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Abstract

This paper is concerned with approximation problems involved in the similarity shape analysis

of planar contours. Contours in this context may be thought of as the ranges of simple closed

curves. While contours are by their very nature infinite-dimensional, in order for computations

to be performed with digital images, discretization is unavoidable and results in some amount of

approximation error. To aid in the quantification of this error, we use a polygonal approximation

for the contours by evaluating the contours at k times. We explore methods for determining a rough

lower bound for k and illustrate them using some examples.
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1. Introduction

The area of shape analysis in its modern form began with Kendall (1984), which mathe-

matically defined the notion of direct similarity shape for finite-dimensional planar config-

urations. Such a configuration is traditionally represented as a k-ad, which is a set of k

ordered, labelled points of interest called landmarks. Two k-ads z1 = (z11 , . . . , z
k
1 ), z2 =

(z12 , . . . , z
k
2 ) ∈ C

k are said to have the same direct similarity shape, if there is a direct

similarity S of the complex plane,

S(z) = wz + b, w ∈ C
∗, b ∈ C

such that S(zj
1
) = z

j
2
,∀j = 1, . . . , k. In other words, if z1 and z2 have the same direct

similarity shape, they may differ only by translation, rotation, and scale.

The mathematical definition of direct similarity shape is thus defined as follows. Trans-

lations are filtered out by centering the k-ad z = (z1, . . . , zk) to

ζζζ = (ζ1, . . . , ζk)

ζj = zj − z,∀j = 1, . . . , k.

Unfortunately, rotation and scale are not so easily filtered out. Instead, the direct similarity

shape, or Kendall shape of ζζζ is defined using an equivalence class. Indeed, the Kendall

shape [ζζζ] of ζζζ is the orbit under rotation and scaling of ζζζ. That is,

[ζζζ] = {λeiθζζζ : −π < θ ≤ π, λ > 0}, (1)

where λ is a scaling factor and θ is an angle of rotation about the origin.

As a result, the four configurations shown in Figure 1, despite differing from each

other, all have the same Kendall shape. By virtue of this definition, shape data can be more

difficult to work with quantitatively than standard multivariate data. Indeed, the space of

all such shapes, denoted by Σk
2, can be identified with a projective space, meaning that

traditional statistical techniques for Euclidean data cannot be directly used. Instead, data

analysis requires the use of statistical techniques defined for use on manifolds.
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For information regarding parametric and semi-parametric statistics on manifolds, please

see Watson (1983), Small (1996), Dryden and Mardia (1998), Kendall et al. (1999), Mardia

and Jupp (2000), Shi et al. (2009), and Fletcher (2012), among others. Bhattacharya and

Patrangenaru (2003, 2005) and, independently, Hendriks and Landsman (1998) developed

theory and methodologies for nonparametric statistical analysis on manifolds.

Figure 1: Four configurations that all have the same Kendall shape, differing only in rota-

tion, translation, and scale from each other.

2. Landmark Selection

The statistical shape analysis of finite-dimensional planar configurations depends greatly

upon the selection of the landmarks used to form the k-ads. As discussed in Dryden and

Mardia (1998), landmarks are selected according to some set of rules, so as to both repre-

sent the object of interest well (for the purpose of the analysis) and achieve correspondence

of landmarks across k-ads within a sample. Traditionally, a relatively small number of

landmarks are selected either by an expert based upon anatomical features or according to

mathematical features of interest, such as curvature, as shown in Figure 2 (middle). How-

ever, due to the amount of information lost by using only a small number of landmarks,

as computing power has increased, researchers began to include equally spaced landmarks,

often called pseudolandmarks, between those which were carefully selected, as in Figure 2

(right).

Figure 2: A contour of a stingray (left) represented as a k-ad using 6 carefully selected

landmarks (middle) and with equally spaced pseudolandmarks placed between the original

6 landmarks (right).

Due to the rapid growth of imaging data available alongside the increase in computing

power, many researchers have developed methods for automatic landmark selection when

dealing with outlines of objects so as to speed up the data analysis process. Perhaps the

most commonly used method is to systematically select equally spaced landmarks along
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the outline of the object of interest, as mentioned above. Bookstein (1997) introduced

semilandmarks, often referred to as sliding landmarks, which are found using thin-splate

splines, and allow for the landmarks to move along the outline. Recently, Ellingson et

al. (2013) introduced methodology for shapes of contours which is analogous to random

landmark selection. Typically, methods such as these use values of k considerably larger

than non-automated methods in order to allow the k-ads to well-represent the outline.

3. Similarity Shape of Planar Contours

Over the past 20 years, researchers have taken an interest in the analysis of shapes of curves,

rather than finite-dimensional configurations. For instance, Grenander (1993) considered

shapes as points on an infinite dimensional space. Furthermore, a manifold model for direct

similarity shapes of planar closed curves, which was first suggested by Azencott (1994),

was pursued in Azencott et al. (1996), and further detailed by Younes (1998, 1999).

This area gained additional ground the turn of the millennium, as more researchers

began studying shapes of planar closed curves, as in Sebastian et al. (2003). Klassen et al.

(2004), Michor and Mumford (2004), and Younes et al. (2008) follow the methods of Small

(1996) and Kendall by defining a Riemannian structure on a shape manifold. Klassen et al.

(2004) compute an intrinsic sample mean shape. subsequently, Mio and Srivastava (2004),

Mio et al. (2007), Srivastava et al. (2005), Mio et al. (2005), Kaziska and Srivastava

(2007), Joshi (2007), and, most recently, Kurtek et al. (2012) have explored the similarity

shape of closed curves modulo reparametrizations for a chosen Riemannian metric.

However, we will consider the approach of Ellingson et al. (2013), which defines a

contour γ̃ to be the range of a piecewise differentiable function γ that is parametrized by

arclength:

γ : [0, L] → C,

such that γ(0) = γ(L) and γ is one-to-one on [0, L). That is to say that the contour γ̃

is non-self-intersecting. Let zγ denote the center of mass of γ. A contour γ̃ is said to

be regular if γ is a simple closed curve, as defined above, and there is a unique point

z0 = argmaxz∈γ̃‖z − zγ̃‖. In other words, there is a unique point on the contour that

is furthest from the center of mass. For convenience, we will subsequently identify the

contour with the function γ.

Just as in the the finite-dimensional case, the direct similarity shape [γ] of a contour γ

consists of all contours differing from γ by only rotation, translation, and/or scale. We can

again filter out translations by centering the contour as follows:

γ0 = γ − z̄γ = {z − z̄γ , z ∈ γ}.

γ0 is called a centered contour. We say that two regular contours γ1 and γ2 have the

same direct similarity shape if, for some non-zero complex number β, γ2,0 = βγ1,0. More

formally, we define the direct similarity shape of γ to be the orbit under rotation and scaling

of γ0. Symbolically, this can be expressed as:

[γ] = {λeiθγ0 : −π < θ ≤ π, λ > 0},

where λ and θ are as defined in (1).

The closure of the complex vector space spanned by centered contours γ is a Hilbert

space H. As such, the set of all direct similarity shapes of regular contours Σreg
2

is a dense

and open subset of P (H). Due to this, we again must appeal to the use of statistics on

manifolds.
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While there are a number of methods and metrics that could be used to analyze data

lying on this space, we will conduct an extrinsic analysis. To do this, we must embed the

shape space into an ambient Hilbert space in order to perform the statistical analysis. Here,

we embed P (H) in LHS = H⊗H, the space of Hilbert-Schmidt operators of H into itself,

via the Veronese-Whitney embedding j, which is given by

j([γ]) =
1

‖γ‖2
γ ⊗ γ,

where [γ] denotes the shape of γ. The distance ρ induced via j is the Frobenius norm on

the space of Hilbert-Schmidt operators. Let A,B ∈ P (H). Then,

ρ2(A,B) = Tr ((j(A) − j(B))⊗ (j(A) − j(B)))

4. Discrete Approximations

Ideally, we could conduct data analysis directly using the preceding results, but when work-

ing with digital imaging data, it is necessary to discretize the data in some way. Since

contours are functional data, we could appeal to techniques described in Ramsay and Sil-

verman (2005) to approximate the contours using a finite number of basis functions of

some kind. Another option is to approximate a contour as a k-ad and perform the analysis

on Σreg
2

using Σk
2 , Kendall’s shape space of finite planar configurations. If this were done,

we would approximate each contour γ using a (centered) k-ad ζζζ by selecting landmarks in

some manner along the contour. We could then embed Σk
2 into S(k,C), the space of self-

adjoint k× k complex matrices using the finite-dimensional Veronese-Whitney embedding

given by 1

‖ζ‖2
ζζ∗.

However, while the problem of discretization is often mentioned, researchers often

choose an arbitrary value for k despite the choice being non-trivial. It is important that the

discrete approximation retains the features of the contour, so k must not be too low. On the

other hand, for computational purposes, it is advantageous to not have too high of a value

for k. As such, we would like to be able to find a rough lower bound for k for a given

contour to find a balance between the competing factors described above.

Unfortunately, though, evaluating approximations can be tough using k-ads because

there is a fundamental difference in nature between a finite-dimensional k-ad and an infinite-

dimensional contour. Due to this, we want to discretize in a way that we can appeal to the

finite-dimensional techniques while also remaining able to quantify approximation error.

4.1 Polygon Approximations

To solve this problem, Ellingson et al. (2013) proposed to approximate contours as poly-

gons. To do this, sampling points are obtained by evaluating the contour γ at k times. The

linear interpolation of the sampling points yields the k-gon z. It follows, then, that z is

a one-to-one piecewise differentiable function that can be parametrized by arclength. As

such, z can be evaluated at any number of times. Indeed, for s ∈ (0, 1), the k-gon can be

expressed as follows:

z(sLk) =











(t2 − sLk)z(0) + sLkz(t2) 0 < sLk ≤ t2

(tj − sLk)z(tj−1) + (sLk − tj−1)z(tj) tj−1 < sLk ≤ tj

(Lk − sLk)z(tk) + (sLk − tk)z(0) tk < sLk < Lk

for j = 3, . . . , k. Here, Lk denotes the length of the k-gon, z(tj) is the jth ordered vertex,

where tj ∈ [0, Lk), and z(t1) = z(0) = z(Lk).
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The sampling points, which serve as vertices of the polygon (though some may be

collinear), are analagous to landmarks and may be selected automatically, as discussed in

Section 2. For the purposes of this paper, we are considering only sampling points equally

spaced along the contour. It should also be noted that the center of mass of a k-gon may

differ from that of a classical k-ad, though the difference is most profound for small k, as

in Figure 3. However, as k → ∞, the centers of mass for both types of configurations both

converge to the center of mass of the contour.

Figure 3: A triangle and its center of mass (blue) along with a 3-ad formed from the

triangle’s vertices and its center of mass (red)

4.2 Lower Bound Using Squared Distance in the Shape Space

Suppose that the digital image of the contour consists of K pixels. From (4.1), it follows

that z can be evaluated at K times. Indeed, the space of direct similarity shapes of non-

self-intersecting regular polygons is dense in the space of direct similarity shapes of regular

contours. As a result, the contour and k-gon, along with their respective shapes, are objects

in the same space as each other, allowing for approximation error to be evaluated directly.

Due to this, a natural choice for a criterion with which to find a lower bound for k

might be based upon the distance ρ in the shape space. As an initial choice, we decided to

explore using ρ2. Out goal was to find the smallest value of k such that ρ2(zk, γK) < 0.05,

where γK is the “best" approximation of γ available. We chose 0.05 as a cutoff with the

interpretation of it being a 5% relative squared-distance with respect to γK since the norm

of each shape is defined to be 1.

For a given contour, the algorithm we used to find a lower bound for k is as follows:

1. Evaluate γ at K times to obtain the “best" approximation γK .

2. Evaluate γ at k times to obtain zk.

3. Calculate the squared distance ρ2(zk, γK).
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4. Repeat steps 2 and 3 for values of k between 4 and K .

5. Choose the smallest k such that ρ2(zk, γK) < 0.05.

As an example, this methodology was applied for a contour of a dog shown in Figure

4. Figure 5 displays the plot of ρ2 versus k for this contour. Interestingly, ρ2 decreases

rapidly, falling below the chosen threshold at only 17 sampling points. The 17-gon, as

is shown in Figure 4, captures the general form of the contour of the dog, but all of the

details are missing, as would be expected for such a low-dimensional approximation. This

suggests that ρ2 may not be suitable as a criterion for choosing a lower bound for k.

Figure 4: The contour of a dog (left) and the associated polygon approximation (right)

obtained using ρ2 to determine a lower bound for k.
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Figure 5: A plot of ρ2 versus k for the contour of a dog for all values of k (left) and zoomed

in for small values of k (right).

A second example using the contour of a stingray is shown in Figure 6. Similarly to the

previous example, Figure 7 shows that ρ2 decreases rapidly as k increases for small values

of k. Indeed, here, our criterion suggests that only 18 sampling points are sufficient to

approximate the shape of the contour. However, the 18-gon, as shown in Figure 6, self-

intersects in the tail of the stingray because of the high amount of curvature in this region

of the contour while also being incredibly narrow. As such, our approximation violates our

requirements, providing further support for this criterion not being appropriate for finding

a good lower bound for k.
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Figure 6: The contour of a stingray (left) and the associated polygon approximation (right)

obtained using ρ2 to determine a lower bound for k.
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Figure 7: A plot of ρ2 versus k for the contour of a stingray for all values of k (left) and

zoomed in for small values of k (right).

4.3 Lower Bound Using Difference in Length

Motivated by the fact that using the squared distance in the shape space as a criterion for

finding a lower bound for k produced approximations that were unsatisfactory, we decided

to explore methods for approximating the contour, itself, instead of the shape. To do this,

we appealed to the fact that, for a given contour, the lengths, or circumferences, of the

polygon approximations are bounded above by the length of the contour. Furthermore, as k

increases, the length of the k-gons converge to the upper bound. The length Lk for a given

k-gon is

Lk =

k+1
∑

j=2

‖z(t)j − z(tj−1)‖,

where z(tk+1) = z(0). The length of γK can be calculated similarly and is denoted by LK .

As our cut-off criterion, we chose to use 5% relative error in lengths with respect to γK .

For a given contour, the procedure we used to find a lower bound for k is as follows:

1. Compute LK .

2. For some value k, compute Lk.

3. Compute the relative error of Lk compared to LK .

4. Repeat steps 2 and 3 for values of k between 4 and K .
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5. Choose the smallest k such that the LK−Lk

LK
< 0.05.

To examine how this criterion works compared to ρ2, we performed this procedure for the

same two contours as previously used. For the contour of the dog, a plot of of LK−Lk

LK
versus

k is shown in Figure 8. While the relative error quickly declines as k increases, the decrease

is not as rapid as it was for ρ2. As a result, the smallest values of k that satisfies our criterion

is considerably higher. In fact, this criterion provides a lower bound of 473 sampling points.

The resulting polygon approximation is shown alongside the original contour in Figure

9. Notice that, unlike in the previous scenario, there is no visual distinction between the

contour and approximation. The plot of LK−Lk

LK
versus k for the contour of a stingray is
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Figure 8: A plot of LK−Lk

LK
versus k for the contour of a dog for all values of k

Figure 9: The contour of a dog (left) and the associated polygon approximation (right)

obtained using LK−Lk

LK
to determine a lower bound for k.

shown in Figure 10. The lower bound for k using this criterion is 305 sampling points.

The polygon approximation is shown beside the original contour in Figure 11. As with the

contour of the dog, the approximation is visually nearly indistinguishable from the contour.

Additionally, there is no problem with self-intersection using this criterion, unlike with the

previous criterion.
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Figure 10: A plot of LK−Lk

LK
versus k for the contour of a stingray for all values of k

Figure 11: The contour of a stingray (left) and the associated polygon approximation

(right) obtained using LK−Lk

LK
to determine a lower bound for k.

5. Conclusions

Based upon these computations, it appears that, of the two criteria explored here, the rel-

ative error in lengths produced a more conservative lower bound for k than the squared

distance in the shape space did. As such, the polygon approximations using the more con-

servative lower bounds more closely visually resemble the contours. However, this results

in these approximations requiring considerably more sampling points, increasing the effec-

tive dimensionality of the approximations and computational cost.

This result leads to the question of which is more important for a given application:

analyzing the approximation of the shape of the contour or the shape of the approximation

of the contour. If the former is suitable for a given problem, then using ρ2 to determine a

lower bound for k may suffice. However, if approximating the contour, itself, is important

for the task at hand, then alternative methods comparing the contour and approximation as

functions may be necessary.

Here, we suggest comparing the lengths of the functions, but this was merely an initial

exploration to determine whether appealing to the configurations, themselves, rather than

their shapes might be worth consideration. Since these preliminary results suggest that to

be the case, further study appears to be warranted. Indeed, there are many techniques from

functional data analysis that could be more appropriate than what we considered here.
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Furthermore, for both criteria, our cut-off to determine a lower bound for k was chosen

somewhat arbitrarily. Due to the scree-like nature of the plots of our criteria versus k, a

more natural choice may be to use the bend in the plot. From the examples shown here,

this change would seem to affect bounds found using the relative error in length more, as

the bends in the plots occur near 10% rather than 5%.

Additionally, here we consider only approximating single observations. While this is

certainly of use for gaining a better understanding of the problem, a more practical scenario

is to consider problems when approximating a number of observations. Most notably, many

problems in shape analysis involve calculating and estimating means, whether extrinsic or

intrinsic. As such, an immediate extension is to apply the same ideas explored here to the

approximation of sample means. Beyond that, it would be natural to explore the effect that

the approximations have on estimation problems.
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