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Abstract 

Nesting of experimental factors is well established in statistical design literature relating 

to agricultural, environmental and engineering studies.  It is less often discussed in 

biological and laboratory experiments stemming from the use of human bio-specimens, 

where sample size considerations are most often provided a priori on subject level, and 

there is little advice regarding the needed number of units at lower levels. In this paper, 

motivated by an example from spectroscopic microscopy, we revisit the experimental 

nesting framework and discuss how variability, cost of sampling and sample size at 

lower levels may be coherently utilized. We show how the number of subjects may have 

to be adjusted to account for sampling decisions made at lower levels.  
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1. Introduction 

In clinical trials, the number of sampling units to be studied on sub-subject level is often 

chosen according to existing laboratory folklore (“we always do three repeats”), and 

most often only the subject or group level data is reported and analyzed. The expected 

effect size is typically considered on a treatment group level; that is, as a result of an 

average across all existing levels: sub-cell level, cell level, tissues level, per human 

subject, and then per group.   

Sample size calculations are then considered using an overall measure of variability 

observed in some past experiment, and considering the effect size that would make a 

clinical difference. Possible knowledge of variability at lower levels may be available, but 

is rarely included in the planning. This makes answer to the question ‘how many items 

should be measured at lower levels?’ left to guessing or to institutional folklore. In this 

report we revisit the nesting framework and discuss how effect size and sample size at 
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various levels may be thought of and coherently utilized. We also look into the possible 

orders of magnitude of cost of measurements at different levels of nesting.  

 

 

2. Motivating Example: a Lung Cancer Study  

The design of this observational study (Roy et al. 2010) involves collecting Ld 

measurements of “cell disarray” based on partial wave spectroscopic microscopy, from 

a population comprised of lung cancer patients, and three groups of controls: patients 

with COPD, smoking controls, and nonsmoking controls.  Large values of Ld are in theory 

associated with disarray in cell structure and would suggest presence of cell stress 

eventually leading to development of cancer.        

In the initial study measurements were recorded for each of 135 subjects, (cancer, 

COPD, smokers, non-smokers) with approximately 20-30 cells per subject, and within 

each cell, data were obtained from approximately 100,000-200,000 pixels per cell, each 

providing a measure of Ld. Such large number of pixels was provided by a machine which 

visually recorded the entire cell structure, as a part of a separate project. A summary of 

results is provided in Figure 1 below. Cancer patients have the largest average level of 

Ld, followed by COPD patients smoker-controls and finally by non-smoking controls. The 

ROC curves were formed and AUC(ROC) was observed to be in the 0.85 realm.  

Figure 1. Summary of Roy et al. (2010) study results  

 

Importantly, the structure of measurement was such that pixels were nested within 

cells, cells were nested within subjects, while subjects were nested in several 

diagnosis groups as in Figure 1. The underlying working hypothesis was that Ld levels 

sufficiently differ among patient groups so that a prediction rule may be developed and 
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tested prospectively in a future cancer screening trial, and a prophylactic prevention 

treatment could be applied to subjects at risk (subjects with high Ld).     

The data was summarized and analyzed by averaging pixel intensity, providing values of 

the cell intensity, averaging over cells, thus providing a subject intensity and then, finally 

averaging subject intensities over groups of patients.  

The question we wished to address was: In planning a future clinical trial, given the 

observed variability at each level of data, what sample sizes should be selected at 

lower levels below subject level?  

Of course this question is related to specific components of variance which we look into 

next.  

 

3. Components of variance and averages across sampling levels 

 

We make some simple and predictable assumptions. Let X=x be the measurement at the 

pixel level, and assume it is independent from other observations on pixel level, and 

they all have common finite variance 2

pix  . Then the averages across pixels in a cell 

have variance given by: 

  

Var(x pix ) =
s

pix

2

n
p

 

Higher, on the cell level:  

2 2 2

cell BetweenCells WithinCell   

  

= s
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Then the average across cells has variance: 

  

Var(xcell ) =
s

cell

2

n
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On the subject level:  
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Finally, the last expression simplifies to a result we will find useful: 

2 2 2

( )
BetweenSubjects BetweenCells BetweePixels

subject

s s c s c p

Var X
n n n n n n

  
    

Several things are worth noting here.  

1. First, the first summand in the formula above is usually used to estimate the 

entire expression.  

2. Second, however one determines ns, once it is determined other elements in 

the equation may be used to minimize, with appropriate constraints, the entire 

expression for variance.  

3. Finally, one can study the trade-off among three sample sizes above, total 

variance, and total cost of the experiment. 

In our motivational paper, Roy et al. (2010) observed:  

2 0.308BetweenSubjects  , 2 0.112BetweenCells  , and 2 2.552pix  .  

 

4. Sample size justification at lower levels as proportion of total variance of the 

mean 

From established expression for variance of the overall mean across ns subjects  

2 2 2

( )
BetweenSubjects BetweenCells BetweePixels

subject

s s c s c p

Var X
n n n n n n

  
    

We can derive proportion of variability due to subjects and demand that sample sizes at 

lower levels guarantee that proportion of total variability due to lower levels is small, 

say 1% or smaller. This would translate to: 
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Notice that ns cancels out from the left hand side, giving 

 

The inverse of which inflation ratio IR: 

 

IR can be interpreted as proportional increase in total variance due to lower (nested) 

levels.  

It has consequent effect on sample size calculation, as demonstrated below.  

For example, consider the standard two sample t-test formula for sample size, with Type 

1 error = 5%, alternative hypothesis is two-sided, and desired power is 80%:  

 

This sample size would have to be amended due to additional variability at lower levels.  

The following table provides several values of the inflation ratio IR of the two sample 

sizes at lower levels.  

Table 1. Percent increase in sample size needed for a future study given components 

of variance from past study in Roy et al. (2010) 

nc 3 5 10 50 10 100 20 

np 3 5 10 10 100 100 150 

IR% 208 80.8 23.8 4.77 8.93 0.89 4.19 
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Thus if we chose 3  observations per each lower level, we will need to increase subject 

level sample size by almost 210%, with 10 observations per lower level by about 24% 

and with 100 observations per level this becomes less than 1%.   

Cost difference between the processing of a cell and processing of a pixel may add to 

deciding on optimality, and we discuss this next.  

 

5. Sample Size Justification involving cost 

Snedecor and Cochran (1967, p. 533)  provide rationale for estimation of sample sizes 

on various levels using optimization via a cost function. Consider the cost of obtaining all 

of the samples on three levels as  

cos cos coss s s c c s c p pCost n t n n t n n n t    and variance of the mean across subjects  

2 2 2

( )
BetweenSubjects BetweenCells BetweePixels

subject

s s c s c p

Var X
n n n n n n

  
    = Variance 

Then, using advanced calculus in derivation, the product  

VC = Variance x Cost  

can be minimized for  
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 , 

where ns drops out from the equation.  

In reality, it is either known beforehand, or found from the usual sample size 

considerations on subject level. 

To verify these expressions for our data, we use the following information:  

2 0.308BetweenSubjects 
2 0.112BetweenCells  2 2.552pix  . 

Note that variance at the lowest level is an order of magnitude larger than those at 

upper levels. This in principle does not have to be the case and reversed order of 

magnitude is possible as well.  

We take an estimate that cost per subject = $1,000, cost per cell = $1, cost per pixel = 

$0.001. Simple application of formulas above provides:  

 
1 2.552

150.94
0.001 0.112

pn
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When these two values are used in Table 1, as 150 and 20 approximately, we see that 

the total sample size on subject level has to be increased by about 4.2%.  

If the total sample size previously planned is 100, the adjusted sample size would be 

about 104 to have similar power as planned. This would translate into $4,000 additional 

cost if approximate cost per subject is $1,000, for a total of $104,000 for subject 

recruitment. For lab work we have 20x$1 + 150x$0.001 =$ 20.15 per subject or 104 x 

$20.15 = $2,095.60 for all subjects, for the grand total cost of the trial of $106,095.60. 

This of course assumes the trial drug or treatment is paid for from other resources or 

provided free of charge. 

 

6. Discussion 

Snedecor and Cochran (1967), provide an example of three stage sampling of turnip 

green plants: the first stage is plants, second stage is leaves within plans, the third stage 

is determinations within one leaf. Underwood (1997) provides an example of nested 

sampling via orchards, trees, branches and twigs.  Sokal and Rohlf (2012) provide 

example of experiment involving drugs, rats, rat livers and readings within livers. Quinn 

and Keough (2002) provide an example of effect of grazing of sea urchins on percentage 

cover of filamentous algae. All these examples essentially provide the same solution to 

the questions raised in this article.  

If total available cost of the experiment is provided, sample size on the subject level can 

be calculated to fit the cost constraints. In clinical trials however, one usually starts with 

the sample size on subject level, and not the total cost allowable for the trial. Laboratory 

or ‘pathology’ costs are calculated separately and are often unknown.  

We suggest taking the following steps.  

1. Get an estimate of variability on each sampling level.  

2. Calculate sample size on subject level first, obtaining ns. 

3. Find an optimal combination of sample sizes on lower levels, following 

arguments and methods provided in this paper. 

4. Increase ns as needed to achieve previously planned power.  

 

 

1000 0.112
19.01

1 0.308
cn
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