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Abstract 
There has been a series of occasional papers about robust covariate control in the analysis 
of clinical trials in Statistics in Medicine and other journals. The robust semiparametric 
and nonparametric methods for statistical inference of estimated effects are fairly easy to 
apply with 21st century computers, but many prefer to continue using t-tests and 
confidence intervals based on ordinary least squares (OLS) for outcomes that clearly do 
not follow normal distributions. Presumably, issues of tradition and communication make 
it very hard to deflect this inertia. In addition, recent papers have demonstrated that the 
tests are asymptotically equivalent, and the more complex but less parametric procedures 
make little difference in practice. However, in the literature, there is not sufficient 
examination of whether the tests and confidence intervals based on OLS are robust to 
substantial excess kurtosis, particularly in small sample sizes. This paper indicates 
through simulation where the boundaries lie for two types of strongly nonnormal 
outcomes: binary outcomes and compound binary/gamma outcomes. We found that 
traditional OLS methods work very well down to very small sample sizes for these 
outcomes. 
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1. Introduction 

During the 1980s and 1990s Gary Koch and collaborators developed a body of work on 
nonparametric ANCOVA for categorical outcomes in clinical trials (Koch et al., 1998). 
Subsequently, Lesaffre and Senn (2003) published a fairly harsh review of the approach. 
It is important to note, however that the simulations by Lesaffre and Senn only concerned 
one of two methods proposed by Koch et al. Lesaffre and Senn conducted Monte Carlo 
simulations of the large sample approximate procedure rather than the small-sample 
permutation-based procedure. This was unfortunate because the small-sample 
permutation-based procedure is the more useful of the two. More recently, Tsiatis et al. 
(2008) discussed the asymptotic equivalence of linear models and Koch’s methods as 
well as other popular robust methods. They also presented simulation studies that showed 
little benefit of Koch’s method. A year later, Tang et al. (2009) re-analyzed some data 
using semiparametric procedures and also found little change from earlier published 
simple models.  

In retrospect, these findings of little benefit from nonparametric or semi-parametric 
permutation tests in the contexts of large trials with iid errors should have been 
anticipated. Scheffé in chapter 10 (The effects of departures from the underlying 
assumptions) of his famous 1959 textbook states that, “The conclusion is that the effect 
of violations of the normality assumption is slight on inferences about means …” Table 
10.3.2 of that text reproduced from Box and Anderson (1955) shows good preservation of 
p-values for sample sizes as small as 5 per arm in a one-way ANOVA with skew varying 
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between 0 and 1 and excess kurtosis varying from -1 to 1. An outstanding question is 
whether ANOVA gives invalid inference for estimating risk difference when the excess 
kurtosis is more extreme and when the sample size is small. The first condition is met by 
binary variables with means close to 0 or 1 and by compound binary-gamma distributions 
where most of the mass is on 0 and there are large outliers.  

In this study, we examine the performance of nominal 95 percent confidence intervals 
based on the OLS estimator of the standard error of a risk difference treatment effect on 
such outcomes in the context of randomized clinical trials. We examine both perfectly 
balanced trials in which the probability of being randomly assigned to treatment is 0.5 
and substantially unbalanced trials in which the probability of being assigned to treatment 
is 0.3. This work should apply to vaccine trials for rare diseases, studies of rare side 
effects and to the blood concentration of substances such as virus antibodies that are 
rarely detected in healthy patients but may be detected in large quantities in diseased 
patients. We do not supply any theory. We merely demonstrate the robustness of the OLS 
method under different circumstances. Our work is very similar in spirit to Lumley et al. 
(2002), who also used a Monte Carlo to study the robustness of OLS to departures from 
normality.  Randomization-based purists may question the worth of these endeavors 
saying that one ought to always use permutation tests if the outcomes are nonnormal. In 
some ways we agree with them, but there seems to be little evidence of the tide turning 
their way despite a very nice review article by Rosenbaum (2002) and two nice new 
textbooks (Pesarin and Salmaso, 2010, and Good, 2010). Let us note though that this 
paper only covers independent errors. The situation may be different in cluster 
randomized trials. See, for example, La Vange, Durham and Koch (2005), Fan and 
Judkins (2010), and Pacheco et al. (2009).  

In section 2, we lay out the simulation plan, including some discussion of a problem we 
ran into with trials in which all participants took on the same outcome value. In section 3, 
we present the results. In section 4, we close with some remarks. 

2. Simulation Plan 

Binary Outcome 

For the binary outcome, we intentionally invented a distribution for which both linear and 
traditional logistic models would be incorrect.1 

 

  
   

1~ B 1,logit logit( )

~ B 1,0.5  or B 1,0.3

~ N(0,1)

Y T X

T

X

    

 (1) 

In this model, T indicates randomized treatment status, X is a covariate,   is the 
prevalence of the characteristic of interest, Y, in the absence of the intervention with X=0, 
and   is the effect of treatment. Note that Y is strongly nonnormal and that its 
conditional variance given X is not constant. So it violates both the assumption of normal 

                                                            
1 Analysts who rely on parametric methods often fit logistic regression models instead of linear 
models when outcomes are binary. As pointed out by Moore and van der Laan (2009), even if the 
logistical model is correct (which in practice, like the linear model, would not be the case), 
statistical inference for the risk difference parameter, our parameter of interest, requires 
nonparametric methods.  
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errors and the assumption of homoscedastic errors. Of the traditional ANOVA 
assumptions, only the assumption of independent errors is true. Also note that   is on a 
scale that is pretty much impossible to communicate meaningfully. However, one can 
still estimate  

    1 0E EY Y    (2)  

where  is the potential outcome under treatment and  is the potential outcome under 
no treatment, drawing on the Neyman-Rubin causal model framework (Neyman, 
1923/1990, and Rubin (1974). A first-order Taylor series approximation is  

    (3)  

A somewhat better approximation using a second-order Taylor series is  

      
2

1 1 2 2 1 1 2
2

                       (4)  

We simulated four different effect magnitudes, using 

 min 0.999 , 4 (1 ) /c n         (5)  

where n is the size of the experiment (across both arms) and c took a value from the set 
{0,1.4,2.8,3.24}, corresponding to the null hypothesis, a weak alternate hypothesis, a 
strong alternate hypothesis, and a very strong alternate hypothesis. We used 0.3  . 
We examined coverage probabilities for the treatment effect for values of baseline 
prevalence from 0.5% to 50% and for sample sizes from 50 to 2000. By adapting the 
effect size to the sample size, we were able to keep the simulation under alternate 
hypotheses within the realm of reasonably powered studies. The idea was to 
simultaneously evaluate type I error preservation under the null hypothesis as well as 
behavior of the confidence interval under the alternate hypotheses. Many of the robust 
alternatives to linear models only provide hypothesis tests – they do not provide 
confidence intervals, which are fundamentally more parameter-driven. Thus, our primary 
interest was in 0   , but it seemed very easy and potentially interesting to the field 
to also include the performance of confidence intervals under alternative hypotheses, and 
so we did so. The resulting kurtosis induced is shown in Table 1.   

For each of 5000 samples from the simulated population, we fit a simple linear model 

 
 2~ 0,

i i i i

iid

i

Y T X e

e N

  



   
 (6)  

We then kept track of how often the nominal 95% confidence intervals for   produced 
by standard software for this simple linear model (i.e. produced by an OLS estimator of 
the standard error) across 5000 replications included the second order approximation to 
the true value of  . With this number of replications, if the true coverage is equal to 
nominal coverage, then a 95% prediction interval for the empirical coverage rate runs 
from 94.4 to 95.6 percent. 
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Compound Binary-Gamma Outcome 

For the binary-gamma compound outcome, we simulated  

 

 
  

 

1

20000 /

~ 1, logit

~ ,20000 /

,

G

Z

Y Z G T

Z B T

G

G Z T

 

 

 



 







 (7)  

Here Z is a binary variable indicating that the person has a condition of interest, making 
them eligible for exact measurement of some strictly positive interval-valued attribute. In 
medicine, Z might indicate HIV infection and Y represent a CD4 count or viral load, 
while in labor economics, Z might indicate employment and Y represent an hourly wage 
rate. Another common medical example involves Z = survival, and Y = quality of life. 
Returning to other symbols in (1.7), Z  is the effect of treatment on the log odds of 

belonging to the population where the more detailed measurement is taken, and G  is the 

conditional additive effect of treatment on the more detailed measurement given that the 
measurement is possible. Treatment indicator, , is defined as above, simulated with a 
mean of either 0.5 or 0.3. Note that the effect of intervention on this compound outcome 
is easy to calculate despite the complexity of the random variable.2 

   
    1 1

1 0

20000 logit 1 / logitZ G

E Y T E Y T

     

   

     
 (8)  

Also note that  

 
   1, 1 0, 1

20000 /G

E Y T Z E Y T Z

 

    


 (9)  

and that  

   2var 0, 1 20000 /Y T Z     (10)  

So that the effect size from treatment given disease is  

 
   

 
1, 1 0, 1

var 0, 1
G

E Y T Z E Y T Z

Y T Z


    


 
 (11)  

We simulated a large set of populations, allowing  1logit   to vary from 0.05 to 0.7, 

  to vary from 1 to 6, n to vary from 10 to 2000, and the pair  ,Z G   to take values 

from the set {(0,0), (0.5,0.2), (0.75,0.3),(1,0.4)}. While we initially chose these values 

                                                            
2 The simplicity is due to the lack of covariates. If we had included covariates, it would have 
become difficult to evaluate.  
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thinking of Z as employment status and G as annual earnings among employed persons, 
these values should also be interesting thinking about risk factors that simultaneously 
raise both the probability and the severity of disease. Disease could be interpreted broadly 
here to include alcohol and tobacco consumption, both of which involve large point 
masses on zero. The resulting kurtosis induced is shown in Table 2.   

For each of 5000 samples from simulated population, we fit a simple linear model 

 
 2~ 0,

i i i

iid

i

Y T e

e N

 



  
 (12)  

We then kept track of how often the nominal 95% confidence intervals for   produced 

by standard software for this simple linear model included the true value of  .  

Failed Trials 

For both the binary and the binary-gamma compound outcome, we ran into samples with 
Y=0 for every member of the sample. If the protocol were to accept the null hypothesis in 
this eventuality, then these samples could be used for limited inference. One could 
conclude that there was no effect of treatment, but it would not be possible to construct a 
sensible confidence interval for the effect of treatment. However, it is not clear that most 
protocols even deal with this possibility. For well-designed trials, the probability of 
obtaining such a sample is near zero. One consultant suggested that one response might 
be to extend the trial, to allow more time for events such as deaths to occur. It seems just 
as likely to us that trials that resulted in no events would be simply abandoned.  

We considered three options. The first was to construct degenerate confidence intervals 
on the treatment effect of [0,0] for samples with Y≡0, i.e., no events of interest in either 
arm. The second was to discard samples with Y≡0. The third was to only simulate 
populations for which the probability of Y≡0 was vanishingly small. We decided on the 
second option. We also ran some simulations using the first option, but we decided that 
no semi-parametric technique would be better able to deal with Y≡0 than a standard 
ANOVA, so there was no point in reporting on inferential problems with this technique. 
We rejected the third option because badly designed trials are a fact of life and people do 
try to analyze them.  

3. RESULTS 

All of the tables below present results for simulations in which the treatment effect is 
zero and in which the treatment effect is the strongest considered ( 3.24 in Equation 
(1.5) for binary simulations and , 1,0.4  in Equation (1.8) for binary-gamma 
simulations). For each of these effect sizes, the tables present, for each combination of 
event rarity under the null ( ) and sample size ( ), the percent of the 5000 trials that did 
not fail and the coverage probabilities obtained from using traditional ANCOVA (i.e. 
OLS estimator of the standard errors). For simulations with the strongest effect, the tables 
also present robust coverage probabilities – that is, coverage probabilities obtained from 
robust standard errors, with the small sample size correction HC3 due to Davidson and 
MacKinnon (1993).  
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The results for those combinations of  and sample size  that result in 5 or more failed 
trials per thousand, are highlighted in gray. Among the others, we highlighted in bold and 
red those coverage probabilities and robust coverage probabilities that are less than 0.940. 

Binary Outcome 

Table 3 presents results for simulations with a binary outcome when the design is 
balanced (i.e. 1 0.5 . The table shows that whether or not the sample size is 
large enough to avoid failed trials, traditional ANCOVA yields valid inference under the 
null hypothesis.  The smallest empirical coverage rate we found under the null was 93.9 
percent. On the other hand, there can be undercoverage when there are strong treatment 
effects even if the trial is large enough to have a minimal probability of failure.  Using the 
robust HC3 errors does not solve those problems.   

Table 4 presents results for simulations with a binary outcome when the design is 
unbalanced (i.e. 1 0.3 . As for the balanced design, we found no problem with 
inference under the null.  However, under the assumption of a strong effect coverage 
probabilities tend to fall well short of 95 percent. Using robust standard errors helps and 
approximately 95 percent coverage is achieved far more frequently. However, despite the 
small sample size correction, the robust standard errors are not sufficient to obtain correct 
coverage for smaller sample sizes paired with low prevalence.  

Compound Binary-Gamma Outcome 

Table 5 shows parallel results for a compound binary-gamma outcome for a balanced 
design (i.e. 0.5 ). Again, we found no evidence of invalid inference under the 
null.  Coverage rates were close to nominal or conservative. In contrast, when there was a 
strong treatment effect (equivalent to a 10 percentage point boost in the probability of 
positive response and an increase of 0.04 in the mean response when positive), the 
coverage probabilities instead fall short of nominal promises for the smaller sample sizes 
for each of the event rarity levels. Robust coverage does not provide an improvement. 
Basically, it seems that a standard ANCOVA works fine for a corner variable like this 
unless over 90 percent of the mass is on the zero point, the gamma shape leads to extreme 
outliers, and the sample size is small.  

Table 6 shows parallel results for a compound binary-gamma outcome for an unbalanced 
design (i.e. 0.3 ). For the simulations with no effect, there are no Type I 
error/coverage problems. However, as we saw with the simulations with a binary 
outcome, the combination of a strong treatment effect and unbalance in the design leads 
to under-coverage – in this case for all sample sizes considered. Also as we saw with the 
simulations with a binary outcome, the HC3 robust standard errors improve the coverage, 
but only reach the approximate level of 95 percent for the larger sample sizes shown.  

4. DISCUSSION 

Our simulations have confirmed that there is a large region of experimental designs for 
the study of binary and compound binary-gamma distributed outcomes for which OLS 
provides valid inference. Larger sample sizes are required for OLS to provide valid 
inference when the research groups are unbalanced and as the effect size increases (and 
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robust standard errors also help).3 Lumley et al. (2002) found similar results for other 
distributions.  Simulations like ours can help guide researchers to find the thresholds – as 
combinations of event rarity and sample size - for valid inference, either with OLS 
estimators of standard errors or with robust standard errors as defined above. Researchers 
need to turn to more robust methods only if the sample sizes are very small and kurtosis 
is extreme, particularly if the design is unbalanced. If an analyst has an experimental 
design and outcome combination that lies within the region where linear models will not 
yield valid inferences, then there are good textbooks on semi-parametric methods 
available to the analyst (e.g., Pesarin and Salmaso, 2010, Good, 2010, and van der Laan, 
2011).  

Our simulations also point to event rarity/sample size thresholds for minimizing the 
probability of failed trials when the outcome is binary our binary-gamma.  
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Table 1. Excess kurtosis for simulated binary outcome as function of mu 

  
Excess kurtosis 

(under null) 
.005 186 
.01 91 
.05 14 
.1 5 
.25 -0.7 
.5 -2 
 

Table 2. Excess kurtosis for simulated binary-gamma composite outcome as function of 
alpha and inverse logit mu 

  1logit   

  0.05 0.1 0.2 0.4 0.7 
1 131.9 65.1 28.6 12.9 6.9 

1.5 81.1 42.3 18.0 7.2 4.1 
2 66.1 27.7 13.7 5.7 2.4 
4 36.3 17.4 6.3 1.4 0.2 
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Table 3. Coverage rates of nominal 95% confidence intervals constructed by OLS 
estimator of the standard error of an effect on a binary outcome, balanced design 

  
No treatment effect 

(c=0) 
Very Strong Treatment Effect 

(c=3.24) 

  n 

Percent of 
trials not 

failed Coverage 

Percent of 
trials not 

failed Coverage 
Robust 

coverage 
0.005 50 0.233 0.999 0.868 0.969 0.968 
0.005 100 0.411 0.997 0.951 0.971 0.967 
0.005 200 0.641 0.998 0.989 0.894 0.899 
0.005 400 0.874 0.982 1.000 0.929 0.932 
0.005 500 0.932 0.978 1.000 0.935 0.935 
0.005 750 0.980 0.957 1.000 0.941 0.942 
0.005 1000 0.995 0.953 1.000 0.945 0.945 
0.005 2000 1.000 0.953 1.000 0.948 0.948 
0.01 50 0.403 0.999 0.953 0.967 0.963 
0.01 100 0.647 0.997 0.990 0.911 0.929 
0.01 200 0.882 0.988 0.999 0.931 0.933 
0.01 400 0.984 0.962 1.000 0.943 0.943 
0.01 500 0.996 0.955 1.000 0.943 0.945 
0.01 750 1.000 0.957 1.000 0.945 0.946 
0.01 1000 1.000 0.959 1.000 0.944 0.944 
0.01 2000 1.000 0.950 1.000 0.949 0.948 
0.05 50 0.927 0.970 1.000 0.935 0.945 
0.05 100 0.994 0.948 1.000 0.942 0.945 
0.05 200 1.000 0.953 1.000 0.945 0.947 
0.05 400 1.000 0.951 1.000 0.948 0.949 
0.05 500 1.000 0.947 1.000 0.944 0.946 
0.05 750 1.000 0.956 1.000 0.950 0.952 
0.05 1000 1.000 0.952 1.000 0.957 0.957 
0.05 2000 1.000 0.945 1.000 0.953 0.953 
0.1 50 0.996 0.944 1.000 0.938 0.947 
0.1 100 1.000 0.944 1.000 0.946 0.948 
0.1 200 1.000 0.951 1.000 0.949 0.951 
0.1 400 1.000 0.947 1.000 0.954 0.955 
0.1 500 1.000 0.952 1.000 0.947 0.948 
0.1 750 1.000 0.948 1.000 0.951 0.952 
0.1 1000 1.000 0.952 1.000 0.948 0.947 

0.25 50 1.000 0.945 1.000 0.941 0.946 
0.25 100 1.000 0.954 1.000 0.944 0.949 
0.25 200 1.000 0.943 1.000 0.947 0.949 
0.25 400 1.000 0.950 1.000 0.948 0.950 
0.5 50 1.000 0.939 1.000 0.947 0.951 
0.5 100 1.000 0.949 1.000 0.947 0.949 
0.5 200 1.000 0.944 1.000 0.951 0.953 
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Table 4.  Coverage rates of nominal 95% confidence intervals constructed by OLS 
estimator of the standard error of an effect on a binary outcome, unbalanced design 

  
No treatment effect 

(c=0) 
Very Strong Treatment Effect 

(c=3.24) 

  n 

Percent of 
trials not 

failed Coverage 

Percent of 
trials not 

failed Coverage 
Robust 

coverage 
0.005 50 0.230 0.974 0.726 0.894 0.924 
0.005 100 0.413 0.980 0.862 0.878 0.928 
0.005 200 0.658 0.974 0.952 0.892 0.941 
0.005 400 0.881 0.960 0.994 0.813 0.898 
0.005 500 0.923 0.965 0.997 0.858 0.906 
0.005 750 0.981 0.958 1.000 0.840 0.916 
0.005 1000 0.995 0.960 1.000 0.877 0.932 
0.005 2000 1.000 0.950 1.000 0.890 0.944 
0.01 50 0.420 0.975 0.853 0.872 0.923 
0.01 100 0.645 0.970 0.954 0.885 0.936 
0.01 200 0.878 0.965 0.994 0.811 0.899 
0.01 400 0.985 0.959 1.000 0.851 0.926 
0.01 500 0.995 0.963 1.000 0.867 0.921 
0.01 750 1.000 0.956 1.000 0.880 0.935 
0.01 1000 1.000 0.952 1.000 0.888 0.939 
0.01 2000 1.000 0.954 1.000 0.896 0.938 
0.05 50 0.929 0.957 0.998 0.847 0.923 
0.05 100 0.997 0.958 1.000 0.872 0.935 
0.05 200 1.000 0.951 1.000 0.888 0.941 
0.05 400 1.000 0.953 1.000 0.905 0.940 
0.05 500 1.000 0.945 1.000 0.910 0.945 
0.05 750 1.000 0.952 1.000 0.909 0.943 
0.05 1000 1.000 0.954 1.000 0.921 0.950 
0.05 2000 1.000 0.946 1.000 0.934 0.954 
0.1 50 0.995 0.957 1.000 0.881 0.933 
0.1 100 1.000 0.946 1.000 0.901 0.940 
0.1 200 1.000 0.945 1.000 0.913 0.946 
0.1 400 1.000 0.955 1.000 0.919 0.947 
0.1 500 1.000 0.954 1.000 0.924 0.950 
0.1 750 1.000 0.944 1.000 0.930 0.951 
0.1 1000 1.000 0.952 1.000 0.926 0.945 

0.25 50 1.000 0.946 1.000 0.933 0.940 
0.25 100 1.000 0.953 1.000 0.933 0.948 
0.25 200 1.000 0.948 1.000 0.929 0.944 
0.25 400 1.000 0.946 1.000 0.934 0.945 
0.5 50 1.000 0.940 1.000 0.987 0.951 
0.5 100 1.000 0.940 1.000 0.969 0.943 
0.5 200 1.000 0.948 1.000 0.958 0.950 
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Table 5.  Coverage rates of nominal 95% confidence intervals constructed by OLS 
estimator of the standard error of an effect on a binary-gamma outcome, balanced design  

No treatment effect 
(δZ,δG)=(0,0) 

Very strong treatment effect 
(δZ,δG)=(1,0.4) 

Probability 
of positive 
response 

 1logit     n 

Percent 
of trials 

not 
failed Coverage

Percent 
of trials 

not failed Coverage 
Robust 

coverage
0.05 1 50 0.924 0.993 0.990 0.886 0.888 
0.05 1 100 0.993 0.982 1.000 0.913 0.913 
0.05 1 200 1.000 0.970 1.000 0.937 0.940 
0.05 1 2000 1.000 0.952 1.000 0.950 0.949 
0.05 1.5 50 0.926 0.989 0.991 0.887 0.892 
0.05 1.5 100 0.993 0.978 1.000 0.928 0.929 
0.05 1.5 200 1.000 0.963 1.000 0.935 0.938 
0.05 1.5 2000 1.000 0.951 1.000 0.950 0.949 
0.05 2 50 0.922 0.985 0.991 0.901 0.907 
0.05 2 100 0.995 0.976 1.000 0.926 0.929 
0.05 2 200 1.000 0.959 1.000 0.937 0.941 
0.05 2 2000 1.000 0.954 1.000 0.947 0.947 
0.05 4 50 0.924 0.986 0.990 0.920 0.925 
0.05 4 100 0.991 0.964 1.000 0.938 0.942 
0.05 4 200 1.000 0.955 1.000 0.936 0.939 
0.05 4 2000 1.000 0.953 1.000 0.946 0.948 
0.1 1 50 0.995 0.976 1.000 0.911 0.917 
0.1 1 100 1.000 0.963 1.000 0.934 0.937 
0.1 1 200 1.000 0.963 1.000 0.939 0.944 
0.1 1 2000 1.000 0.950 1.000 0.954 0.955 
0.1 1.5 50 0.996 0.978 1.000 0.922 0.927 
0.1 1.5 100 1.000 0.958 1.000 0.942 0.944 
0.1 1.5 200 1.000 0.951 1.000 0.946 0.949 
0.1 1.5 2000 1.000 0.951 1.000 0.949 0.948 
0.1 2 50 0.995 0.970 1.000 0.933 0.939 
0.1 2 100 1.000 0.959 1.000 0.944 0.948 
0.1 2 200 1.000 0.946 1.000 0.947 0.948 
0.1 2 2000 1.000 0.952 1.000 0.950 0.951 
0.1 4 50 0.994 0.962 1.000 0.928 0.931 
0.1 4 100 1.000 0.947 1.000 0.944 0.949 
0.1 4 200 1.000 0.950 1.000 0.946 0.947 
0.1 4 2000 1.000 0.948 1.000 0.946 0.946 
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Table 6.  Coverage rates of nominal 95% confidence intervals constructed by OLS 
estimator of the standard error of an effect on a binary-gamma outcome, unbalanced 
design 

No treatment effect 
(δZ,δG)=(0,0) 

Very strong treatment effect 
(δZ,δG)=(1,0.4) 

Probability 
of positive 
response 

 1logit     n 

Percent 
of trials 

not 
failed Coverage 

Percent 
of trials 

not 
failed Coverage 

Robust 
coverage 

0.05 1 50 0.917 0.965 0.978 0.793 0.808 
0.05 1 100 0.995 0.957 0.999 0.840 0.864 
0.05 1 200 1.000 0.962 1.000 0.857 0.904 
0.05 1 2000 1.000 0.952 1.000 0.888 0.952 
0.05 1.5 50 0.926 0.966 0.974 0.816 0.823 
0.05 1.5 100 0.995 0.965 1.000 0.841 0.872 
0.05 1.5 200 1.000 0.961 1.000 0.857 0.905 
0.05 1.5 2000 1.000 0.952 1.000 0.879 0.948 
0.05 2 50 0.925 0.971 0.974 0.817 0.828 
0.05 2 100 0.994 0.960 1.000 0.848 0.883 
0.05 2 200 1.000 0.956 1.000 0.872 0.919 
0.05 2 2000 1.000 0.951 1.000 0.878 0.945 
0.05 4 50 0.923 0.960 0.979 0.836 0.848 
0.05 4 100 0.995 0.959 0.999 0.849 0.893 
0.05 4 200 1.000 0.957 1.000 0.866 0.917 
0.05 4 2000 1.000 0.950 1.000 0.883 0.947 
0.1 1 50 0.995 0.957 0.999 0.835 0.860 
0.1 1 100 1.000 0.958 1.000 0.867 0.902 
0.1 1 200 1.000 0.953 1.000 0.871 0.924 
0.1 1 2000 1.000 0.946 1.000 0.891 0.949 
0.1 1.5 50 0.995 0.960 1.000 0.853 0.881 
0.1 1.5 100 1.000 0.954 1.000 0.873 0.915 
0.1 1.5 200 1.000 0.953 1.000 0.879 0.931 
0.1 1.5 2000 1.000 0.951 1.000 0.897 0.952 
0.1 2 50 0.995 0.954 0.999 0.854 0.886 
0.1 2 100 1.000 0.959 1.000 0.879 0.924 
0.1 2 200 1.000 0.950 1.000 0.888 0.936 
0.1 2 2000 1.000 0.950 1.000 0.893 0.950 
0.1 4 50 0.996 0.962 0.999 0.864 0.900 
0.1 4 100 1.000 0.953 1.000 0.884 0.929 
0.1 4 200 1.000 0.954 1.000 0.894 0.942 
0.1 4 2000 1.000 0.952 1.000 0.894 0.947 
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