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Abstract
In this paper we introduce a set of robust non-negative factorization (rNMF) algorithms for analyz-
ing large and corrupted data. The central idea is to introduce a penalized criterion that incorporates
a trimming component, so that the rNMF procedure is flexible enough to handle different types of
noise that may arise in a data source, and simultaneously control the sparsity of the decomposition.
Multiple algorithms are developed by varying the way that outliers are determined and subsequently
handled. The resulting algorithms work well when compared to existing NMF algorithms com-
monly used in practice and an existing robust NMF procedure. The rNMF algorithms developed
here include fully automatic controls and semi-supervised controls to address more difficult areas
that an unsupervised algorithm cannot properly handle. We illustrate the proposed methodology
using simulated tumor image data and images of faces subject to different types of corruptions.

Key Words: Non-negative matrix factorization, robustness, corrupted data, facial image, image
cleaning, data compression

1. Introduction

Non-negative matrix factorization (NMF) is a method for obtaining low dimensional struc-
ture from high dimensional data. NMF has been studied under the name “positive matrix
factorization” by Paatero and Tapper (1994), and became widely known after Lee and Se-
ung (1999) showed a dramatic example and proposed simple algorithms. Given a data
matrix representing high dimensional data, traditional dimension reduction methods in-
clude principle component analysis (PCA), singular value decomposition (SVD), and vec-
tor quantization (Hastie et al. 2009). When a data matrix consists of non-negative entries,
NMF enforces non-negative constraints and relaxes the orthogonality constraints enforced
by PCA. It is more likely to capture parts-based underlying structures of the data by induc-
ing an additive representation of the original data matrix (Fogel et al. 2013). Like many
methods, NMF is sensitive to outliers. As illustrated in section 3.1, unwanted corrupted
values in data sets are often captured by regular NMF as relevant features, and as a result
compromises representations of real features.

Some robust NMF procedures have been proposed recently. See for example Zhang et
al. (2011) and Rapin et al. (2012). The essence of the existing work involves adding a
sparse matrix of the same dimension of the original matrix to NMF model, the purpose of
which is to exactly capture a few sparse outliers, deterministically, leading to essentilly the
same approach in both papers.

We approach the problem differently by using statistical trimming procedures while in-
corporating sparsity constraints. Our robust NMF, called rNMF, offers seven variations in
determining and handling outliers to treat different types of data sets and corruptions. The
main idea uses an alternating non-negative least squares updating rule. Outliers in rows,
columns and/or cells are detected in each iteration and trimmed or smoothed accordingly.
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Euclidean distances are used to measure distance. In addition to a traditional NMF appli-
cation, where low dimensional structure is learned from multiple data vectors, our robust
NMF procedure can also be used to compress a single corrupted image and decompose it to
reveal its part-based structure. Combining the ability of rNMF to obtain a clean compres-
sion with a supervised smoothing algorithm, we also develop a semi-automatic procedure
that cleans different types of outliers in a heavily corrupted image. Adding to the seven
variations of the rNMF approach, by this semi-supervised approach, we have a set of total
eight algorithms. All algorithms are programmed in R (R Core Team 2013).

The structure of the paper is as follows. In Section 2 we introduce our main robust NMF
model and algorithms (rNMF). In Section 3 we apply our rNMF to two types of image data,
tumor and face images. Multiple image examples using the rNMF algorithms developed
here are reserved for a future paper, where it is shown that our rNMF procedure does not
suffer the averaging effect that some existing robust procedure exhibits. In Section 4 we
develop a multi-level semi-supervised rNMF procedure (MrNMF) for compressing and
cleaning images with complex corruptions. Some discussions and conclusions are given in
Section 5.

2. Robust Non-negative Matrix Factorization (rNMF)

2.1 Regular NMF

Consider a p × n non-negative matrix X, representing an image matrix. Let xij ≥ 0, i =
1, . . . , p, j = 1, . . . , n denote the i, j-th entry of X. The goal of NMF is to factor X into
two low rank non-negative matrices whose product is as close to X as possible with respect
to a certain measure. X is expressed as

X = WH+E (1)

where W is p×k and H is k×nmatrices with k << min(p, n), and all entries of W and H
are non-negative. In other words, W and H are chosen so that a distance measure between
X and WH, namely D(X,WH) is minimized. Frequently used measures include the
Frobenius distance defined by

D(X,WH)F :=

√∑
i,j

e2ij

where eij denotes the i, j-th entry of X −WH. Another measure is the generalized
Kullback-Leibler divergence defined by

D(X,WH)KL :=
∑
i,j

(
xij log

(xij)

yij
− xij + yij

)
where yij denotes the i, j-th entry of WH. We use the Frobenius distance in this paper,
but the algorithms can be easily modified to use the generalized Kullback-Leibler diver-
gence. Frobenis distance is optimal if the elements in E are normally distributed, while the
generalized Kullback-Leibler divergence is optimal if E has a Poisson distribution.

2.2 Proposed rNMF

Given a data matrix X, the goal of our rNMF is to obtain

X ≈WH, where X ∈ Rp×n
+ ,W ∈ Rp×k

+ ,H ∈ Rk×n
+
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such that W and H are resistant to outliers in X, while controlling certain attributes of W
and H, such as sparsity. To achieve the goal, we propose a trimmed, penalized criterion

(H,W) = argmin
W≥0,H≥0

{
‖X−WH‖2F,trim + α‖W‖2F + β

n∑
j=1

‖h·j‖21
}

(2)

where ‖ · ‖1 stands for the L1 norm and h·j denotes the j-th column of H. α bounds
‖W‖2F , and β controls the sparsity of H. ‖ · ‖F,trim will be defined below. We may further
normalize W by requiring ‖w·j‖2 = 1 while holding α to be 0. Our criterion (2) can be
viewed as a generalization of the criterion proposed by Kim and Park (2007). It is reduced
to the latter by setting the trimming percentage in ‖X−WH‖2F,trim to zero. Furthermore,
if α and β are also set to zero then (2) becomes the objective function of a regular NMF
procedure.

How to trim the difference matrix X −WH is actually challenging. One natural ap-
proach would be to adapt the idea of a trimmed regression: 1. Estimate W and H using
a NMF algorithm. 2. Remove points with extreme residuals. 3. Refit NMF with the re-
maining points. However this approach does not yield good results, as in most cases NMF
algorithms also identify outliers as real features (see Figure 1).

In our rNMF procedures, different actions are taken for different types of data: tumor
images, face images, or other types of biological data. Our central idea in finding a solution
to (2) is to combine and generalize Kim and Park (2007)’s alternating non-negative least
square (ANLS) algorithm for sparse NMF, with a trimmed least squares procedures in a
tactical way. Specifically, our rNMF back-bone algorithm is:

1. Randomly initialize H.

2. With the fixed H, update W by solving

W← argmin
W≥0

∥∥∥∥( HT

√
αIk

)
WT −

(
XT

0k×p

)∥∥∥∥2
F

. (3)

2a. Declare outliers by evaluating residuals R = X−WH (see details below).

2b. Trim or smooth outliers (see details below) .

2c. Refit W with trimmed/modified X and H by (3).

3. With the fixed W, update H by solving

H← argmin
H≥0

∥∥∥∥( W√
βe1×k

)
H−

(
X

01×n

)∥∥∥∥2
F

(4)

3a. Declare outliers by evaluating residuals R = X−WH (see details below).

3b. Trim or smooth outliers (see details below) .

3c. Refit H with trimmed/modified X and W by (4).

4. Go to 2, unless convergence or the maximum number of iterations is reached.

Note that W and H are updated alternatively until convergence, and trimming occurs
at either or both updating steps. Care is needed in deciding which data cells or vectors are
outliers (step 2a and/or 3a), and how much related information needs to be trimmed (step
2b and/or 3b). Different criteria for declaring and trimming outliers are summarized in the
following. The degree of the trimming percentage is a user option denoted by 0 < γ < 1.
Let wi· and h·j denote the i-th row vector of W and j-th column vector of H, respectively.
All products are matrix multiplications.
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1. The options for step 2a & 2b are the following:

(i) Calculate r2·j , the column residual sum of squares, for j = 1, . . . , n. De-
clare columns that have γ largest r2·j to be the outlier columns; Remove outlier
columns from X and H.

(ii) Calculate r2i,j , the cell residual sum of squares, for i = 1, . . . , p, j = 1, . . . , n.
Declare columns that contain cells corresponding to γ largest r2i,j to be the
outlier columns; Remove outlier columns from X and H.

(iii) Calculate r2i,j , as that in (iii), for i = 1, . . . , p, j = 1, . . . , n. Declare cells
that contain γ largest r2i,j to be the outlier cells; Smooth outlier cells in X with
averages of nearest neighbors (See the Smoothing Subroutine in Section 4).

(iv) Do nothing.

2. The options for step 3a & 3b are similar to those of 2a & 2b, but for rows i, leading
to four options, denoted by (I), (II), (III) and (IV).

In principle, each combination of the above criterion for Step 2a & 2b and Step 3a & 3b
defines one unique trimming procedure, but not all choices are sensible. The actual choices
of combinations should depend on the nature of the data set X. For example, if X consists
of pixel intensities of a single facial image with sparse corruptions, approach (iii) and (III)
are appropriate (See Section 3.2). If X consists of column vectors each of which represents
an observation with p features, approach (i) or (ii) and (IV) generally yield better results.
In summary, the sensible combinations would lead to 7 variations in our rNMF:

1. ‘‘colcol’’: (i) + (IV).

2. ‘‘cellcol’’: (ii) + (IV).

3. ‘‘rowrow’’: (iv) + (I).

4. ‘‘cellrow’’: (iv) + (II).

5. ‘‘vecall’’: (i) + (I).

6. ‘‘cellall’’: (ii) + (II).

7. ‘‘smooth’’: (iii) + (III).

where the rationals for variations 1-6 are obvious, and the rational for variation 7 is given
in Section 3.2.

Remark 1. Regardless of the choices of row, column and/or cell trimming, trimming and
modification of X,W and H take place in each iteration, so that the descent of the objec-
tive function towards its local minimum is not affected by corrupted rows/columns/cells. As
shown in Figure 2.

We conclude this section with the following proposition showing the convergence of
rNMF algorithm. We leave the proof and discussion of the proposition to the full journal
paper.

Proposition 1. Under the conditions defined in the beginning of this section, (2) converges
to its local minima by the rNMF algorithm.
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3. Corrupted Image Compression and Cleaning by rNMF

In this section we illustrate rNMF with examples of different types of corrupted data sets.

3.1 rNMF with Tumor Data

First we apply rNMF to a single corrupted simulated tumor image. As shown in Figure 1,
regular NMF compressions shown in the first five little images are compromised by outliers,
while rNMF shown in the last little image effectively removes outliers. Figure 2 compares
histograms of fitting errors of rNMF and other 5 popular NMF methods. The results for
regular NMF are obtained from the “NMF” R package (Gaujoux and Seoighe 2010).

Figure 1: The dimension of the simulated tumor image is 70 by 70. Pixel intensities range
from 0 to 1, and 10 outliers at intensity 2 are added at random locations. Results from five
regular NMF procedures (Kim and Park 2007, Gaujoux and Seoighe 2010) are compared
with the rNMF result. Outliers are effectively removed during the compression by rNMF.

Figure 2: Comparisons of fitting residuals of rNMF and regular NMF procedures. Fitting
residuals are the differences between the reconstructions and the original clean image.
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One key advantage of NMF over other dimension reduction techniques is the ability to
obtain a parts-based reconstruction. In Figure 3 we plot reconstructions of the tumor image
by all possible subsets of the columns of the first matrix W and corresponding rows of the
second matrix H. From the sequential plotting we can clearly see that column 1, 2 and 3 of
the first matrix captured most of the information in the original tumor data. Further more,
each column explains one tumor.

Figure 3: Sequential plotting of tumor image rNMF reconstruction.

3.2 rNMF with YaleB face image

In this section we apply rNMF on facial image with different types of corruptions. A
gray scale image from the Yale Face Database B (Georghiades et al. 2001) is manually
contaminated with three types of corruptions. Pixel intensities of the original image are
normalized to range [0, 1]. Corruptions are added at intensity 0.7.

Face images have more complicated connected features than the simulated tumor image
shown in the previous section. After outliers are determined in step 2a and/or 3a, trimming
entire rows or columns may remove an entire portion of real facial feature. Therefore,
these outliers are smoothed out by averaging values of neighboring pixels (variation 7
‘‘smooth’’). Various corruptions of the face were considered (see Figure 4): salt &
pepper corruptions in a1, stream corruptions in b1, and block corruptions in c1. rNMF
works very well with sparse corruptions (see a1, a2, b1 and b2 in Figure 4) but not clus-
tered ones (see c1 and c2 in Figure 4). This is expected, as without supervision the third
type of outliers in an image is recognized as a feature in much the way other clustered
features are identified, e.g., eyes, mouth, etc. It generates small residuals in each fitting
iteration, therefore it is not trimmed out by rNMF. Motivated by this limitation, we develop
a semi-supervised rNMF procedure in the next section.

4. MrNMF: Semi-supervised Compression and Cleaning by rNMF, a Multi-level
Algorithm

To distinguish the regular blockwise outliers with the true features (such as the whites
in eyes as illustrated in Section 3.2), a fully automatic algorithm would have to be com-
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Figure 4: We apply rNMF to compress a single image contaminated by three types of
outliers. The dimension of one image is 192 by 168. variation = ‘‘smooth’’, k
= 15.

plex and costly to incorporate various types of blocks, specifying whether they represent
true outliers or special features in an image, while a human can distinguish the differ-
ence of these two types of blocks easily. Hence, we introduce a semi-supervised proce-
dure which let both computer and human do their best quickly and easily (a.k.a allowing
semi-supervised cleaning by simple clicks inside an automation). Before introducing the
multi-level semi-supervised rNMF (MrNMF), we need the following simple smoothing
subroutine.

Procedure 1 (Smoothing Subroutine).

1. Assume a certain amount of points in a data matrix are labeled as outliers, and the rest are
labeled as regular points.

2. For each outlier, search for regular points within a small radius of a predetermined length
r. Increase r if there are no regular points in the neighborhood. Repeat until some regular
points are found.

3. Replace the outlier with the average of regular points in the neighborhood.

4. Repeat 1,2 and 3 until all outliers are smoothed.

The smoothing subroutine is used in each iteration in the seventh variation of rNMF
introduced in Section 2. This variation of our rNMF procedure successfully removed sparse
outliers such as salt & pepper or stream noise. The smoothing subroutine can also be used
independently to clean images, given that outliers are labeled in advance. Such situation
includes images with missing values or outliers with extreme values (See Figure 5).

On the other hand, blocks of outliers in single images are much more difficult to
detect automatically without involving complex algorithms that reveal data-specific low-
dimensional structures. Motivated by this, we introduce the following fast semi-supervised
detection procedure for block outliers.
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Figure 5: Apply thresholding and the smoothing subroutine with one corrupted Yale
database B face image. Pixel intensities of the original image is normalized to [0, 1]. Out-
liers are added at intensity 1.001.

Procedure 2 (Semi-supervised Detection of Block Outliers).

1. Select rectangular region that covers an outlier cluster.

2. Perform k-means clustering to separate the region into two sets, label the set that has
more distinctive pixel values than surrounding areas as “outliers”, and label other points
“regular points”.

Combining the above two procedures with our rNMF, we develop a comprehensive
multi-level rNMF (MrNMF) which has two important features. First it is capable of ex-
tracting clean low dimensional structure from a heavily corrupted image. Second it is
a powerful image cleaning algorithm that effectively removes both clustered and sparse
outliers at various pixel intensities, while protecting various sensible areas with minimal
human interaction. The outline of MrNMF is summarized as follows, and illustrated in
Figure 6.

Procedure 3 (Multi-level rNMF, MrNMF ).

1. Denote the original corrupted image by M1.

2. Threshold and smooth outliers accordingly in M1 by Procedure 1. Denote the output by
M2. This step is automatic given threshold parameters.

3. (A quick human controlled step.) Apply Procedure 1 and 2 on M2. Denote the resulting
image by M3.

4. Apply rNMF to M3. Denote the low dimension reconstruction by M4.

5. Subtract M4 from M3. Denote the difference matrix by MD.

6. Label η% pixels of MD that have the most extreme values as “outliers”, where η% is a
predetermined percentage.

7. Smooth “outliers” labeled in the previous step with Procedure 1.

Remark 2. A clean low dimension reconstruction is obtained after Step 4 in MrNMF. Step
5 - 7 further generate an uncompressed clean image. If necessary, Step 3 can be reapplied
after Step 7.
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Figure 6: Multi-level rNMF (MrNMF).

5. Discussions and Conclusions

We have developed a set of effective rNMF algorithms and the MrNMF procedure, which
achieve data compression in all tested cases while removing outliers and keeping the most
important features, such as the whites in eyes, and eye pupils, as shown in Figure 6. We
have also applied and extended our procedures to multiple images and compared with an
existing robust procedure. We shall present the multiple image result in a full journal paper.
The purpose of this proceedings paper is to provide some wonderful ideas, and show what
our algorithms can do, signaling a good beginning of our new set of rNMF algorithms,
quickly.
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