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Abstract
The investigation of within-person variability has increased in recent years and has proven

be a fruitful field in the investigation of cognitive change. At the same time, intensive
measurement designs have become more and more important because they allow the esti-
mation of within-person effects. Here, within-person variability is estimated with a mixed
effects location scale model. That model allows one to include explanatory variables at
the within- and between-person level and it estimates random effects in the location and
scale part simultaneously. We used this model in a Bayesian framework to demonstrate its
application to three level data. 304 participants have been measured on a reaction time
test at four bursts, each one year apart. Each burst contained four sessions of weekly (1 to
2 weeks apart) measurements. We found considerable individual differences among partici-
pants in all parameters. The location and scale parameters were not independent whereby
the random scale parameters correlated with the random intercept of the location part of
the model.

Key Words: Intensive Measurement Design, Location Scale Model, Variance Modeling,
Mixed Effects

1. Intraindividual Variability

Research on intraindividual variability has received increasing attention in different
areas such as cognition, affect and, broadly speaking, neuroscience. The basic idea
is that within-person variability which has typically been relegated to the error
term still carries some systematic components which can be either described and
predicted or which are used as predictors.

Within-person variability can be obtained from longitudinal data but studies
based on widely spread multi-wave designs typically lack temporal resolution on
the lower scale and are not sensitive to within-person dynamics, changes, or events
that occur between assessments (cf. Rast et al., 2012b; Sliwinski, 2008). Inten-
sive measurement designs are necessary to obtain better temporal resolution and
to address within-person changes on different time scales (Rast and Hofer, in press;
Walls et al., 2011). These design also mirror the distinction made between “mi-
crodevelopment”, that is, development within a short time frame, as opposed to
“macrodevelopment,” which typically covers development over longer time spans
(Yan and Fischer, 2002). Especially critical is the temporal sampling when the
focus is on within-person variability because the sampling intervals also determine
the quality and interpretation of the variability measure.

Intensive measurement designs use a mix of very closely spaced assessments (i.e.,
bursts) to model short-term effects and widely spaced waves to capture longer term
effects such as, for example, aging-related changes (Nesselroade, 1991). Together
with daily diary and ecological momentary assessments (EMA), measurement burst
designs provide data on short terms such as hours, days, or weeks. In addition
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they also provide data on longer term changes such as month or years and as such
offer the possibility to examine within-person changes. The pairing of multi-burst
designs and informative measurement models allows the separation of short- from
long-term processes which operate across different time scales.

These type of data offer new possibilities to examine within-person variation
and change but they also add additional complexity to statistical modeling. Mea-
surement burst data deliver at least three- and oftentimes four and more levels of
analysis which need to be taken into account in the statistical model.

Recently, interest in within-person variability has increased and evidence sug-
gests that within-person variability (also termed (in)consistency) can account for
developmental changes (Yan and Fischer, 2002). Although these ideas are not new
(cf. Fiske and Rice, 1955), there has been rising interest in understanding the role
of within-person variability. Generally, more variability in repeatedly administered
responses is seen to reflect behavioral inconsistency and with it a trend to decline
in performance up to several years later (cf. Bielak et al., 2010; MacDonald et al.,
2003). MacDonald et al. (2006) suggested that the degree to which individuals vary
in their behavior may reflect alterations at a systems or a cellular level in the brain.
In that case, intraindividual variability may provide information about a possible
underlying pathology or, in the worst case, impending death (MacDonald et al.,
2008).

The extraction of intraindividual variability is, however, not without controversy.
Up to date, the most common way to address inconsistency is the estimation of
intraindividual variability (iiV) or intraindividual standard deviations (iSD) (e.g.
Hultsch et al., 2002). The usual approach to obtain estimates of intraindividual
variability in repeated data is to detrend or filter the data in order to remove time-
related trends. In a following step, the remaining fluctuations captured by the
residual terms are used to estimate the degree of individual variability. Hence, the
investigation of intraindividual variability is treated as, at least, a two-step approach
where it is assumed implicitly that the requirements put on the data are met. That
is, that data observations are locally independent and identically distributed (Ram
and Gerstorf, 2009). The question which remains typically unanswered is whether
the assumption of independent and identically distributed observation reflects the
human behavior adequately. As has been discussed recently, these assumptions may
not be appropriate especially for variables which tend to produce heteroscedastic
and skewed error distributions.

The technique to analyze or detrend data are usually based on some form of the
general linear model which posits normally distributed residuals which, however,
does not necessarily represent the distribution of the residuals in the data. This
can be problematic if the distribution of the residuals is heavily skewed which may
be the case in a number of psychological variables which tend to produce skewed
residual distributions, such as distributions from scores in depression scales or from
reaction time (RT) data. In fact, a common finding in RT data is that the vari-
ance is not constant but changes as a function of the mean, that is, the variance
is heteroscedastic (Hick, 1952). Wagenmakers and Brown (2007), for example, in-
vestigated the relation between the mean and standard deviation of RTs and found
strong evidence of a linear relation among the first and the second moment of the
distribution. Moreover, Schmiedek et al. (2009) investigated the relation between
intraindividual means (iM ) and iSD of a RT distribution by fitting different models
to a sample of young and old participants. They concluded that in the younger
group, and to a smaller extent in the older group, the relation between the iM and
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the iSD was positive and nonlinear. A similar relation has been observed in older
adults RT performance, where the mean RT and the associated variability typi-
cally increases with advancing age (e.g. Myerson et al., 2007). This problem has
been acknowledged for some time especially in the RT literature and a number of
researchers addressed the issue of dependent mean and variance by proposing differ-
ent distributions underlying the data, of which the most prominent are the (shifted)
Weibull, the ex-Gaussian or the log-normal distribution (Hedeker and Mermelstein,
2007; Heathcote and Brown, 2002; Myerson et al., 2007; Wagenmakers and Brown,
2007). Currently, however, most researchers rely on the two-(or more)-step proce-
dure to extract intraindividual variability estimates with distribution related issues
typically ignored. At the same time, new methods have advanced in this field
which enable one to estimate inter- and intraindividual variability simultaneously
and which can also make use of, for example, log-normal or Gamma distributions.

1.1 Mixed Effects Location Scale Model

Such a model has been proposed by Hedeker et al. (2008) who referred to it as
mixed effects location scale model as it estimates the location (i.e., means) and
scale (i.e., variances) and allows the incorporation of concomitant variables both at
the between- and the within-person level. The authors used this model to investigate
mood of adolescent smokers using ecological momentary assessments (EMA) data.
With this technique they were able to show that mood variability decreased after
smoking events. Recently, Rast et al. (2012a) used this model to investigate the
relation among daily stressors and variability in positive and negative affect. The
authors found differential effects in mood variability, with participants who were
variable in mood being differently affected by stressors compared to participants
who were consistent in their daily variation in mood. Rast and Zimprich (2011) used
the location scale model to estimate within-person variance in an RT task. Age and
reaction times in another processing speed task were used to predict within-person
variability. The authors used the average, individual RT as a predictor to account
for larger variability in RT due to, on average, slower RTs.

The mixed effect location scale model has been mostly used in two-level data.
Given that measurement burst data consists of more than two levels, we present an
extension of this model for a three-level situation in a Bayesian framework.

2. Methods

2.1 Example data from Project MIND

In order to illustrate the application of the three-level mixed effects location scale
model we use data from an intensive measurement burst design study Project MIND
(e.g., Hultsch et al., 2008), a study based on 304 community-dwelling adults (208
women and 96 men) ranging in age from 64 to 92 years (M = 74.02, SD = 5.95).
Participants were recruited through advertisements in the local media (newspaper
and radio) requesting healthy community-dwelling volunteers who were concerned
about their cognitive functioning. All participants were Caucasian. Exclusionary
criteria included a diagnosis of dementia by a physician or a Mini Mental Status
Examination (MMSE Folstein et al., 1975) less than 24, a history of significant head
injury (defined as loss of consciousness for more than 5 minutes), other neurological
or major medical illnesses (e.g., Parkinsons disease, heart disease, cancer), severe
sensory impairment (e.g., difficulty reading newspaper-size print, difficulty hearing
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a normal conversation), drug or alcohol abuse, a current psychiatric diagnoses,
psychotropic drug use, and lack of fluency in English.

For the present work, we selected the first four bursts, each one year apart. Each
burst contained four sessions of weekly (1 to 2 weeks apart) measurements. In each
burst, the sessions within the bursts are scaled in terms of weeks, with the bursts
scaled in years. Age of the participants was grand mean centered at 74.02 years.

2.2 Materials

2.2.1 Digit Symbol

Processing speed was assessed using the WAIS-R Digit Symbol Substitution task
Wechsler (1981). Participants were presented with a coding key pairing nine num-
bers (1 through 9) with nine different symbols. Printed under the coding key were
rows of randomly-ordered numbers with empty boxes below. Participants were
given 90 seconds to transcribe as many symbols as possible into the empty boxes
based on the digit-symbol associations specified in the coding key. The number of
correctly completed items represented the outcome measure.

2.2.2 Choice reaction time 1-back (CRT)

This RT task served as the dependent variable in our analyses. Participants received
a warning stimulus consisting of a horizontal row of four plus signs on the screen.
The response keyboard had four keys in a horizontal array corresponding to the
display on the screen. After a delay of 1s, one of the plus signs changed into a
box. The location of the box was randomly equalized across trials. Participants
were instructed to press the key corresponding to the location of the box on the
previous trial as quickly as possible. Although the instructions emphasized speed,
participants were also instructed to minimize errors. A total of 10 practice trials and
61 test trials were administered. Because participants made no response on Trial
1, the latencies and percent correct of the remaining 60 test trials were actually
used for analysis. Due to the skewed nature of CRT we log-transformed the CRT
responses.

2.3 Model specification

The LSM permits the use of explanatory variables for both between-person variance
as well as for individual differences in within-person variation. Further, it estimates
all model parameters and correlations among random effects simultaneously and
retains the location and scale information.

The mixed effects location scale model presented by Hedeker et al. (2008) is
based on previous work done by Lindley (1971), Leonard (1975) and Cleveland
et al. (2002). The standard linear mixed effects model with repeated measurement
in j (j = 1, 2, ..., Jk bursts) and i (i = 1, 2, ..., Ik) sessions, may be specified as (see
also Rast et al., 2012a)

yk = X′kβ + Z′kbi + εk, (1)

where yk is the JkIk × 1 response vector for observations in person k. Xk is the
Jk×p design matrix for the fixed effects for observations in person k. β captures the
fixed effects and its dimension is p× 1. The random effects are in the Ji× q matrix
Zk for observations in person k where bk is the according q × 1 vector with the
random effects coefficients. εk is a vector of errors specific to person k. The general
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assumption in these models is that random effects follow a normal distribution with
mean 0 and variance Φ. Where Φ is a q×q covariance matrix for the random effects
with the variances σ2b and the covariances σbb′ . The errors εk are also assumed to
be normally distributed with a mean of 0 and covariance of σ2εΨk where Ψk is a
nk × nk matrix which can take different structures. In these models the between-
person (BP) variance is captured by σ2b and the within-person (WP) variance is
represented in σ2ε .

In order to allow the error variance to differ at the individual, burst, and session
level, we add the subscripts ijk to the WP variance term and obtain σ2εijk In the
next step, we may add time-varying covariates Wijk for the fixed effects and Vijk

for the random effect to influence the WP variance estimate:

σ2εijk = exp(W′
ijkτ + V′ijktk). (2)

τ is comparable to the regression weights β in Equation 1, that is, τ0 defines the
average WS variance and τ1 weights the influence of the predictor on the variance.
The individual departures from the fixed effects which are captured in the random
effects t are normally distributed with mean 0 and variance σ2t . The use of the
exponential function ensures that the variance estimate is positive (cf. Hedeker
et al., 2008, 2009) but it also posits that σ2εij is log-normally distributed. Here,
one might choose another distribution such as the commonly used inverse-Gamma
distribution

Given that we use a Bayesian framework to specify the LSM we need to define
distributions for the priors and hyperpriors. With the assumption that the random
effects are from a normal distribution and the error variance from a log-normal dis-
tribution we previously defined the prior distribution in the Bayesian sense. The
hyperpriors for the mean of the intercept and slope terms are multivariate normally
distributed and, in order to ensure that the covariance matrix of the random ef-
fects is symmetric and positive definite we use a scaled inverse-Wishart distribution,
scaled − inverse −Wishart(R, k) (cf. Gelman and Hill, 2007) defined by two pa-
rameters as the prior. The matrix R can be interpreted as the prior estimate of
the covariance matrix and with degrees of freedom k which define the weight one
gives the prior R (cf Gelman and Hill, 2007; Gelman, 2006; Hamaker and Klugkist,
2011). In the following we use Lynch’s (2007) notation to represent the multilevel
structure of the mixed effect location scale model. The baseline model with only
time-variables at different scales (i.e., weekly sessions, and yearly bursts) is defined
as

Level 1:

yijk ∼N(µijk, σ
2
εijk

)

µijk =α0jk + α1jkSessionijk + α2jkBurstjk + βSessionijkBurstjk

σ2εijk = exp(τ0k + τ1kSessionijk + τ2kBurstijk + λSessionijkBurstjk)

Level 2:[
µα0j

µα1j

]
∼ N

([
µα0

µα1

]
,

[
σ2α0

σα0α1

σα1α0 σ2α1

])
Level 3:[

αjk
τjk

]
∼ N

([
µα
µτ

]
,

[
σ2α σατ
στα σ2τ

])
with µα =

µα0j

µα1j

µα2

 ;µτ =

µτ0µτ1
µτ2



(3)
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Note that for the cross-level interaction among Session and Burst we estimate a
fixed effect only (β and λ). For all other effects, we estimate random effects. That
is, we estimate individual differences in slopes and variances but also within-person
differences among bursts. The vector µα captures the fixed effects of the location
part and µτ captures the fixed effects of the scale part of the model. The random
effects are captured in the Level 2 and 3 covariance parameters.

The hyperpriors for the baseline model are defined as

µα0

µα1

µα2

µτ
β
λ

 ∼ N (a, bI)

[
σ2α σατ
στα σ2τ

]−1
∼ scaled-Wishart (R1, k1)[

σ2α0
σα0α1

σα1α0 σ2α1

]−1
∼ scaled-Wishart (R2, k2)

Next, we add Age and DS to obtain the full model age is a between-person
predictor and DS is a time-varying predictor which has been measured yearly.

Level 1:

yijk ∼N(µijk, σ
2
εijk

)

µijk =α0jk + α1jkSessionijk + α2jkBurstjk + βSessionijkBurstjk+

a0Agek + a1SessionijkAgek + a2BurstjkAgek+

d0DSjk + d1SessionijkDSjk + d2BurstjkDSjk

log(σ2εijk) =τ0k + τ1kSessionijk + τ2kBurstijk + λSessionijkBurstjk+

av0Agek + av1SessionijkAgek + av2BurstjkAgek+

dv0DSjk + dv1SessionijkDSjk + dv2BurstjkDSjk
a
b
av
bv

 ∼N (a, bI)

In both location and scale parts, age and DS are used as predictors. This is not a
requirement and one may introduce predictors at the location or scale part of the
model only.

2.4 Model Estimation

All Bayesian hierarchical models described earlier were estimated using MCMC sim-
ulations. The priors were uninformative and all parameters in the models converged
with potential scale reduction factors R̂ < 1.1. Convergence was achieved within
70,000 iterations, of which 20,000 were used as burn-in Statistical significance was
determined using 95% credibility intervals (C.I.).

All models were specified in R (R Core Team, 2013) using the R2jags package
(Su and Yajima, 2013) to call the Gibbs sampler JAGS (Plummer, 2013) which can
be considered as a Unix version of openBUGS.

JSM 2013 - Health Policy Statistics Section

1253



Table 1: Fixed effects estimates of the location.

Estimate 95% C.I. R̂

α0 7.152 [ 6.58 ; 7.77 ] 1.00
α1 -0.095 [ -0.77 ; 0.57 ] 1.00
α2 -0.125 [ -0.14 ; -0.11 ] 1.00
β 0.018 [ 0.01 ; 0.02 ] 1.01
a0 0.030 [ 0.02 ; 0.04 ] 1.05
a1 0.000 [ 0.00 ; 0.00 ] 1.01
a2 0.002 [ 0.00 ; 0.00 ] 1.01
d0 -0.006 [ -0.01 ; 0.00 ] 1.01
d1 0.000 [ 0.00 ; 0.00 ] 1.00
d2 0.002 [ 0.00 ; 0.00 ] 1.01

Table 2: Fixed effects estimates of the scale

Estimate 95% C.I. 95% C.I.

τ0 -1.807 [ -1.89 ; -1.72 ] 1.01
τ1 -0.103 [ -0.15 ; -0.06 ] 1.01
τ2 -0.101 [ -0.15 ; -0.06 ] 1.01
λ 0.038 [ 0.02 ; 0.06 ] 1.02
av0 -0.008 [ -0.02 ; 0.01 ] 1.00
av1 0.004 [ 0.00 ; 0.01 ] 1.00
av2 0.001 [ -0.01 ; 0.01 ] 1.01
dv0 -0.002 [ -0.01 ; 0.01 ] 1.00
dv1 0.001 [ 0.00 ; 0.00 ] 1.00
dv2 0.000 [ 0.00 ; 0.00 ] 1.01

3. Results

In Table 1 we report the location fixed effects estimates. All estimates represent
posterior means and values that do not contain zero in their C.I. are considered sta-
tistically significant and are reported in bold. The burst-slope is negative indicating
that the average reaction time decreased across years (α2) but not across sessions
(α). The effects on the location associated to Age are in the a0 to a2 estimates and
the effects of DS are reported in the d0 to d2 estimates. For example, higher vales in
DS were associated to slower decreases in RT across the four burst (d2) and higher
age also increased the average RT estimate at study entry (a0).

Figure 1 shows the predicted individual estimates of RT. All values are trans-
formed back from the log-scale into the original ms metric.

The posterior means of the scale part of the model are reported in Table 2.
Note that the estimates are on the natural log scale. The fixed effects of τ1 and
τ2 indicate that the within-person variability decreased on average both across and
within bursts. Age had a dampening effect (av1) on the within-persons change rate
across sessions in the sense that older adults decreased variability at slower rates
compared to younger adults. The effect of DS was similar indicating that higher
DS values decreased the rate of change in variability across bursts.

JSM 2013 - Health Policy Statistics Section

1254



Burst 1 Burst 2 Burst 3 Burst 4

1000

2000

3000

70 80 90 100 70 80 90 100 70 80 90 100 70 80 90 100
Age at Burst 1

P
re

di
ct

ed
 R

T
 in

 m
s

Figure 1: Predicted individual reaction times.

Table 3: Random effect estimates across the location and the scale
1 2 3 4 5 6

1. α0 0.36
2. α1 -.12 0.08
3. α2 -.13 .14 0.10
4. τ0 -.55 .08 .08 .41
5. τ1 .26 -.11 -.07 -.40 0.16
6. τ2 .31 -.07 -.14 -.52 .07 0.20
Note. Variances in diagonal

Figure 2 shows trajectories of individual SD across sessions and bursts separated
by the age at study entry.

The random effects estimates across the location and the scale are reported in
Table 3 and show individual differences on the diagonal. Off-diagonal elements
report the correlations among the random effects. The location parameters are
denoted with α’s and the scale parameters are denoted with τ ’s. All parameters
showed significant variability indicating individual differences in the initial RT score,
in changes across time, in the average individual variability and in changes across
time in within-person variability. The correlations among the location intercept
random effect α0 and the three τ parameters capture relevant associations among
the random effects of the location and scale part of the model.

In a three level model we can not only estimate random effects between-persons
at level 3 but also within-persons but between-bursts at level 2. Here, both random
effects and indicated considerable variability in the intercept α0j = 0.57 and the
slope parameter α1j = 0.63 showing that the intercepts among bursts differed and
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Figure 2: Predicted individual SD on the log scale across all four burst and four
sessions.

Table 4: Between bursts and with-person random effects.
1 2

1. α0j 0.57
2. α1j -.17 0.63

also changes in the session slopes among burst differed widely. Note that we only
estimated between-burst random effects for the location part of the model.

4. Discussion

In recent years research on within-person variability has been intensified and re-
sults suggest that residual variability is not merely a nuisance parameter but can
still carry valuable information. The estimation and interpretation of within-person
variability can be approached from multiple perspectives. Here we used a recently
developed mixed effects location scale model (LSM; Hedeker and Mermelstein, 2007)
and extended it to a 3-level situation making use of a Bayesian modeling framework.
This model has the advantage that it estimates all parameters simultaneously and
maintains the dependency among the location and scale parameters. Predictors can
be included within- and/or between-person level to model the location and scale
part. However, research on within-person variability also puts additional require-
ments on the data. The reliable estimation of variance components requires more
frequent measurements and, in order to make predictions about short-term varia-
tion and longer term changes the design of studies need to be adapted accordingly.
For example, the investigation of the predictive value of within-person variability in
long-term changes in cognitive data can only be examined with a study design that
allows the separation of different timescale. The measurement burst design Nessel-
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roade (1991) affords this possibility and provides information about changes on two
different time scales. At the same time it also introduces at least one additional
level of analysis which complicates the estimation of this type of models.

The purpose of this work was to present an extension of the mixed effects LSM
to three level data. The possibilities offered by this model are numerous and here
we only presented a basic model with two predictor variables to explore changes
in covariances in the location and the scale parameters. More predictors can be
included, however, the complexity of the model increases quickly to a degree which
makes the estimation in a reasonable amount of time difficult.

Nonetheless, the current application demonstrated how the LSM can be used in
multilevel data. In the present application we found large and reliable individual
differences in all parameters of the location and scale as well as among the location
parameters within participants. Not only did we see changes in the average RT
but also changes across time in the variance. Important to note are the significant
correlations at the person level which indicate that the location and scale parame-
ters are not independent. Notably, initial within-person variability was negatively
associated to changes in variability across weeks and years. These findings indi-
cate that participants with larger initial variability decreased faster compared to
participants with smaller initial variability. In this demonstration, no evidence was
found that within-person variability is associated to long term changes in average
RT performance.

In all, the mixed effects LSM has demonstrated its potential and a number of
extensions of this model are imaginable such as the inclusion of autoregressive error
structures (cf. Wang et al., 2012) or the extension to the multivariate space.
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