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A Parametric Bootstrap Approach for Two-way ANOVA under Unequal
Variances with Unbalanced Data

Guoyi Zhang
Abstract
This research is to provide a solution of two-way ANOVA without using transformation when vari-
ances are heteroscedastic and group sizes are unequal. Parametric bootstrap tests for main effects
and interaction terms have been shown to be competitive with some other methods. We extend the
parametric bootstrap algorithm to multiple comparison procedures. Simulation results show that the
parametric bootstrap approach works well for two-way ANOVA.
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1. Introduction

Consider the ANOVA problem afb normal populations with unequal population variances

afj i=1,2---,aandj = 1,2,--- ,band letY;;, Yij2,- - - ,Yijn,, be arandom sample
from N (u;;, afj). The two-way ANOVA full model is as follows,

Yijk = p+ i + B85 +7ij + €ijg, 1)

and additive model is as follows
Yiitk = u+ a; + B + €k, (2
wheree;j X N(0,0%),i = 1,2, ,a,j = 1,2, b,k = 1,2,--- ,ny, a;'s, §;'s and

7i;'s are subject to the constraints (first introduced by Séhgb59) to solve the model
identifiability problem)

a b a b
Z Wi = 0, Z ’Ujﬁj = 0, Z wmij = 0, Z Uj%j = 0, (3)
=1 7j=1 =1 7j=1

w1, - ,w, anduy, - - -, vy are nonnegative weights. In full model (1), we are interested in
testing the interaction effect, i.e.
Hoap :vij =0fori=1,--- ,a,j=1,--- ,bvs H, : Hy not true. (4)
In additive model (2), we are interested in testing the main efféaad B,
Hop:0;=0,i=1,---,a, VS H, : Hy nottrue (5)

Hop:Bj=0,57=1,---,b, vsH, : Hy not true. (6)

This research intends to provide a solution of two-way ANOVA: testing main effects, inter-
action effects Xu et al. (2013) and all pairwise comparisons (research in this article) under
the assumption of heteroscedastic variances and unequal sizes.
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The application of the classical F-test for testing main effects and interaction effects
may lead to misleading conclusions Wilcox (1989); Krutchkoff (1989); Ananda and Weer-
ahandi (1997) under heteroscedastic variances. The size &f-test can be much larger
or much smaller than the nominal size when the cell variance homogeneity assumption is
violated Zhang (2012). Furthermorg;tests suffer from serious lack of power even un-
der moderate heteroscedasticity. Some alternative tests have been developed due to these
issues. James (1954) proposed a first order approximation solution. Johansen (1980) dis-
cussed approximate distribution of the residual sum of squares in a linear model and pro-
posed an approximate degrees of freedom (ADF) test. Wilcox (1989) proposed a modified
Wilcox test and a James-type test. Krutchkoff (1989) investigated a simulation-based ap-
proximate test. Ananda and Weerahandi (1997) suggested a generaliestibased on
the concept of generalized p-value Wang and Chow (1994). Zhang (2012) proposed a sim-
ple and accurate ADF test for heteroscedastic two-way ANOVA, and showed that ADF test
is generally more powerful than the classiéatest. Xu et al. (2013) extended the work of
Krishnamoorthy et al. (2007) and proposed a Parametric bootstrap (PB) test for two-way
ANOVA. Xu et al. (2013) compared the PB test with the generalized F (GF) test and showed
that the PB test performs better than the GF test and also performs very satisfactorily even
for small samples.

Another problem in ANOVA is multiple comparisons (all pairwise simultaneous com-
parisons). Scheifs method, the Bonferroni inequality-based method, and Tukey-Kramer
method are widely used for pairwise comparisons among the group means when variances
of sample means are equal. Research of multiple comparisons under the assumption of het-
eroscedasticity is limited. Hochberg (1976) generalized thet8pj and Stoline’s proce-
dure 1973 to heterogeneous variance cases. Games and Howell (1976) presented a method
for constructing simultaneous confidence intervals based on the Behrens-Fisher statistic
with Welch’s 1948 approximate solution for degrees of freedom. Kaiser and Bowden
(1983) discussed simultaneous confidence intervals for all linear contrasts in a one-way
ANOVA with unequal variances. The above multiple comparison prcedures (MCPSs) either
involve Studentized range statistics Einot and Gabriel (1975) or alternatively as Student’s
t statistics Games (1971). Factors such as the degree of variance and sample size het-
erogeneity, the shape of the population etc,. can affect the rates of Type | error and power
characteristics. Therefore most of the MCP tests are relatively data pertinent. Zhang (2013)
proposed PB approach multiple comparisons for one-way ANOVA under unequal variances
with unbalanced data.

In this research, we extend Zhang (2013)’'s PB test for multiple comparisons in one-
way ANOVA to two-way ANOVA. This paper is organized as follows. In Section 2, we
review PB test for main effects and interaction effects from Xu et al. (2013). In Section 3,
we propose PB algorithm of multiple comparisons for two-way ANOVA. In Section 4, we
present simulation studies. Section 5 gives conclusions.

2. The Parametric Bootstrap Test for Main Effects and Interaction Effects in
Two-way ANOVA

In this section, we review the PB tests of two-way ANOVA Xu et al. (2013) for testing main
effects and interaction effects.

2.1 Tests for the Interaction Effects

Assumea%’s are known, a natural test statistic for (4) is the standardized interaction sum
of squaresS; (Y11, Yiz, -, Yap; 081, ,0%) = Dy Z?:l nij(Yij—i—i— 03;)* o3
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It can be shown that

Si(Yi1,Yia, - Yapi 0%y, -+ ,05) = YIS 2(1I-27 12X (X' 1X)" X'~/ n~ /2y,

(7)
whereY;; = >0 Yijk/nij, Y = (Y11, Yig, -+, Yap)', & = diag(o?, /11, 0% /n12, -+ 02/ Nab),
1, denotes thé x 1 vector of ones];, denotes the identity matrix with rarikk andX =
(1gp, I, ®15, 1, ® 1) with ® representing Kronecker product. let= (y11, y12, - Yab)

2

be the observed value 8. We rejectHy 4 in (4) whenS; (711, 712, - - » Jab: o, 0%)
> X%a—l)(b—l) o Wherexfa_l)(b_l) ., Is the uppernth quantile of a chi-square distribution

with (e — 1)(b — 1) degrees of freedom.
In general,o?’s are unknown. In this case, test statistic in (7) can be obtained by

J
replacings?; by S7;, 4 =1,2,--- ,a,j = 1,2,--- ,band is given by

R
Sr(Yi1,Yig, -+, Yop: S3, -+, 52%) = Y/STV/2(I-S71/2X(X/S™!IX)~X/S~1/2)8 /%Y,
(8)

whereS?, = 3707, (Yijr—Yi;)?/(nij — 1) andS = diag(S7; /n11, S7a/n12, -+, 8%,/ nab)s

The parametric bootstrap involves sampling from the estimated models. Hider,
the vectorY has the meaX®@, where@ = (u,a1, -, 4,01, -+ ,0). The test sta-
tistic in (7) is location invariant. Without loss of generality, we také& = 0. Let
st = 2on2 (yijk — Uij)?/ (nij — 1) be the observed?, the parametric bootstrap pivot
variable can be developed as follows. For a given,y12, - - ; Yab; 511, 512, » 52p)
Ypij ~ N(0,8%/nij), Spi; ~ s5Xp,—1/ (g —1),i = 1,--- ,a,j = 1,--- ,b. The PB
pivot variable based on test statistic (7) is given by

Si5(Vi11, V12, - » Viab; Shins- - » Shapy) = ViS5 2(I-S5 2 X(X/S5'X) " X's;/%)S ;" Y

9
whereY s = (Ypi1, YBi12, -+, YBw), S = diag(S%,,/n11, S%15/m12, S50/ Tab)-
For a given levety, the PB test rejectély 45 in (4) when

P (513(37311,373127"' YBab; SE11s SB12s++ » Shap) > 51) < a, (10)

wheres; = Sr(@11,G12, -+ » Jab 31, 879, - -, 52,) IS an observed value of

S1(Yi1,Yia, -+, Yap; 5%, 5%, -+, 52, in (8). The probability in (10) can be estimated
by Algorithm 1.

Algorithm 1: Foragiven(niy, nia, - -, nap), (11, §12, -+, Yab), @NA(T1, 579, -+ -, 82;) -
CompUteSI(glh Y125 Yabs S%la 8%27 T 7821)) in (8) and call |t§[

Fork=1,---,m

generateYp;; ~ N(0,s7;/ni;) and 5123@ ~ sfjxiirl/(nij —1,i=1,-+,a,j =
1,-- b

computeS;5(Ypi1, Y12, -+ YBabi SB115 Shi2: -+ » Shap) USING (9)

it Ste(Ya11,YB12, * , YBab; Sh11s Sh19s *+ » Shap) > 51, S€tQy, = 1

(end loop)

(1/m) >y~ Qi is a Monte Carlo estimate of the p-value in (10).

2.2 Tests for the Main Effects

For the additive model (2), the hypotheses of interests are the main dffectiescribed in
(5) and main effecB as described in (6). A natural test statistic for (5) is the standardized
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sum of squares due to factdr It can be shown that

a b

~ _ _ _ Nii  — R ~

SA<Y117Y127”' 7Yab;a%17"’ 70-2b) = E E 0_757 (}/:L]_N_/gj)2 (11)
i=1j=1

= YOS 20— 2712X (X, 271X ,) "X, BT n 2y,

whereX 4 = (14, 1,®1,). We rejecto in (5) WhenS 4 (11, G12, -+ » Jab; 0oy, + s T2,)
> X%a—l)ba' The PB pivot variable can be derived as

San(Yp1r Yz Voo Spir. -+ - Sha) = Y82 (1-8 5 X (X85! X)) X1y85"%)8 ' * ¥
For a given level, the PB test rejectfly 4 in (5) when ¢
P (5,43(17311,7312,"'  YBabi SB11, SB12: > Shap) > §A) < a, (13)
wheresa = Sa(J11, 12, - » Yab; 551, 5295 -+ + » 52,) IS an observed value of

Sa(Yi1, Y12, -+, Yap; S3, 5%, -+ ,52,) as in (11). The probability in (13) can be esti-
mated by Algorithm 2.

Algorlthnlz Fora giver(nlla ni, - 7nab)1 (glla Y12, agab)a and(sila 5%27 e 7835,) :
computeSA(gH, Y12, s Yabs 3%17 8%2, AR ,S?Lb> in (11) and call its 4

Fork=1,---,m

generateYp;; ~ N(0,s7;/ni;) and S, ~ sixg _1/(nij — 1), i = 1,---,a,j =
1, .b

computeSap(Ye11, Y12, - » YBab; SBi1, SB1os -+ » Shap) USING (12)

if Sap(YB11, YB12, * , YBabi SB11, Shigs * » Shap) > 54, S€tQr =1

(end loop)

(1/m)> i, Qk is a Monte Carlo estimate of the p-value in (13).
A natural test statistic for testing main effeBtas in (6) is the standardized sum of
squares due to fact@s. It can be shown that

b a
o _ Nij o~
SB(Y117Y127“' 7Yab;0%17"' 70-217) = ZZ?QJ(}/:U_M_Q’L)Z (14)
j=11i=1 %
= YOS V21— 12Xp(XpE 1 Xp) X2 2)n 12y,

whereX p = (1ap, 1,@1,). We rejecttop in (6) WhenSp (§11, §12, -+ » Jab; 021, -+ 5 02)
> X%bq)a .- PBtestand PB algorithm can be derived similarly as testing main effect

3. The Parametric Bootstrap Method for Multiple Comparisons with
Heteroscedastic Variances and Unequal Sizes

The multiple comparison procedure applies when the family of interest is the set of all
pairwise comparisons of factor level means. Pairwise comparisons of the factor level means
;. can be described as

Hy: pi. — pgr. = 0V.S. Hy : g — pir. # 0. (15)
Pairwise comparisons of the factor level meanscan be described as

Hg D — g = Ovs.H,: Heg — g 7& 0. (16)
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When all theafj's are equal and cell sizes are equal, the Tukey’s multiple comparison
confidence limits for all pairwise comparisons — p;,. with family confidence coefficient

of at leastl — « areg;.. — yi.. = q(a)\/2M SE /bn, wheren is the cell size and(«) is

the uppeith quantile of the studentized range distribution. Similarly, the Tukey’s multiple
comparison confidence limits for all pairwise comparispns- j.;» with family confidence
coefficient of at least — « arey.;. — 7.;.. = ¢(a)\/2M SE /an. However, Tukey’s method

fails to work when the population variances are unequal. In this section, we propose PB
algorithms of multiple comparison procedures for two-way ANOVA under heteroscedastic
variances and unequal sizes.

3.1 Multiple Comparison Procedure for Factor A Level Means

Under heteroscedastic variances and unequal sizes, the estimate of factor level means would
be a weighted average of the corresponding cell means. We propose the estimator of factor
level means.;. as

V.. — > v; Y
Zj vy
Zj vi(p+ i + Bj + vij + €ij)
Zj Uj
> vib N 25 Vi Yig N > Viij
Zj U Zj Uj Zj Uj
> ViEij

= pt o+ =2

Zj”j ’

wherev;’s are the weights reflected in (3) al} = u + o, + 3; + vi; + &; are derived
from (1) with&;; ~ N(0,07;/ni;). Let N be the sample size with' = 37, >~ n;;. We
propose the following two sets of weightsand use them in simulation studies.

= put+o+

v =vy=---=uvp = 1/b, an

n.1 n.2 nb
01:W7U2:W7"'70b:ﬁ7 (18)
wheren ; = Y, n;;. Variance ofY;.. can be derived as

L %2y ando(i) = — L (%02 ag)
(305 vi)* g () Sy
The PB variable?Bij ~ N(O, S?j/nij), 5%” ~ Szzjx%nijfl)/(nij_l)’i = 1a T va7j =
> d d d
1,---,b. HenceYpi; = Zi(si;/\/Mi;) andS%,. = si;xn, 1/(nij — 1), where= means
the same distribution. Létp;.. be the PB estimator of factot level mear;., we have the
following variance estimate

v(Y;.) =

v ) 51,
) = o () (20)

The test statistig;, can be written as the following

}7 G- Y s
gy = b Verel 1)
\/U(YBZ'..) + U(YBZ‘/..)
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which has the same distribution as

ii Si/'
S Zi( ) vz (—=)

A d 255 255
Giir = > 2 2 2 ) (22)
SiiXn, i —1 il ixn., . —1
1 JiXnig o1 o 1 LT
%@mPZMWwU%+@mPZWMMU%
fori <, fori=1,---,a—1,i’ =i+1,--- ,a.
For agiven(nii,ni2 -+, nap), (Y11, » Jap) ANA (8%, -+, s2,), let

q;;-‘:o = |g2 — gjl/|/\/v(}731) + U(YBi’--) fori=1,--- ,a— 1,’64 =i+1,---,a. (23)

Given a significance level, the multiple comparison confidence limits for simultaneous
comparisongs;. — . With family confidence coefficient at least— « arey;.. — .. +
4o/ v(YBi.) +v(Ypy..), whereg, can be estimated using parametric bootstrap method
given in Algorithm 3.

Algorithm 3.
For a given(niy, ni2- -+ 1), (Y11, , Yab) @NA(s31, - -+ , 82,):
Fori=1,---,L

GenerateZ; ~ N(0,1) andxi“hl,z‘ =1,---,a

Computeg?} using (22) fori =1,---,a—1,i=i+1,---,a
Find ¢, = max(g;)

(end loop)

¢« is thel — « percentile of the simulated distribution @f

3.2 Multiple Comparison Procedure for Factor B Level Means

PB multiple comparison procedure for factBrlevel means can be derived similarly. We

propose the following estimators for factor level means j = 1,2,--- , b,
— E ; Wi€jj
Y, =p+p6 +=—, 24
=Rt > Wi (24

wherew;’s are the weights reflected in (3). We propose two sets of weigh&nd use
them in simulation studies,

W =wy = =w, =1/a, (25)

n n n
ﬁyuﬁzﬁf"vwa:ﬁv (26)
wheren; = Zj Nij. LetYB_j_ be the PB estimator of factd? level mean..;. The variance
of Yp.;. can be found as follows

w1 =

(Vo) = =g (O 5o wd): (27)

The test statistiqﬁ, can be written as the following

Gy = - =
\/v(YB~j~) +o(Ypy.)

, (28)
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which has the same distribution as

S wiZ (i) &w%&%)
d Z Wy 27“’1
B 4 (29)

5; " T
1] n;i—1 2 i n; i~ 2
\/ wz)2 ZZ n?] nz]'J_l wi + wz 2 Z M50 n §1 1) 7’
forj<j.,j=1,--,b—1,7/=j+1,---,b.
For a given(nii, niz- -+ 1), (Y11, -, Yap) ANA(s31, -+, s2,), let
a7 = |74 —?J-j/.l/\/v(YB.j.) to(Vgy)forj=1, b—1j =j+1,--- b (30)

Given a significance level, the multiple comparison confidence limits for simultane-
ous comparisong;. — ;. With family confidence coefficient at least- o arey.;. — 4.5 =

Qo \/U(YB.j.) +v(Yg.j.), whereg, can be estimated using parametric bootstrap method
given in Algorithm 4.

Algorithm 4.
For a given(n117 nig--- 7nl1b)l (g117 e 7gab> and(‘s%l? T 78217):
Fori=1,---,L

GenerateZ; ~ N(0,1) andx,%jj,_l,j =1,---,b

Computey, using (29) forj = 1,--- ;b= 1,5 =j+1,--- ;b
Find ¢; = max(q;;’)

(end loop)

g« IS thel — « percentile of the simulated distribution @f

4. Simulations

In this section, we use simulation to study the main effects tests, interaction effects test
and multiple comparisons of two-way ANOVA using PB approach under the assumption
of heteroscedastic variances and unequal sizes. The simulation settings follow from Krish-
namoorthy et al. (2007) and Xu et al. (2013).

The tests we consider are location-scale invariant. Consiggr= 1;; + €;jx, @ =
1,---,a,j =1,--- ,bande;; ~ N(0,0;). Without loss of generality, we take;; =
O, aw =1in S|mulat|on studies. The sample statlst@g,sands are generated indepen-
dently asgij ~ N (0,07, /nij), 3, ~ ofixz,._1/(nij — 1), with 0 < o, < 1.

The simulation study was performed with factors: (1) number of factor levels:
2 andb = 3 to form 6 combinations; (2) population standard deviatigr= (011, - - - ,093) :

=(1,1,1,1,1,1),03 = (0.1,0.1,0.1,0.5,0.5,0.5), 0% = (1,1,1,0.5,0.5,0.5),
o7 =(0.1,0.2,0.3,0.4,0.5,1.0), 02 = (0.3,0.9,0.4,0.7,0.5,1),02 = (0.01,0.1,0.1,0.1,0.1,1);
(3) Significance levek: .05 and .1; (4) group sizeg = (n11,--- ,ne23) : n1 = (5,5,5,5,5,5),ny =
(10,10,10,10,10,10),n3 = (3,3,4,5,6,6),n4 = (4,6, 8,12,16, 20); (5) weight variable
w; andv;: two sets forw; and two sets fop;. For a given sample size and parameter con-
figuration, we generated 2500 observed vectgrs, - - - , Yub, 511, - - ,sgb) and used 5000
runs to estimate the p-value. The following is used to derive p-value of simultaneous tests
(15): (a) calculate?, = max(qAO ) using (23), use Algorithm 3 to fingl,, the1 — « per-
centile of the simulated distribution qf (b) repeat step (a) for 2500 times, p-value is the
proportion of the 2500 simulations whef}, > ¢,. p-value for simultaneous tests (16)
can be derived similarly. Table 1 gives the results of main effects tests and interaction test.
Table 2 gives the simulation results of multiple comparisons. From Table 1 and Table 2,
we can see that the actual levels of main effects test, interaction effects test and multiple
comparisons are close to the nominal levels.
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Table 1. Simulation results of main effects and interaction effects tests: “Inter” means interaction test;
“Factor A” and “Factor B” mean the main effect tests. Numbers in the Table are simulated p-values. We con-
sider four different sizesp, = (5,5,5,5,5,5),n2 = (10,10, 10, 10, 10,10),n3 = (3,3,4,5,6,6),n4
(4,6,8,12,16,20). o7 is a vector of unequal variances, we considef, = (1,1,1,1,1,1),03
(0.1,0.1,0.1,0.5,0.5,0.5),63 = (1,1,1,0.5,0.5,0.5),07 = (0.1,0.2,0.3,0.4,0.5,1.0), o'
(0.3,0.9,0.4,0.7,0.5,1), 02 = (0.01,0.1,0.1,0.1,0.1, 1).

a=0.05 a=0.1
o Inter Factor A FactorB Inter Factor A FactorB
n; o7 0.0415 0.0405 0.0470 0.0975 0.0895 0.0780
o5 0.0440 0.0445 0.0405 0.1040 0.092 0.0955
o5 0.0430 0.0390 0.043| 0.0870 0.086 0.0985
o; 0.0490 0.0490 0.0510 0.0860 0.088 0.0900
oz 0.0510 0.0375 0.044| 0.0895 0.0965 0.0905
oz 0.0600 0.0535 0.0600 0.0975 0.1095 0.0920
ny, o5 0.0485 0.0455 0.0440 0.1060 0.0995 0.0945
o5 0.0505 0.0410 0.0505 0.0995 0.0905 0.0960
o5 0.0555 0.0490 0.0425 0.0985 0.1010 0.0965
o7 0.0475 0.0505 0.0510 0.0935 0.1015 0.1070
oz 0.0535 0.0485 0.0485 0.0945 0.097 0.1005

0.0525 0.0450 0.0505 0.0985 0.0985 0.1010

ng o] 0.0465 0.0500 0.0375 0.0760 0.0985 0.0860
o5 0.0435 0.0460 0.0415 0.0815 0.1030 0.0930
o; 0.0495 0.0520 0.0390 0.0955 0.1050 0.0755
o; 0.0430 0.0450 0.0420 0.1015 0.0805 0.0900
o: 0.0510 0.0625 0.0355 0.0955 0.0845 0.0930
oz 0.0525 0.0525 0.0435 0.1055 0.0925 0.0945
ng o] 0.0485 0.0455 0.046| 0.1135 0.104 0.1075
o5 0.0380 0.0610 0.05 | 0.0950 0.106 0.1015
o; 0.0535 0.0625 0.0535 0.1045 0.1145 0.1000
o; 0.0520 0.0530 0.0355 0.0945 0.108 0.0930
o: 0.0425 0.0505 0.0435 0.0940 0.111 0.1015

0.0450 0.0505  0.0515 0.0960 0.0945  0.0925

YD TR N G0 NN DN = B[O DN UTRD i B G0 BN N NN = N[O N UTRD W DD GO B N N = N[O N UTIND W N GO DO DD N = N[ = N
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Table 2 Simulation results of multiple comparisons: “MCP” means multiple comparisons; “MCPA1”
is the multiple comparison of factor A using weights described in (17); “MCPA2” is the multiple com-
parison of factor A with weights described in (18); “MCPBL1” is the multiple comparison of factor B with
weights described in (25); “MCPB2” is the multiple comparison of factor B with weights described in (26).
Numbers in Table are simulated p-values. We consider four different sizes; (5,5,5,5,5,5),n2 =
(10,10, 10,10, 10, 10),n3 = (3,3,4,5,6,6),n4 = (4,6,8,12,16,20). o} is a vector of unequal variances,
we considerg? = (1,1,1,1,1,1),63 = (0.1,0.1,0.1,0.5,0.5,0.5),03 = (1,1,1,0.5,0.5,0.5),03 =
(0.1,0.2,0.3,0.4,0.5,1.0), 0% = (0.3,0.9,0.4,0.7,0.5,1), ¢ = (0.01,0.1,0.1,0.1,0.1, 1).

a = 0.05 a=20.1
o-? MCPA1 MCPA2 MCPB1 MCPB2 MCPA1 MCPA2 MCPB1 MCPB2
n; O'% 0.0375 0.0515 0.0495 0.0460 0.0850 0.1015 0.0940 0.0825
a% 0.0465 0.0530 0.0515 0.0565 0.0895 0.0995 0.0865 0.0945
o-§ 0.0400 0.0460 0.0380 0.0420 0.0890 0.0885 0.0885 0.0800
o-?l 0.0470 0.0395 0.0450 0.0510 0.0965 0.1010 0.0880 0.1000
o-% 0.0515 0.0415 0.0515 0.0415 0.0915 0.0990 0.0925 0.0915
o-% 0.0520 0.064 0.0490 0.0505 0.1110 0.1110 0.099 0.0970
ny 0'% 0.0395 0.0520 0.0440 0.0585 0.0945 0.0940 0.1050 0.1010
o-% 0.0505 0.0480 0.0430 0.0480 0.0920 0.1095 0.0995 0.0985
o-% 0.0415 0.0455 0.0510 0.0465 0.1020 0.1020 0.0955 0.1000
o-i 0.0520 0.0495 0.0475 0.0380 0.1020 0.0925 0.1010 0.0885
o-% 0.0585 0.0550 0.0470 0.0500 0.0895 0.1030 0.1000 0.1040
o-% 0.0500 0.0550 0.051 0.0460 0.0990 0.1025 0.0850 0.1075
ng o-% 0.0480 0.0520 0.0445 0.0390 0.0930 0.1035 0.1015 0.0905
o-% 0.0470 0.0395 0.0430 0.0500 0.0940 0.0860 0.0835 0.0815
o-§ 0.0620 0.0545 0.0465 0.0415 0.0945 0.0915 0.0985 0.0835
0'421 0.0440 0.0405 0.0450 0.0435 0.0870 0.1125 0.0890 0.0835
o-% 0.0430 0.0435 0.0460 0.0375 0.0930 0.1035 0.092 0.0965
o-% 0.0545 0.0540 0.0490 0.0540 0.0910 0.1060 0.1065 0.0980
ny 0'% 0.0530 0.0485 0.0520 0.0495 0.0980 0.1045 0.1025 0.0965
o-% 0.0525 0.0485 0.0505 0.0570 0.0890 0.0940 0.0980 0.1045
o-% 0.0555 0.0465 0.0525 0.0500 0.1030 0.0890 0.1005 0.1050
O'Z 0.0595 0.0545 0.0460 0.0490 0.1005 0.1075 0.1120 0.0835
o-% 0.0405 0.0555 0.0625 0.0495 0.0895 0.0905 0.0940 0.0960
a% 0.0485 0.0515 0.0415 0.0480 0.1170 0.1015 0.0940 0.0965
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5. Conclusions

Parametric bootstrap approach Krishnamoorthy et al. (2007) for testing the equality of
several means under the assumption of heteroscedastic variances has been extended to a
multiple comparison procedure in two-way ANOVA. Together with the main effects and
interaction effects tests from Xu et al. (2013), a complete study of two-way ANOVA under
heteroscedastic variances and unequal sizes from parametric bootstrap approach without
using transformations is derived. Simulation studies show that the Type | error of main
effects test, interaction effects test and multiple comparisons are close to the nominal level.
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