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Abstract
We study ruin probability, a commonly used performance measure in actuarial science, as a risk

assessment tool for extreme events. Classical ruin problemusually assumes independent, identi-
cally distributed steps and a linear drift. However a more realistic setting in the context of climate
extremes requires temporal dependence in a given variable.Moreover, empirical evidence showing
increased likelihood of extremes necessitates modeling these variables using heavy tailed probabil-
ity laws. The case of heavy tailed, dependent steps is also interesting from a purely mathematical
point of view as it raises the possibility of relating the dependence structure of heavy tailed stochas-
tic processes to the asymptotic behavior of the ruin probability. This becomes particularly intriguing
when the variables are highly volatile so that it is not possible to use traditional covariance based
measures to quantify the dependence structure of the process. We propose a probability model,
which uses dependent variables following infinite-variance stable distributions, and allows for non-
linear drifts. We then analyze the effects of range of dependence on the ruin probability in this
setting.
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1. Introduction

The study of random walks with negative drifts is a popular subject of the the theory of
stochastic processes. The tail behavior of the supremum of such a random walk is of
particular interest in fields such as actuarial science, economics and time series analysis,
queuing theory, biology, and earth sciences, including environmental science, geophysics
and climate modelling. For instance, in actuarial science,the probability of the supremum
exceeding a certain threshold is known as theruin probability, where the negative drift
random walk represents the excess of the total claim amount in an insurance portfolio
over the loaded total premium. (SeeEmbrechts et al.(1997), Chapter 1.) There is a vast
literature on ruin probabilities and a list of classical references can be found inAsmussen
(2000). This probability is also important in the context of solutions to stochastic recurrence
equations, including ARCH and GARCH processes. (SeeEmbrechts et al.(1997), Chapter
8.) In queuing theory, this quantity is known as theoverflow probabilityand is directly
related to the stationary solution of Lindley equation. (SeeBaccelli and Brémaud(2003).)

Classical models in the literature on random walks with negative drifts usually deal
with independent, identically distributed (iid) steps with light tails. In most applications
however, the assumption of independent steps is clearly unrealistic. Additionally, the case
of dependent steps is of theoretical interest as it introduces the possibility of gaining more
insight into the probabilistic structure of the processes underlying the step sizes through the
study of such probabilities. This aspect becomes particularly intriguing when the steps are
heavy tailed with infinite second moments, in which case manyof the classical measures
of strength and range of dependence that mainly rely on covariance like functions become
meaningless or ambiguous at best. The presence of heavy tails in everyday life has been
established through empirical evidence. In the light of recent environmental, geophysical,
and financial extremes that affected masses, the concept of heavy tailed phenomena has
been attracting even more attention from academia and public alike.
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The asymptotic behavior of the tail probability of the supremum of a random walk with
negative drift and iid heavy tailed steps was given inEmbrechts and Veraverbeke(1982)
in the greatest generality of the family of subexponential step sizes. LaterAsmussen et al.
(1999) showed that the results in the iid case still hold under a fairly general dependence
structure of the heavy tailed steps, yet the results are not valid for all dependent claim sizes,
(see, for instanceMikosch and Samorodnitsky(2000b)).

In this paper we study the tail behavior of the supremum of a negative drift random walk
with dependent (sum-)stable increments. Stable probability laws are arguably the most im-
portant class of heavy tailed laws due to well known generalized central limit results for
random sequences with infinite variance. Here we will assumethat the steps of the random
walk constitute a stationary, ergodic, symmetricα−stable (SαS) process withα ∈ (1, 2).
For this particular range of the tail index the step size process has a finite first moment,
however the the second moment does not exist. This allows us to focus on the underly-
ing dependence structure when metrics based on covariance like functions do not work.
Furthermore, the results for stable steps represent, to some extend, provide a benchmark
for what can be expected for more general processes such as stationary infinitely divisible
processes.

In the past decade there has been some effort to study the asymptotic behavior of the
supremum with stationary, ergodic SαS steps.Mikosch and Samorodnitsky(2000a) es-
tablished certain results on the order of magnitude of the tail probability of the supremum
for negative drift random walks driven by different classesof stationary, ergodic SαS in-
crements. LaterAlparslan and Samorodnitsky(2007a,b) extended some of these results in
discrete time and established the order of magnitude for continuous time approximations
for high frequency increments. All of these papers however,assume a constant drift rate
yielding a linear cumulative drift process.

Braverman(2004) established an asymptotic equivalence between a class of functionals
acting on the sample paths of continuous time SαS processes and a deterministic process
based on the integral representation of the underlying stable process. One special case of
these functionals indeed gives the tail probability of the supremum of a continuous time
negative drift SαS random walk, where the drift rate is not necessarily constant. However,
this study does not provide any explicit results regarding the order of magnitude. Later,
Alparslan(2009) established the order of magnitude for certain classes of continuous time
SαS processes and accumulated drift processes following power rules.

Our primary objective in this paper is to establish an asymptotic equivalence between
the tail probability of the supremum of a negative drift random walk with stationary, ergodic
SαS steps and a functional based on the integral representation of the step size process
in the fashion ofMikosch and Samorodnitsky(2000a). However, here we will remove
the constant drift rate assumption and will allow a fairly general class of cumulative drift
processes. A detailed description of the model and the main results will be given in Section
2. In Section3 we will apply the main result to a class random walks with negative power
drifts and stationary SαS steps generated by dissipative flows to explicitly computethe
order of magnitude for the tail probability of the supremum.Section4 will show how a
different order of magnitude emerges when one uses SαS steps generated by conservative
flows instead.
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2. The Model and the Asymptotics of the Tail Probability

Let X = {Xn, n ∈ Z++}, be a measurable (implicitly assumed hereon), ergodic SαS
process withα ∈ (1, 2). SinceX is SαS, one can utilize the representation given by

Xn =

∫

E
fn(x)M(dx), n ∈ Z++, (2.1)

whereM is a SαS random measure on a measurable space(E, E) with aσ−finite control
measurem onE , (i.e.M is an independently scattered random measure onE such that

E [exp{iθM(A)}] = exp{−|θ|αm(A)}, θ ∈ R (2.2)

for everyA ∈ E with m(A) finite), and{fn}n∈Z++ ⊂ Lα(E, E ,m). (See Section 3.3 of
Samorodnitsky and Taqqu(1994) for details.)

Further, ifX is stationary then one can choosefn to be in a more descriptive form given
by

fn(x) = an(x)

[

dm ◦ φn
dm

(x)

]α

f ◦ φn(x), x ∈ E, n ∈ Z++, (2.3)

where{φn}n∈Z++ is a non-singular flow, (i.e. a family of measurable maps fromE ontoE
such thatφn = φn−1 ◦ φ for all n ∈ Z++, φ0 is the identity function onE, andφ is a non-
singular map onE), {an}n∈Z++ is a cocycle for this flow (i.e.a0(·) = 1, andan+1(x) =
an(x)a1 (φn(x)) for m−a.a.x ∈ E) taking values in{−1, 1}, andf ∈ Lα(E, E ,m). (See
Rosiński(1995).)

This representation is noteworthy as it makes it possible torelate the probabilistic struc-
ture of a stationary SαS process to the properties of a deterministic flow and a single kernel.
(SeeAlparslan(2009); Alparslan and Samorodnitsky(2007a,b); Mikosch and Samorod-
nitsky (2000a); Samorodnitsky(2004) for examples in which this idea is utilized.) For
instance, Hopf decomposition of the flow{φn}n∈Z++ (see, for instanceKrengel(1985)),
immediately implies that a stationary SαS process,X, can be written (in distribution) as a
sum of two independent stationary SαS processes

X = X(d) +X(c), (2.4)

whereX(d) is given by representations (2.1) and (2.3) with a dissipative flow, andX(c) is
given by representations (2.1) and (2.3) with a conservative flow. We will focus on step
size processes of the formX(d) in Section3 and on step size processes of the formX(c) in
Section4.

Define a random walkS = {Sn, n ∈ Z+} whose steps are governed byX as

Sn =
n
∑

k=1

Xk, n ∈ Z+, (2.5)

and let

hn(x) =

n
∑

k=1

fk(x), n ∈ Z+, (2.6)

(with the usual understanding that
∑0

k=1 · = 0.) Then it follows from (2.1) and Theorem
11.4.1 ofSamorodnitsky and Taqqu(1994) that

Sn =

∫

E
hn(x)M(dx), n ∈ Z+. (2.7)
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Finally letD = {Dn, n ∈ Z+} be a deterministic drift process taking positive values.
Then one can express the probability of ultimate exceedanceof a positive thresholdu by
the random walkS with negative driftD, as a function ofu, as

ψ(u) = P

[

sup
n∈Z+

(Sn −Dn) > u

]

, u > 0. (2.8)

The main result of this paper, which we present below, establishes the asymptotic relation
betweenψ(u) and the functional

ψ0(u) =
Cα

2

∫

E

{

sup
n∈Z+

[hn(x)]
α
+

(u+Dn)
α + sup

n∈Z+

[−hn(x)]
α
+

(u+Dn)
α

}

m(dx), u > 0, (2.9)

wherehn is given by (2.6) and

Cα =

(
∫ ∞

0
x−α sinx dx

)−1

, (2.10)

whereα ∈ (1, 2) is the tail index of the step sizes.

THEOREM 2.1. LetS = {Sn, n ∈ Z+}, given by (2.5), be a random walk whose steps,
given by (2.1), form a sequence of ergodic SαS random variables withα ∈ (1, 2). Also let
D = {Dn, n ∈ Z+} be a deterministic drift process such thatDn ≥ dnp, n ∈ Z+ for
somed > 0 andp ≥ 1.

(a) For ψ(u) andψ0(u) given by (2.8) and (2.9), respectively,

lim inf
u→∞

ψ(u)

ψ0(u)
≥ 1.

(b) If in addition, X is stationary and‖hn(·)‖Lα(E,E,m) = O(nγ) asn → ∞ for some
γ ∈ (0, 1) then

ψ(u) ∼ ψ0(u), as u→ ∞.

Proof of Theorem2.1(a). For the proof of the first part of the theorem we will use the
series representation ofX. Letm0 be a probability measure onE that is equivalent to the
control measurem in (2.1) and defineg := dm0/dm. Then it follows from Section 3.10 of
Samorodnitsky and Taqqu(1994) thatX can also be represented (in distribution) by

Xn = C1/α
α

∞
∑

i=1

σiΓ
−1/α
i g−1/α(Yi)fn(Yi), n ∈ Z++, (2.11)

where{σi}i∈Z++ is an iid sequence of Rademacher random variables, (i.e. discreet uniform
random variables on{−1, 1}), {Γi}i∈Z++ are the arrival times of a unit rate Poisson process
on the positive real line, (which are clearly dependent), and {Yi}i∈Z++ is an independent
sequence ofE−valued random variables with common probability lawm0. Furthermore,
these three sequences are mutually independent. Forx ∈ E define

Hn(x) = C1/α
α g−1/α(x)

n
∑

k=1

fk(x), n ∈ Z+. (2.12)

Then one can rewrite

ψ(u) = P

[

sup
n∈Z+

(

∞
∑

i=1

σiΓ
−1/α
i Hn(Yi)−Dn

)

> u

]

, u > 0. (2.13)
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and

ψ0(u) =

∞
∑

i=1

P

[

sup
n∈Z+

(

σiΓ
−1/α
i Hn(Yi)−Dn

)

> u

]

, u > 0. (2.14)

(Conditioning onΓis on the right hand side of (2.14) and summing overi gives (2.9).)
It follows from (2.11) and (2.12) that forn ∈ Z+, the random walkS can be written as

Sn = σ1Γ
−1/α
1 Hn(Y1) +

∞
∑

i=2

σiΓ
−1/α
i Hn(Yi) =: S(1)

n + S(2)
n . (2.15)

Now fix θ ∈ (0, 1). SetKθ,u := inf
{

n ∈ Z++ : S
(1)
n − (1 + θ)Dn > (1 + θ)u

}

and

define

ψ(1)(θ, u) := P

[

sup
n∈Z++

(

S(1)
n − θDn

)

> θu

]

(2.16)

Then conditioning onKθ,u, recalling the dependence structure of{Γn}n∈Z++ , and using

the symmetry properties of
{

S
(1)
n

}

n∈Z++

and
{

S
(2)
n

}

n∈Z++

we have

ψ(u) ≥

∞
∑

k=1

P
(

S
(2)
k + θDk > −θu

∣

∣

∣
Kθ,u = k

)

P (Kθ,u = k)

≥

[

inf
n∈Z++

P
(

S(2)
n + θDn > −θu

)

] ∞
∑

k=1

P (Kθ,u = k)

≥

[

inf
n∈Z++

P
(

S(2)
n + θDn > −θu

)

]

ψ(1)(1 + θ, u)

= ψ(1)(1 + θ, u) inf
n∈Z++

[

1− P
(

S(2)
n − θDn > θu

)]

= ψ(1)(1 + θ, u) inf
n∈Z++

[

1− 2P
(

S(2)
n − θDn > θu, σ1Hn(Y1) ≥ 0

)]

= ψ(1)(1 + θ, u) inf
n∈Z++

[

1− 2P
(

S(2)
n − θDn > θu, S(1)

n ≥ 0
)]

≥ ψ(1)(1 + θ, u) inf
n∈Z++

[1− 2P (Sn − θDn > θu)] .

(2.17)

Notice that the ergodicity ofX and the assumptions onD imply that the stochastic
process{Sn/(θDn)}n∈Z++ is almost surely bounded and

lim
n→∞

Sn
θDn

= 0 a.s.

Thus

lim sup
u→∞

P

[

sup
n∈Z++

(Sn − θDn) > θu

]

= 0,

and consequently, (2.17) gives

lim inf
u→∞

ψ(u)

ψ(1)(1 + θ, u)
≥ 1. (2.18)

Next, define two functions onE × R+ by

G+(y, u) := sup
n∈Z++

[

Hn(y)

u+Dn

]

+

, G−(y, u) := sup
n∈Z++

[

−
Hn(y)

u+Dn

]

+

.

JSM 2013 - Section on Risk Analysis

1471



Then conditioning onσ1 gives

2ψ(1)(1 + θ, u) = P
[

Γ1 < (1 + θ)−αGα
+(Y1)

]

+ P
[

Γ1 < (1 + θ)−αGα
−(Y1)

]

=

∫

E

{

1− exp
{

−(1 + θ)−αGα
+(y)

}}

m0(dy)

+

∫

E

{

1− exp
{

−(1 + θ)−αGα
−(y)

}}

m0(dy)

≥

∫

E
(1 + θ)−αGα

+(y) exp
{

−(1 + θ)−αGα
+(y)

}

m0(dy)

+

∫

E
(1 + θ)−αGα

−(y) exp
{

−(1 + θ)−αGα
−(y)

}

m0(dy),

(2.19)

where the last inequality follows from the fact thatex − 1 ≥ x for x ≥ 0. ForM > 0
define

EM :=

{

y ∈ E : sup
n∈Z++

|Hn(y)|
α

Dα
n

< M

}

,

and note that

EM ↑ E∞ :=

{

y ∈ E : sup
n∈Z++

|Hn(y)|
α

Dα
n

<∞

}

, asM → ∞.

But the ergodicity ofX implies that
∫

E
sup

n∈Z++

|Hn(y)|
α

nα
m0(dy) < 0,

(see e.g. Section 10.2 inSamorodnitsky and Taqqu(1994)), and hence

m0(E
c
∞) = 0. (2.20)

It is not hard to see that for an arbitraryǫ ∈ (0, 1), one can finduǫ such that for anyu > uǫ
andy ∈ EM

exp

{

−
|Hn(y)|

α

(1 + θ)α(u+Dn)α

}

> 1− ǫ.

Then for any suchu, it follows from (2.19) that

2ψ(1)(1 + θ, u) ≥
1− ǫ

(1 + θ)α

∫

EM

(

Gα
+(y) +Gα

−(y)
)

m0(dy) (2.21)

Now lettingu→ ∞, ǫ→ 0,M ↑ ∞, and using monotone convergence we conclude

lim inf
u→∞

ψ(1)(1 + θ, u)
1
2

∫

E∞

(

Gα
+(y) +Gα

−(y)
)

m0(dy)
≥ (1 + θ)−α. (2.22)

But then it follows from (2.9), (2.12), and (2.20) that

2ψ0(u) =

∫

E

(

Gα
+(y) +Gα

−(y)
)

m0(dy) =

∫

E∞

(

Gα
+(y) +Gα

−(y)
)

m0(dy), (2.23)

and we have

lim inf
u→∞

ψ(1)(1 + θ, u)

ψ0(u)
≥ (1 + θ)−α. (2.24)

Combining this with (2.18) and lettingθ ↓ 0 establish the desired result.
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Proof of Theorem2.1(b). Clearly, one could try to establish the desired result by proving

lim sup
u→∞

ψ(u)

ψ0(u)
≤ 1,

in the fashion of the proof of Theorem2.1(a). However, instead of a direct approach, here
we prefer a shortcut.

First note that under the given assumptions Proposition 7.4of Braverman(2004) im-
plies the existence of someε0 > 0 such that the process

{

nε0−1Sn
}

n∈Z++
is bounded

almost surely. Now fix such anε0.
For an arbitraryε > 0 define a new process by

Yn :=
(log n)2+ε−1/αSn

Dn
, n ∈ Z++.

Now it is not very hard to verify that for anyε > 0

(log n)2+ε−1/α

Dn
≤

(log n)2+ε−1/αSn
dnp

= o
(

nε0−1
)

, asn→ ∞,

and sinceε0 is chosen such that
{

nε0−1Sn
}

n∈Z++
is bounded almost surely, we conclude

that {Yn}n∈Z++
is also bounded almost surely. Then it follows from Theorem 10.2.3 of

Samorodnitsky and Taqqu(1994) that

sup
n∈Z++

∣

∣

∣

∣

∣

(log n)2+ε−1/αhn(·)

Dn

∣

∣

∣

∣

∣

∈ Lα(E, E ,m).

Finally, the desired result follows from Theorem 7.2 and Remark 7.3 ofBraverman(2004).

3. Steps Generated by a Dissipative Ergodic Flow

Here we provide an application of the main theorem given in the previous section. We
consider step sizes governed by process of the formX(d) given in (2.4). Rosiński(1995)
showed that stationary SαS processes generated by dissipative flows are automatically er-
godic and they have amixed moving averagerepresentation, i.e. for any such process,

X(d) =
{

X
(d)
n , n ∈ Z

}

, there exists a Borel spaceW , aσ-finite measureν onW and a

functionf ∈ Lα(W × R, W ×B, ν ⊗ λ) such that

{

X(d)
n

}

n∈Z

d
=

{
∫

W

∫

R

f(w, x− n)M(dw, dx)

}

n∈Z

, (3.1)

whereM is a SαS random measure on the product spaceW × R with the control mea-
sureν ⊗ λ, whereλ is the Lebesgue measure. Moreover, if the dissipative flow itself is
ergodic, (recall that a null-preserving transformationφ on (E, E ,m) is called ergodic if all
φ-invariant setsA have the property thatm(A) = 0 or m(Ac) = 0), thenW becomes
a singleton, and the representation given by a mixed moving average reduces to the more
familiar, usual moving average,

{

X(d)
n

}

n∈Z

d
=

{
∫

R

f(x− n)M(dx)

}

n∈Z

. (3.2)
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To illustrate the use of our main results from Section2, suppose the step sizes,X =
{Xn, n ∈ Z++}, form a stationary SαS process given by

Xn =

∫

R

f(x− n)M(dx), n ∈ Z++, (3.3)

wheref ∈ Lα(R,B, λ), andM is a SαS random measure on(R,B) with Lebesgue control
measure,λ.

Let the random walkS be defined as before but now forn ∈ Z+, hn(·) becomes

hn(x) =
n
∑

k=1

f(x− k), x ∈ R.

Further suppose the deterministic drift processD is given by

Dn = dnp, n ∈ Z+, (3.4)

for somed > 0 andp > 1. The proof for the main result of this section does not work
whenp = 1. However, the relevant results for the case ofp = 1 can be found inAlparslan
and Samorodnitsky(2007a), which coincide with the findings presented here “in the limit”
(asp ↓ 1).

Lastly, foru > 0 let ψ(·) be as in (2.8), however note thatψ0(u) now becomes

ψ0(u) =
Cα

2

∫

R

{

sup
n∈Z+

[
∑n

k=1 f(x− k)]α+
(u+ dnp)α

+ sup
n∈Z+

[−
∑n

k=1 f(x− k)]α+
(u+ dnp)α

}

dx. (3.5)

THEOREM 3.1. Let S = {Sn, n ∈ Z+} be a random walk whose steps are given by
(3.3) with α ∈ (1, 2) andf : R 7→ R+. Also letD = {Dn, n ∈ Z+} be a deterministic
drift process given by (3.4).

(a) If f /∈ L1(R,B, λ) thenuα−(1/p)ψ(u) → ∞ asu → ∞, i.e. ψ(u) decays slower than
u(1/p)−α.

(b) LetK− ∈ Z− andK+ ∈ Z+ be such that the function

f∗(x) := sup
t≥0

f(x− t)1{x≤K−} + f(x)1{K−<x<K+} + sup
t≥0

f(x+ t)1{x≥K+}

belongs toL1(R,B, λ). Further assume that there exists a monotone functiong, regularly
varying at infinity with index−q, q > 1, which dominatesf∗ on [K+,∞). Then asu→ ∞

ψ(u) ∼
Cα

2pd1/p
B

(

1

p
, α−

1

p

)

I(f)u(1/p)−α,

whereB(·, ·) is the beta function and

I(f) :=

∫ 1

0

[

∞
∑

k=−∞

f(x− k)

]α

dx <∞.

Proof. SeeAlparslan(2013) for a detailed proof.
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4. Ergodic Steps Generated by a Conservative Flow

In this section we demonstrate another application of the main theorem of Section2, which
also serves to show how drastically different the order of magnitude ofψ(u) can be when
one uses stable steps generated by a conservative flow instead of steps generated by a dis-
sipative flow such as in the setting studied in Section3. To achieve this, it will be sufficient
to focus on a particular class of stationary SαS whose control measure is constructed using
null recurrent Markov chains. We now proceed with the setup.

Consider an irreducible, null-recurrent Markov chain,Y = {Yn, n ∈ Z++} onZ with
law Ps(·) on

Z
Z+ = {y = (y0, y1, y2, . . .) : yi ∈ Z, i ∈ Z+}

corresponding to the initial statey0 = s ∈ Z.
Let π = {πs, s ∈ Z} be theσ−finite invariant measure corresponding to the family

{Ps, s ∈ Z} satisfyingπ0 = 1, and define aσ−finite measure onZZ+ , the cylindrical
σ−field of ZZ+ by

m(·) =

∞
∑

i=−∞

πiPi(·). (4.1)

We will model the steps of the random walk,X = {Xn, n ∈ Z++}, with a SαS
process defined by

Xn =

∫

Z
Z+

fn(y)M(dy), y ∈ Z
Z+ , n ∈ Z++ (4.2)

whereM is a SαS random measure onZZ+ with control measurem given in (4.1) and the
kernelsfn are chosen to be of the form

fn(y) = 1[yn=0], n ∈ Z++, y = (y0, y1, y2, . . .) ∈ Z
Z+. (4.3)

The results of this section can be extended to a more general family of kernelsfn, as in
for instanceResnick et al.(2000) or Alparslan and Samorodnitsky(2007b). However, a
kernel as simple as the one given above is enough to accomplish our goal of demonstrating
the difference in the order of magnitude ofψ(u) in the conservative case compared to the
dissipative case.

It follows from Rosiński and Samorodnitsky(1996) that the processX given by the
stochastic integral representation (4.2) is a stationary mixing process, and in particular is
ergodic. FurthermoreX is associated with a conservative flow.

Now let S = {Sn, n ∈ Z+} be a random walk whose steps are given by (4.2) and
defineψ(u) as in (2.8) with D = {Dn, n ∈ Z+} given by (3.4). For an integers and
y ∈ Z

Z+, define the number of visits to states in n steps to be

N (s)
n = N (s)

n (y) :=

n
∑

j=1

1[yj=s](y). (4.4)

With this notation (2.9) reduces to

ψ0(u) =
Cα

2

∫

Z
Z+

(

sup
n∈Z+

N
(0)
n

u+ npd

)α

m(dy), u > 0. (4.5)

For a giveny ∈ Z
Z+ ands ∈ Z, define the number of steps until the chain returns to

states for the first time as

τ (s) = τ (s)(y) := inf{n ∈ Z++ : yn = s}. (4.6)
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Note that by the null-recurrence of the Markov chainEsτs = ∞, for anys ∈ Z. We will
further assume that there is a constantγ ∈ (0, 1) and a slowly varying functionL such that
for anyn ∈ Z++

P0

(

τ (0) ≥ n
)

= nγ−1L(n). (4.7)

Further letZ1−γ = {Z1−γ(t), t ∈ R+} be a(1−γ)-stable subordinator, i.e. a positive,
increasing, strictly stable Lévy motion with characteristic function given by

E [exp {iθZ1−γ(1)}] = exp

{

−
|θ|1−γ

C1−γ

[

1− i tan
π(1− γ)

2

]}

, θ ∈ R. (4.8)

Now we are ready to state the main result of this section.

THEOREM 4.1. If the relation (4.7) holds then

lim inf
u→∞

u
α(p−1)+γ(α−1)

p Lα−1
(

u1/p
)

ψ(u) ≥ 2
− (p−1)[α−γ(α−1)]

p Iα,p,γ (4.9)

and

lim sup
u→∞

u
α(p−1)+γ(α−1)

p Lα−1
(

u1/p
)

ψ(u) ≤ Iα,p,γ (4.10)

where

Iα,p,γ =
CαB

(

γ
p ,

α(p−1)+γ(α−1)
p

)

2pd
α−γ(α−1)

p

E





(

sup
t≥1

(t− 1)1/p

Z1−γ(t)

)α(1−γ)


 , (4.11)

andB(·, ·) is the beta function.
In particular, in the setting described above

ψ(u) = O

(

u−
α(p−1)+γ(α−1)

p L−(α−1)
(

u1/p
)

)

, asu→ ∞.

Proof. SeeAlparslan(2013) for a detailed proof.

REMARK4.2. A closer look at the result above reveals that in the case of stable steps
generated by conservative flowsψ(u) could decay very slowly for values ofp near 1 and
values ofγ arbitrarily close to 0 regardless of the value ofα. Further observe that this is
true under the assumption of a kernel as “nice” as the one given by (4.3). A comparative
look at Theorem3.1(b) shows that this is not the case when one considersψ(u) for stable
steps generated by dissipative flows.
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