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Abstract
Since 1992, the Economic Census has used cell suppression to protect sensitive information.
The disclosure process that suppresses sensitive cells uses a network flow model (MCF) to
ensure minimal information loses. However, the answer is often not optimal because the
model does not handle large complex table structures very well. Linear Programming (LP)
is an alternative methodology that may overcome the limitations of MCF.

A typical LP sets constraints in a multi dimensional grid with one targeted entry (the
primary cell) and finds a suppression pattern to protect that target. The cell suppression
process completes after solving an LP for each of the primary cells. This is a simple
sequential approach. The number of constraints is determined by the size and complexity
of the tables being published. The performance depends on both the number of constraints
and variables and the number of primary cells. There are two problems of simple sequential
approach (1-LP). The first, even if the execution time for each target is fast enough, the time
spent on the whole process can be unsupportable. The second, while each LP is optimal it is
not optimal globally. This research addresses the first issue; several targets are formulated
in one LP such that the computing time for one LP remains small while the whole processing
time is reduced. We will explore this partial simultaneous LP (m-LP): how the number of
targets in one LP reduces the overall processing time and find the best such number in
the trade off with oversuppression. We will also determine how the order of targets to be
processed enhances/compromises the objective, i.e., the number of suppressed cells and/or
total suppressed value. We will make some comparisons with results from the existing 1-LP
program. This research addresses the speed problem LP had and has quantified the amount
of oversuppression for selected data.

1. Introduction to Cell Suppression

Census Bureau economic census uses Cell suppression to protect sensitive cells (P s).
Currently, its program is designed sequentially, protecting one P at each LP call,
called LP or 1-LP to distinguish the notation used later in this article. A cell
suppression process completes after solving an 1-LP for each of the primary cell.
We consider two criteria to evaluate a disclosure avoidance methodology, and take
as given that the methodology is well founded (no disclosure). One is how much
is suppressed (number and value of cells). The other is the complexity of the
algorithm. There is no one unique method that meets both. The alternative is to
find one that balances the two. Integer Programming (IP) is the best to achieve
the first goal because its objective is the best to fit the problem. However, it
introduces binary variables, adds complexity and is a NP-hard problem that leads
to exponential growth (in time) as the size of the problem increases. Therefore, it
is impractical and violates the second criteria. Census Economic Census has been
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using a network model which solve the problem within a reasonable time, in O(nm)
[1], where n and m are the sizes of problem in the network. But it causes both
oversuppression and undersuppression; its methodology is not well founded. Linear
Programming (LP) seems a natural choice balancing between IP and network. It
takes a similar sequential approach as network does, by protecting one P at a time.
First, LP can also be solved in polynomial time O(N iM j) where N , M are the
dimensions of the problem, however N >> n and M >> m, i, j > 0. Second, it
looks at a global picture and taking account all related cells, while network only
concentrates on local optimization. Therefore, it reduces undersuppression. While
LP addresses some of the issues and has the same complexity as network has, it is
a much larger problem than network. To solve the problem (protecting all sensitive
cells) for all P s, it takes as much as #P ∗O(N iM j), which can also be unsupportable
for many of the larger Economic Census data sets. The simultaneous multiple P s
(m-LP) approach is a natural extension of 1-LP. It protects m P s at a time and
takes as little time as a fraction of m.

Section (2) explains m-LP approach, Section (2.4) Table (4) examines some
results: how m, infeasiblity affects/improves performance.

2. Partial Simultaneous

A simultaneous LP (m-LP) is to protect several (m) P s, say mP s where m > 1,
in one LP formulation. It has the same complexity as one P LP (1-LP) because
its constraints are still linear without adding additional variables and constraints.
However, it reduces the number of times the solver is called, and processes m P s
at the same cost as it does one P . Therefore, it dramatically reduces the run-
ning time, usually to a factor of m. The only changes are on the bounds of the
protection needed variables (P s), ie: x+ = prot required, and x− = 0 instead of
x+ ∈ [0, value], and x− ∈ [0, value], as described in section (2). There can be two
side affects with this approach. One is oversuppression. The other is that it leads
to conflicting constraint causing an infeasibility.

Both oversuppression and infeasibility could occur when there are several P s
in a constraint on the mP s list. For example, in a constraint a = b + c, where
both cell b and c are P s. In 1-LP, cell b maybe used to protect cell c, and verse
versa. However, in m-LP, cell a has to be invoked to protect both b and c, because,
by the given constraint, aflow = bprot+cprot. When this happens oversuppression
occurs. Furthermore, if cell a is also a P then it is very unlikely that the protection
required by cell a matches the sum of required protection from both cell b and cell c.
In this case, the constrain: aprot = bprot + cprot, is a conflicted constraint, which
causes an infeasiblity. Generally, a feasible flow that protects the P s jointly also
is a feasible flow that protects them separately, and the union of two feasible flows
that protect the P s separately may not be feasible to protect the P s jointly (the
capacity constraints may be violated). Thus the set of feasible flows for the joint
problem is smaller than that of the separate problem - causing oversuppression.
While oversuppression seems unavoidable, avoiding infeasiblity is not hard. One
may switch to a one P process any time an infeasible occurs for a set of P. One
also to select the m P s so that they are mutually exclusive, in the sense that no
two P s are in the same relationship. It is probably even better when all m P s
are ”far apart”. One idea for implementing ”far apart” involves finding shortest
path between any two P s for each dimension and finding m ”least connected” P s.
Another idea is ”depth” disscussed in Section (2.3). It is designed so that each P

JSM 2013 - Government Statistics Section

1108



may find its own protection with minimum interference from other P s. It is much
like protecting each P in its own neighborhood, but finding solution for m P s at the
same time. Therefore choice of p may reduce oversuppression. It is no guarantee
that each of m-LP is feasible by the second approach (selection of mPs) alone. But
combining it with the first approach (convert to a 1-LP), it is guaranteed that every
P is protected by some LP solve in a cell suppression process.

2.1 Cell Suppression Process

A Cell Suppression Process, using m-LP model, processes all P s sequentially m
number of P s at a time until all P s are done. To improve the process, the program
may start with m = 1 for the first few (10) P s, reset to a speicific m > 1 after that,
and again, reset m back to 1 near the end several (10) loops . This design, at the
beginning, helps shake off these P s that are already protected - skipped P s (will be
explained in Section (2.4)), and near the end, avoids most infeasibilities.

2.2 Setting Up a m-LP - constraints and cost objective function

We are solving a m-LP for m P s. The goal is to

minimize
∑

i,j,k vr
ijk(x+

ijk + x−
ijk)

subject to
∑

j,k(x
+
ijk − x−

ijk) = x+
i11 − x−

i11 ∀i
∑

i,k(x
+
ijk − x−

ijk) = x+
1j1 − x−

1j1 ∀j
∑

i,j(x
+
ijk − x−

ijk) = x+
11k − x−

11k ∀k

(1)

where x±
ijk are flows through each cell, vijk generally are the cell value and r is

the real exponents.
Additionally, for these selected m primary cells, we have

x+
ijk + x−

ijk = protijk

x+
ijk = 0 or x−

ijk = 0
(2)

Notices that constraints (2) add 2m binary, and makes it a mixed integer pro-
gramming which is a much harder(complex) problem than LP. To keep it a true
linear programming, we simplify constraints (2) to

x+
ijk = protijk

x−
ijk = 0

(3)

which force flows in one direction for all m P s. To solve a cell suppression problem,
m-LP solvers are expected to be called approximatly #TotalPs/m time. Notices
that at m = 1, m-LP = 1-LP. Ideally, using m-LP will reduce computation time
to a fraction of m of 1-LP. Although the simplified constraints (3) keep the com-
plexity of m-LP the same as 1-LP, it evidently creates more oversuppression than
constraints (2) because the former creates more needed protection. For example,
in a relationship, where there are multiple P s, constraints (3) ask for the amount
of protection needed as

∑
i proti, while constraints (2) will negotiate among the P s

and may settle the needed protection with the amount diff|prot(xi) − prot(xj)|.
Observe that, for 1-LP, constraints (2) and (3) are equvalent within the problem.

Therefore it makes sense to use (3) in the model to keep the problem linear.
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2.3 Selection of m Ps

Ideally, we like to select m unrelated P s, so each P is locally isolated. In reality,
data cells are all somehow related. We arrange the data based on its relationship
in a data structure, picking m P s from different table ”cateegory. We hope each P

finds protection from its own neighborhood with minimum interference with other
P s in the mP s list, therefore avoiding infeasibility and reducing oversuppression.
Usually, the row relationships follow a strictly hierarchy structure, we assign number
to row by its position in hierarchy. We classify each cell by enumerating column
relationships, and appending it to row depth. This is done similarly to any other
dimension where it applies.

How many P s should be processed in a m-LP is data dependent. Generally, the
larger of m, the less time it takes to solve whole problem. But a larger m may not
lead to best cells (counts or value) suppressed, or time because of the infeasibilities
it encounters. The suggestion is that the largest m does not exceed the maximum
number categories of data structure.

2.4 Results

2.4.1 Test Data: Table (1)

We use economic Census′ data to test m-LP. Table (1) shows basic statistics of three
sets of data, such as the dimension of data structure, the number of records, the
number of sensitive cells (P s), performance time (for the whole process) and time
spent per p. The three data sets are: a subset of Annual Survey of Manufacture for
2010 (ASM10), Disclosure Group 07 for service sector 71 (dg07 71), and Disclosure
Group 10 for service sector 71 (dg10 71) which is a larger data set. Some data sets
have dense sensitive cells (see density %) such as dg07 and dg10, and asm10 is the
least dense set with 10% Ps. These are just a small selection of small to medium
size economic census data. As the data size gets big, the performance time becomes
increasingly important.

Performance time is determinded by the size of LP (number of cells and di-
mensions which translate to number of variables n and constraints L) and number
of P s to be processed. The number of cells, accordingly the number of variables,
carries more weight than the number of constraints does. It may be of O(n1.5L).
Our R&M team worked very hard to improve the performance by reducing number
of variables (unduplicating)- preprocessing the input data to elliminate/substitute
duplicates, and number of LP calls by ”skipping P”. We test each P to see whether
it receives enough flow (>protect required) for each LP solution. Then P s having
enough flow are marked protected in the list of P s to be processed; they are skipped
in the process as it sequentially proceeds down the list. We also mark a P ”pro-
tected” if the P is in an all-P relation, i.e. all cells in the relationship are P s, for
all relationships the Ps involved in. This last step is done before the 1st call of
LP solver. We can see how number of P s is reduced at the start in Table (1) on
”P s at start” column. Constraints are added only when cell data are presented and
acquired in their respective input files. Those are our LP model based on as the
columns, in Table (1), ”#constraints, #variables, and #P s at start”, have shown.

2.4.2 Table (2) - (4)

The m-LP results, for the selected m, are listed on Table (2), (3),and (4) with sup-
pression, running time, number of m-LP called (nlp), infeasibility encountered (nI),
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Data
Name

#Cells
(n)

Dims:
Rowx-
ColxLev

TotalP s
(den-
sity%)

TotalConstraints(L)
=(row+col+lev)

#P s
at
Start

T1−lp #LP
calls

tlp

ASM10 21781 474x13x57 2334
(11)

12721
=5311+7081+329

2334 43:17m 1214 2.14

dg07 71 17467 61x472x3 11037
(63)

23045
=9514+5960+7571

9263 19:16m 1410 .82

dg10 71 62112 62x1858x3 41271
(66)

81555
=34797+19592+27166

34277 5hrs 3715 4.8

Table 1: Test Data Statistics (T1−lp: Total Time, tlp: Average time for each solve)

and oversuppression (%) compared with 1-LP which is also represented on graphs
(1) - (3). Similar information is also provided for network model for comparison.

We choose m up to 10 mostly to see how performance altered. For the larger
data set, dg10, we tested m = 24 to cut down its performance time. Generally, the
larger the data set is, the bigger the m can be choosen.

By trial and error we created some gold standard cases where no infeasible
occurres in the process, see the bottom part of Table (4), where mPs are picked
by using some sort of classification scheme discussed early. It appears the running
time reduced proportionally as m increases, as we expected. It also suggests that
the number of infeasible take back performance time gained from m-LP shown from
other cases, see the first ten cases of Table (4).

When Cell suppression runs on 1-LP solver, for example, it takes 5 hours for
dg10 sector 71 data. In ideal situation, when each set of m P s is selected such that
no infeasible occurs, using m-LP solver takes a fraction of m time. Such are the
cases at m = 5, m = 10, and m = 24, where infeasibility encountered is zero, as
shown in Table (4), each taking 1:02 hour, 33:23 and 16:40 minutes respectively.
However the number and value suppressed are compromised. asm10 suffered 8%
and 4% increase, respectively, dg07 1% and 3%, and dg10 1% and 9%, at the worst
case. In this aspect, network has more, about 21% and 47% for dg07, and 19% and
62% for dg10 1. However network does have the huge advantage with time and it
takes 2min. for dg10. The best possible time m-LP has is 16min. from the existing
testing. Most of asm10 tests don’t have any infeasibles. I guess this is because its
Ps density (11% Ps) helps isolate mPs naturally. The other two data sets have the
density more than 60%.

2.4.3 Table (5)

A regression model is developed to predict run time, see Table (5), which is a
function of infeasibles and LP calls. There is also a column showing the time
per call from 1-LP process. The model also proves that infeasibles cost us and,
without infeasibles, time is generally a portion of 1-LP. It is important to develope
and improve the ”classification” scheme that allows a true m-LP cell suppression
process - a process with no infeasibles.

1production results may vary because of the weights and other parameters used in the produc-
tion.
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ASM10
m(P s) Total Cs Total C Value Tm−lp nI nlp Changes(%)
1p 2301 670274340 43:17 0 1214 Cells Value
2p 2306 673580156 22:19 0 626 .22 .49
3p 2355 676518979 14:47 0 410 2.35 .93
4p 2473 678182821 11:01 0 204 7.48 1.18
5p 2284 676028884 9:20 0 258 -.74 .86
6p 2424 688385318 7:29 1 204 5.35 2.7
7p 2375 682393273 6:41 0 182 3.22 1.81
8p 2443 694674105 6:05 1 164 6.17 3.64
9p 2473 685847489 5:18 1 142 7.48 2.32
10p 2474 695176051 4:44 1 126 7.52 3.72

Table 2: How m & Infeasibles Affecting Performance

Figure 1: Suppression comparison with 1-LP for ASM10
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dg07 71
m(P s) Total Cs Total C Value Tm−lp nI nlp Changes(%)
1p 3408 62017093 19:16 0 1410 Cells Value
2p 3415 63727898 9:50 12 698 .21 2.76
3p 3410 64132289 6:56 14 486 .059 3.41
4p 3411 62599725 6:00 45 410 .088 .94
5p 3385 63160838 5:36 58 362 -.67 1.84
6p 3444 66027101 4:44 52 300 1.06 6.47
7p 3438 65581098 4:57 78 308 .88 5.75
8p 3441 65546601 5:19 117 316 .97 5.69
9p 3436 65865125 5:38 123 326 .82 6.2
10p 3434 64167178 4:50 105 292 .76 3.47
network 4124 91487060 secs 21 47.5

Table 3: How m & Infeasibles Affecting Performance

Figure 2: Suppression comparison with 1-LP for dg07
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dg10 71
m(P s) #Total Cs Total C value Tm−lp nI nlp changes(%)
1p 11300 358326988 5hrs 0 3715 Cells Value
2p 11335 383086282 2:17 44 1750 .31 6.9
3p 11402 383748045 1:38 91 1208 .90 7.09
4p 11457 384419717 1:25 151 986 1.39 7.28
5p 11376 383902919 1:14hrs 177 862 .36 7.14
6p 11302 388953847 1:13 218 800 0 8.54
7p 11356 391126410 1:18 312 822 .496 9.15
8p 11384 386778237 1:21 370 824 .743 7.94
9p 11447 386881431 1:24 415 852 1.3 7.96
10p 11376 386589160 1:24 431 834 .67 7.8

m P s selected in some sort of classification scheme
5p 11548 375844491 59min 0 784 2.195 4.89
10p 11716 389758467 33:23 0 402 3.68 8.77
24p 11917 392527618 16:40m 0 180 5.46 9.54
network 13470 579433340 1m43s 19.2 61.7

Table 4: How Number m & Infeasibles Affecting Performance

Figure 3: Suppression comparison with 1-LP for dg10

Data Name tlp Prediction Time Model
asm10 2.1392 T = 3.29 + 12.913nI + 2.1385nlp

dg07 07 .8199 T = 16.993 + .4103nI + .8085nlp

dg10 07 4.8452 T = -43.89+2.34nI + 4.8149nlp

Table 5: Prediction Time Model as a Function of number of Infeasible(nI) and LP
(nlp) (tlp: Average time per solver based on m = 1)
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3. Conclusions

As it is predicted, generally, the running time is reduced to 1/m of its 1-LP process
under ideal conditions. Larger m can be used as data size increases. So the running
time can be affordable. Still to be studied is to find/develope ”classification - m Ps
selection algorithm” to minimize infeasibles and possibly optimize suppression.

While the savings on time is significant, the obvious trade-off is that it leads to
more suppresed cells and value which is a known fact. However, it is much better
than network process in terms of suppression on both number of cells and value.
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