= a.s.
n—00 HD =0
Thus
limsup P | sup (S, —60D,) > Hu] =0,
U—00 TLEZ++

and consequently2(17) gives

lim inf Y (u)

minf > (2.18)

Next, define two functions o' x R, by

Hn(y) ] { Hn(y) }
Gy(y,u) = su — , G_(y,u):= su —_—— .
+(y ) nEZE+ |:u + Dy, + (y ) nEZE+ u+ Dy, +
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Then conditioning ormr; gives
201 (14 60,u) = P < (1+60)7°GI(V1)] + P[[1 < (1+6)7°G*(V1)]
= [ 1o {0+ 07620} moldn)
—l—/E{l —exp{—(1460)"*G%(y)} } mo(dy) (2.19)
> [ (140G 0) exp {~(1+ )G (1)} mo(ay)

+ / (146)7°G2 (y) exp {— (1 +6)*G® ()} mo(dy),
E

where the last inequality follows from the fact thét — 1 > = forz > 0. ForM > 0

define
H,(y)|*
Ey = {yGE: sup M<M},

«
neEly Dn

and note that

[ Hp(y)|*
EytExi=qyeE: sup ——————
{ TLGZ++ D%

<oo}, asM — oo.

But the ergodicity ofX implies that

H,(y)|¢
[ sw BB ) <o,
E n

TL€Z++

(see e.g. Section 10.2 Bamorodnitsky and Taqqd994), and hence
mo(ES,) = 0. (2.20)

It is not hard to see that for an arbitrarye (0, 1), one can find., such that for any, > .

andy € Ey
|Hp(y)|*
— 1—e.
eXp{ A+00ut Do)~ €

Then for any suchu, it follows from (2.19 that

1—e€
20004+ 6,0) 2 T [ (GG W) maldy)  @21)
(1+0)* Jg,,
Now lettingu — oo, ¢ — 0, M 1 oo, and using monotone convergence we conclude
(1 +6,u)

>(1+6)"“ (2.22)
But then it follows from 2.9), (2.12), and .20 that

2o (u) = /E (GL(y) + G2 (y)) mo(dy) = / (GY(y) + G (y)) mo(dy), (2.23)

Eos
and we have
(1)
lim inf YL +6,u) (L+0,u)

Combining this with 2.18) and lettingd | 0 establish the desired result.

> (1+6) (2.24)
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Proof of Theoren?2.1(b). Clearly, one could try to establish the desired result byipigp

lim jup QZ((Z)) <1,

in the fashion of the proof of Theorethl(a). However, instead of a direct approach, here
we prefer a shortcut.

First note that under the given assumptions Propositiorof/Braverman(2004) im-
plies the existence of somg > 0 such that the proces{:n*fo—lsn}n€Z++ is bounded
almost surely. Now fix such a#.

For an arbitrarye > 0 define a new process by

(log n)2+e—1/aSn

Y, =
D,

s n/GIZ++.

Now it is not very hard to verify that for any > 0

1 24e—1/a 1 24+e—1/a .
(ogn)D < (ogn)d : S — o (n01), asn — o,
n n

and sinceso is chosen such thtn®~1S,} _, is bounded almost surely, we conclude

that{Yy}, 7, , is also bounded almost surely. Then it follows from Theoreh2B of
Samorodnitsky and Taqq994) that

(log n)2+€—1/ahn(_)
Dy,

sup € LYE,E,m).

nELy

Finally, the desired result follows from Theorem 7.2 and ReqY.3 ofBraverman(2004).
O

3. Steps Generated by a Dissipative Ergodic Flow

Here we provide an application of the main theorem given egrevious section. We
consider step sizes governed by process of the f&ffi given in ©.4). Rosifski(1995
showed that stationaryc$ processes generated by dissipative flows are automatérall
godic and they have mixed moving averageepresentation, i.e. for any such process,

X)) = X,(Ld), ne Z}, there exists a Borel spad®, ao-finite measurer on W and a
function f € L*(W x R, W x B, v ® \) such that
{X@} 4 {/ / Flw,z — n)M(dw,dw)} , (3.1)
nez w JR neZ

where M is a SxS random measure on the product splce< R with the control mea-
surer ® A, where) is the Lebesgue measure. Moreover, if the dissipative flselfiis
ergodic, (recall that a null-preserving transformatipon (E, £, m) is called ergodic if all
¢-invariant setsA have the property that(A) = 0 or m(A°) = 0), thenTW becomes
a singleton, and the representation given by a mixed mowegage reduces to the more
familiar, usual moving average,

{X,gd>}nez 4 { /]R flo— n)M(dw)} . (3.2)

nez
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To illustrate the use of our main results from Sectirsuppose the step sizex, =
{X,, n € Z,.}, form a stationary &S process given by

X = [ fa—n) M(do), n €L, (3.3)
R

wheref € L*(R, B, \), andM is a SxS random measure diR, ) with Lebesgue control
measure.
Let the random wallS be defined as before but now foerc Z., h,(-) becomes

ho(2) =) flx—Fk), z € R,
k=1

Further suppose the deterministic drift procEsss given by
D, =dnP, n€Z,, (3.4)

for somed > 0 andp > 1. The proof for the main result of this section does not work
whenp = 1. However, the relevant results for the case ef 1 can be found irAlparslan
and Samorodnitskg20073, which coincide with the findings presented here “in thatlim
(asp1).

Lastly, foru > 0 let(-) be as in 2.8), however note thap,(«) now becomes

Gy Dok fz = R)] (= >k fl@ = RIS
Po(u) = T/R{:euzrl (ot dn?)® = Jrnseuzp+ o d +}d:1:. (3.5)

THEOREM 3.1. LetS = {S,,, n € Z,} be a random walk whose steps are given by
(3.3 witha € (1,2) andf : R — R,. Also letD = {D,,, n € Z,} be a deterministic
drift process given by3(4).

@ If f ¢ LY(R, B, \) thenu®/Plip(u) — oo asu — oo, i.e. 1(u) decays slower than
u(l/p)=a

(b) Let K~ € Z_ and K™ € Z, be such that the function

felz) == iggf(l" =)l + F(@) Yk -cock+) + i;lgf(x + 1)K+

belongs toL.}(R, B, \). Further assume that there exists a monotone fungfjorgularly
varying at infinity with index-¢, ¢ > 1, which dominateg, on[K ;,o0). Then asu — oo

C, 1 1
~ Za—= (1/p)—e
vl ~ gt (0= D) 1,

whereB (-, -) is the beta function and

Proof. SeeAlparslan(2013 for a detailed proof. O
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4. Ergodic Steps Generated by a Conservative Flow

In this section we demonstrate another application of thia thaorem of Sectiof, which
also serves to show how drastically different the order ofjmitade of)(u) can be when
one uses stable steps generated by a conservative flowdrdtsteps generated by a dis-
sipative flow such as in the setting studied in Secfomo achieve this, it will be sufficient
to focus on a particular class of stationarySSwhose control measure is constructed using
null recurrent Markov chains. We now proceed with the setup.

Consider an irreducible, null-recurrent Markov ch&h= {Y,,, n € Z,,} onZ with
law Ps(-) on

7% ={y = (yo,y1.y2,---): yi € L,i € Ly}

corresponding to the initial staig = s € Z.

Letm = {ms, s € Z} be thec—finite invariant measure corresponding to the family
{P,, s € Z} satisfyingmy = 1, and define ar—finite measure o<+, the cylindrical
o—field of ZZ+ by

m()= > mP(). (4.1)
We will model the steps of the random walK = {X,,, n € Z,,}, with a &S
process defined by

Xo= | fuy)M(dy), ye€ZP, neZiy (4.2)
7+
whereM is a SxS random measure &i*+ with control measuren given in @.1) and the
kernelsf,, are chosen to be of the form

fn(Y) = l[yn:(]b ne Z++7 y = (y07y17y27 e ) € ZZJr' (43)

The results of this section can be extended to a more gerarilyfof kernelsf,,, as in
for instanceResnick et al(2000 or Alparslan and Samorodnitsk20070. However, a
kernel as simple as the one given above is enough to accémnaplisgoal of demonstrating
the difference in the order of magnitude¥fu) in the conservative case compared to the
dissipative case.

It follows from Rosifski and SamorodnitskiL996 that the procesX given by the
stochastic integral representatiohd) is a stationary mixing process, and in particular is
ergodic. FurthermorX is associated with a conservative flow.

Now letS = {S,,, n € Z,} be a random walk whose steps are given #y)(and
definey(u) as in .8) with D = {D,,, n € Z} given by @.4). For an integes and
y € Z%+, define the number of visits to statén n steps to be

N = NO(y) =Y 1py,=q (¥)- (4.4)
j=1
With this notation 2.9) reduces to
C, N A\
= -2 . 4.5
wi) =5 [ (;;1211 s d) m(dy), w0 @5)

For a giveny € Z”+ ands € Z, define the number of steps until the chain returns to
states for the first time as

& =76)(y) :=inf{n € Z,, : yo = s}. (4.6)
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Note that by the null-recurrence of the Markov chéigry = oo, for anys € Z. We will
further assume that there is a constant (0, 1) and a slowly varying functior. such that
foranyn € Z

R (T<°> > n> — 2" 1L(n). 4.7)

Further letZ,_, = {Z1_,(t), t € R} } be a(1—~)-stable subordinator, i.e. a positive,
increasing, strictly stable Lévy motion with characticigunction given by

Elexp{i0Z1_(1)}] = exp {— o™ [1 —itan M] } , 0eR. (4.8)
Ci—y 2

Now we are ready to state the main result of this section.

THEOREM 4.1. If the relation @.7) holds then

a(p—1)+vy(a—1) (p—D[a—v(a=1)]
1in_1)infu = Lot (Ul/p> Y(u) > 2 ’ v Topy (4.9)
and (p—D)+~(a—1)
a(p— ~y(a—
lim sup u z Lot (ul/p) P(u) < Inp~ (4.10)
U—r 00
where
v a(p—1)+y(a—1) a(l—7)
Tap = 22 (o) B | (sp = (4.11)
a,pyy T a—vy(a—1) p Z t ’ ’
opd P 21 Z1-(t)

and®B(-, -) is the beta function.
In particular, in the setting described above

a(p=D+y(a=1)
P(u) = O (u_ e L=(e=1) <u1/p)> , asu — oo.

Proof. SeeAlparslan(2013 for a detailed proof. O

REMARKA4.2. A closer look at the result above reveals that in the caseabfieststeps
generated by conservative flowgu) could decay very slowly for values @fnear 1 and
values ofy arbitrarily close to O regardless of the valuecof Further observe that this is
true under the assumption of a kernel as “nice” as the onendiyg4.3). A comparative
look at TheorenB.1(b) shows that this is not the case when one considéns for stable
steps generated by dissipative flows.
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