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Abstract

Meta-analysis has been widely used for synthesizing safetlyefficacy treatment effect infor-
mation from multiple clinical trials to support landmarkaigon-making during drug development.
Bayesian meta-analysis approach offers a very flexible timapstrategy. In this paper, several fixed
and random effect meta-analysis approaches under Bayfegmework are critically reviewed and
applied to binary data (2X2 binary response contingencle}alSimulations are used to evaluate
the performance of different Bayesian meta-analysis aggives under the challenges of rare events,
data heterogeneity, and unbalanced randomization bymlesig
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1. Introduction

Meta-analysis generally refers to methods, in particudtatistical methods, focusing on
contrasting and combining results from different souréeghe hope of identifying pat-
terns, sources of disagreement, or other interestingioekdtips that may come to light
in the context of multiple studies and pipeline of informatisources [6]. Or, in short, as
defined in Cochrane handbook, meta-analysis refers todtistgtal combination of results
from two or more separate studies. In clinical trial settithge aim of a meta-analysis is to
more powerfully estimate the true magnitude of the safegffacacy treatment effect (e.g.
risk difference of a certain adverse event of special istdsetween two treatment options,
hazard ratio of two treatment options in terms of overalvsad, etc.) as opposed to a
less precise estimation derived from a single study. Ndgrslch synthesized/integrated
estimator of the parameter of interest as well as its confielenterval is obtained by a
weighted average across individual studies in the methrsina The weights in the meta-
analysis might be related to sample sizes or the standavdarthe parameter of interest
within individual studies. When the studies in the metahgsia can be reasonably consid-
ered homogeneous in terms of treatment effect (e.g. sardg papulation, similar study
conduct, etc.), then it is appropriate to apply fixed-effeeta-analysis method, which as-
sumes a true common effect size among studies. When thestudithe meta-analysis
involve varying study population or other factors which npotentially impact the treat-
ment effect, then a random-effect meta-analysis methoashassumes the true treatment
effect varies among studies but follows a relevant distigdm) should be considered to
incorporate the between-study variability (heterogeneit

Besides conventional meta-analysis methods, Bayesiamoaieebecome to gain popu-
larity in meta-analysis area [1, 12, 13, 4, 14]. Bayesianaragialysis approach naturally
incorporates all sources of variability and relevant qifiatle external information. It
provides a more informative summary and allows direct podiséic inference of the pa-
rameters of interest, such as the overall treatment effleetbetween-study variance, etc.
However, regardless which meta-analysis method is usesl altvays a challenge when
facing rare events, data heterogeneity, or unbalance@naizdtion by design among stud-
ies. In this paper, three meta-analysis approaches ungesiBa framework — Leonard’s
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Bayesian Mantel Haenszel (MH) fixed-effect method, Abraaggroximated Bayesian
random-effect model method, and Scott Berry’s Bayesiamatet— are critically reviewed
and applied to dichotomous dataX2 binary response contingency table). Statistical sim-
ulation study is conducted to evaluate their performanaieugither one or a combination
of the aforementioned challenges. The paper is organizéeifollowing way. The Meth-
ods section will give a brief review of each of the three mdthas well as the setting of
the simulation study including how the simulation data aeeeyated. The Results section
will summarize our findings by different challenging sitioat such as rare events, het-
erogeneity, imbalanced sample size, or some combinatibtie @hallenging factors, etc.
The conclusion and discussion section will conclude ourgamison among each methods
studied in the paper and point directions for future redearc

2. Review of the Three Selected Bayesian M eta-analysis M ethods

2.1 Leonard (2002)'s Bayesian M antel-Haenszel Fixed Effect Method

The Mantel-Haenszel (MH) model assumes that the commonamnseasure of asso-
ciation between the treatment and outcome across all stedists. Leonard and Duffy
[8] proposed the Bayesian analysis of the Mantel-Haensoeleinwhen applied to meta-
analysis. This analysis allows to check the plausibilityhef Mantel-Haenszel model and to
draw inferences on the common measure of association,ratids{n addition, the authors
provide formulae for the estimates of posterior mean aninee of the odds-ratio. We
investigated the performance of the method regarding #eedoid coverage of 95 % confi-
dence intervals versus the performance of the classicaldthe same time checking the
plausibility of the MH method performance. The Bayesianlgsis of 2X2 contingency
table was also studied by [2] and [9]. We are interested iratladysis of several contin-
gency tables. Adopting notations from the Leonard and Duiffghe Table 1, considen
contingency2X 2 tables with rows representing treatment or control andrmakirepre-
senting positive or negative outcome in the stidy= 1, ..., m. The totals in the rows are
fixed. The number of the patients with positive outcomes idd by frequencies;;; n;
denotes total number of patients in the treatment and dayioaps,.k = 1,2;i = 1, ..., m.

Table 1: Notations for2 X2 contingency table of théth study

Outcome Totals
Positive Negative
Treatment Y1 N1 — Y1i ny;
Control Y23 N2 — Y2 n2;
Total Y1 Y20 N1+ N2 — Y — Yoi n;

The frequencieg;; andy»; are assumed to be binomially distributed with probabditig;,
so that

and all observed frequencigg; are assumed to be independent and to have Jeffreys’ priors.
Then the posterior density of the logit

Ori = log pr; —log (1 — pri) 2
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(0hs) exp{Okivi;}

(1 + 69“)";1' 3)

wherey;; = yi; + 3, n}; = ny; + 1. According to the assumptions of Mantel and Haenszel
model, the log-measures of association

77:912'—922', izl,...,m (4)

are constant across tables. The formula for posterior density ppbbtained by Leonard
and Duffy (details can be found in their work [8]) allows tdadate the posterior mean of
the logarithm of odds-ratio

m —1
R i=1Y; lz
j= izt b 5)
D ity
where
li = logyy; — log (ny; — yi;) — log ys; + log (n3; — y3;) (6)
and
1 1 1 1
U, = (7)

B v (i) v (ns — )

The posterior variance of the logarithm of the odds-ratiegsal to

m -1
w = (sz_l) (8)
i=1

The Bayesian approach is contrasted by the classical MBlatehszel estimate of the odds-
ratio [10], the measure of association

Yot yii(nei — i)/ (ni + no;)
Z;il(nu — y13)y2i/ (1 + nai)

and the variance estimate given by Robins, Breslow, andrGned [11]

=

9)

52 S (i 4 m2i — yai)y1i(na — y2i) /n?
2 (30 yri(ng — y2i)/ni)°

oy (yni + n2i — y2i) (n1s — y1i)y2il /n?
2 (3 yri(na — y2i) /mi) Qi (n1i — Y1a)y2i/ni)

Yoty [(mai — yii + yai)yii(nai — yoi)] /n?
2 (3° yri(na — y2i)/mi) Qi (n1i — Yua)y2i/ni)

> im(n — y1i + y2i) (nai — Y1i)y2i/n?
2 (Z:ll(nll - yli)y2z’/nz’)2

_|_

(10)
_|_

wheren; = ny; + no;.
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2.2 Abramset al. (1998)’'s Random Effect Method

A random effects model is more appropriate if consideralggreke of heterogeneity is
present in the data. Bayesian methods in meta-analysisoanenon when the effect is
assumed to be random. In general, Bayesian inference esgextensive complex compu-
tational techniques. Abrams and Bruno [1] adopted a Bagds@archical model, which is
the Bayesian version of the DerSimonian and Laird methoddgadl proposed approxima-
tions for the first and the second moments of the Bayesiaroraraffect model parameters
for meta-analysis. The proposed model adopted a hieralamiodeling approach, which
directly models on the study level summaries, i.e. meaediffce, odds ratio, etc., and can
be applied to both continuous and binary data. By assumingus$an error structure, the
following random effect model is obtained for the odds rastimation

Zq ™~ N (7727 0-7271(1/”12 + 1/”22)) s i~ N(/Ln77—2) = 17 sy MMy, (11)

wherez; andn; are the observed and unknown true log odds ratio for studyspectively,
iy is the population mean of the random log odds ratio witlas the population variance.
This model can accommodate cases with little prior inforomaés well as with substantial a
priori information. To save the time needed for MCMC samgliapproximation formulae
are provided in equations (2)-(7) of [1]. The approximatisrtlaimed to be accurate for
moderate to large study sample sizes. But its performangetigvell understood for the
rare event scenario. Thus, we examine its performance uadervent scenario in our
simulation study.

2.3 Berry (1998)'s Bayesian Methods for Fixed Effect and Random Effect

Berry (1998) proposed a framework of Bayesian meta anatygsethods for estimation of
the common odds ratio under both fixed effect and random teffegnarios. For random
effect scenario, he models the log odds as from a bivariatealalistributions in (12) and
derives the common odds ratio from the posterior distrisutif the mean of the log odds.

(o)~ (G2) L, ") @
02 p2)  |pog, 06, Oy,

In (12), g, and sy, represent the population mean of the random log odds of¢aéntient
group and the placebo group, respectively. Thus, the log oalib isn = g, — pg,. The
credible intervals and point estimates of log odds ratio lmamerived from the posterior
distribution of. For hyper priors of the parameters in the normal distrdsuin (12),
please refer to [3]. The fixed effect model is a simplificatafrthe random effect model.
Since it is assumed there is a fixed common odds ratio, theddg of the treatment group
can be derived from that of the treatment group, th#&is= 6, + n. So, the fixed effect
model is

01i ~ N(po,,03,), 02 = 015 +1 (13)

The posterior distribution af yields the credible interval and the point estimate of thedix
effect odds ratio. The hyper priors of parameters in (13)mmfound in [3].

3. Simulated Data Setsfor the M eta-Analysis

Data sets for trials with balanced designs (randomizattio .:1) were generated to com-
pare the performance of the three methods under two scenao-rare event situation,
where the incidence rates of placebo arms follow uniforntridistion of U(0, 20%), and
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rare event case, where the incidence rates of placebo atims tmiform distribution of
U(0, 0.2%). For each scenario, we generated 50 studies withl sample sizes in active
and placebo arms. The sample sizes of each arm in each stud\setdo range from very
small to very larges = 8, 10, 12, 14, 16, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102,
108, 114, 120, 126, 132, 138, 144, 150, 170, 190, 210, 230,241 290, 310, 330, 350,
370, 390, 410, 430, 450, 470, 490, 510, 530, 550, 800, 10@®, ZHOO, 2500). We inves-
tigated OR at 6 levels: 1, 1.3, 1.5, 1.8, 2 and 5. pyetandp-; be the incidence rates for the
treatment and placebo arms in ttie study, respectively. For each given OR, we generated
poi(i = 1,2,...,50) randomly from the uniform distribution specified above. ihee
calculatedp,; using: p1; = p2;OR/(1 — p2; + p2;OR)). We then generated number of
events of each treatment arm for each study assuming bihdisigbution with the corre-
sponding sample size and incidence rate. The procedurpestetil0* times to generate
10* datasets. We also generated data sets for trials with untsadadesigns (randomization
ratio 2:1) to evaluate the Abrams (1998)’'s method. All detsisvere generated using R.

4, Simulation Results

4.1 Leonard (2002)'sBayesian Mantel-Haenszel M ethod and Classical M antel-Haenszel

We used (5) to calculate the average of posterior oddssrétion 10* simulations of meta-
analysis generated from the balanced with no rare eventwiimdare events data sets from
the section 3 . Both (8) and (5) were utilized to calculkié 95 % confidence intervals for
the coverage evaluation. Logarithm of (9) and (10) were usedsimilar way to calculate
the same statistics for classical Mantel-Haenszel modeé r€sults, when both methods
were applied to the balanced data sets without rare evenfgesented in the Table 4.

Table 2: Simulation Results: MH and Bayesian MH (Model 1)

p2i ~ U(0,20%) p2i ~ U(0,20%)
True Ny tno; =1:1 Ny tMNo; = 1:1
Odds Ratio MH Estimate Coverage % BMH Estimate Coverage %
1 1.00 95.16 1.00 95.53
1.3 1.30 94.97 1.29 95.13
15 1.50 95.19 1.49 94.86
1.8 1.80 94.87 1.78 94.20
2 2.00 94.62 1.98 94.25
5 5.00 94.87 491 90.81

The results, when both methods were applied to the balaretadsdts with rare events are
presented in the Table 5.

The results on the odds ratio estimates and coverage of 95n¥iedlence intervals of the
classical MH and Bayesian MH methods are to a great exterilasinn the case of non-
rare events and balanced treatment and control groups iméite-analysis, the estimates
of odds ratio from both methods are close to the true odds aatil the coverage is close to
the nominal one. The classical MH method showed slightlyebgierformance suggesting
that there is no advantage to use Bayesian MH method. In e afarare events in the
balanced treatment and control groups of the meta-analgsissets, both classical MH and
Bayesian MH underestimated all odds ratios where the treateffect was assumed to be
present (i.e odds ratio is greater thgrand respectively showed coverage below nominal
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Table 3: Simulation Results: MH and Bayesian MH (Model 1 with Rarefis )

poi ~ U(0,0.2%) poi ~ U(0,0.2%)
True Ny tno; =1:1 Ny tNo; = 1:1
Odds Ratio MH Estimate Coverage % BMH Estimate Coverage %
1 1.01 99.77 1.01 99.97
1.3 1.15 97.34 1.12 98.66
15 1.24 92.56 1.19 93.8
1.8 1.38 81.08 1.30 76.62
2 1.47 72.28 1.38 61.59
5 2.90 9.67 241 0.13

when treatment effect is large (i.e. odds ratio is abt and coverage close tH0%
when there is a negligible or no treatment effect (odds iatabose to one).

4.2 Abramset al. (1998)'s Random Effect Method

The approximation formulae (2)-(7) in [1] allow us to caleid odds ratio estimates and
respective confidence intervals without a computationatién. Thel0? simulations of
meta-analysis data as described in 3 were generated. The4lakds ratio estimate and
95 % confidence intervals coverage were calculated usindatsewithout rare events; the
results from the data with balanced treatment and contmigs were compared with the
results from the data with the unbalanced groups.

Table 4. Simulation Results: Approximate Bayesian Method: AdgitHeterogeneity
(Non-rare events)

p2; ~ U(0,20%) p2i ~ U(0,20%)
True noiiny=1:1 N2 iny=1:2
Odds Ratio Estimate Coverage % Estimate Coverage %
1 1.0113 96.05 1.0836 93.26
1.3 1.3543 95.50 1.4345 91.19
15 1.5852 95.24 1.6708 90.27
1.8 1.9355 94.16 2.0225 88.76
2 2.1694 93.47 2.2580 87.42
5 5.7108 85.31 5.7800 81.94

The results showing the performance of the method whenexppii the balanced data set
without rare events versus with rare events are presentbe ifiable 5.

The application of the method to both balanced and unbatbda sets without rare events
showed that the method overestimates the odds ratio and/énestimation increases with

the size of the effect. However the coverage is closer to tmeimal when the method is

applied to the balanced data set. When comparing the peafarenof the method applied to
the meta-analysis with balanced data without rare evemtsigghe data with rare events,
the odds ratios are highly overestimated for the rare evasiteng in comparison to the

without rare events set-up, and the coverage is respactiveth lower in the case of rare
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Table 5: Simulation Results: Approximate Bayesian Method: AdsitHeterogeneity
(Non Rare vs. Rare events)

pa2i ~ U(0,20%) p2; ~ U(0,0.2%)
True noiiny=1:1 naiiny=1:1
Odds Ratio Estimate Coverage % Estimate Coverage %
1 1.0113 96.05 1.2990 93.75
1.3 1.3543 95.50 1.9070 92.81
15 1.5852 95.24 2.3668 91.19
1.8 1.9355 94.16 3.0530 88.81
2 2.1694 93.47 3.5333 86.47
5 5.7108 85.31 10.4396 57.60

Table 6: Simulation Results: Scott Berry Bayesian Hierarchicattdes

ni; ‘no; D2 OR Random Effect Coveragé] Fixed Effect CoverageX)

Model Model

1:1 u@,200) 1 1.02 93.4 1.00 93.5
2 1.76 75.5 1.99 93.6

5 3.95 36.3 4,95 91.9

U ,0.2) 1 1.60 94.5 0.97 86.4

2 1.81 82.5 1.85 88.2

5 2.07 34.1 4.42 82.7

events.

4.3 Berry (1998)'s Bayesian Method for Fixed Effect and Random Effect

The understand the performance of Berry (1998)’s methoddmdre event and fixed effect
scenario, we performeti)? simulations using the dataset createci® Because of the
computation burden, only the odds ratio 1, 2, and 5 scenar@selected for the simulation,
which is sufficient for us to understand the frequentist propof this method.

Table 6 tabulates the posterior mean estimates and theaggveates of the 95% credible
intervals. When the true odds ratio is great than 1, the fixiedtemodel works better than
the random effect model in terms of both the bias of the pdtitreates and the coverage
rates. The reason is that the simulated datset does not &yadem effect, which violates
the assumption of the random effect model. Thus, in praatameom effect model should
be used with caution if there is not strong evidence of a randfiect. For the rare event
scenario fo; ~ U(0,0.2%)), the coverage rates of the fixed effect model are ab®¥it to
10% lower than the nominad5%, which suggests the normal priors for the log odds may
be improper for the rare event scenario.

1104



JSM 2013 - Biopharmaceutical Section

5. Conclusion and Discussion

Bayesian approach offers an appealing methodology framkeiwaconduct meta-analysis
by naturally incorporating all sources of variability ardavant quantifiable external infor-
mation. It allows direct probabilistic inference on the mlktreatment effect and quantifi-
cation of the between study heterogeneity. In particulagriard et. al. (2002)'s Bayesian
Mantel-Haenszel Fixed Effect Method offers a Bayesianradtéve for Mantel-Haenszel
method. The performance of the Bayesian MH method and ttesicldl MH method is
comparable for non-rare event case, but both methods doenfutrm well for rare event
case and the treatment effect is from moderate to large (@dgl. ratio> 2). Abrams
et. al. (1998)'s approximate Bayesian random effect amprases first and second mo-
ments to obtain an approximation of the parameters. Siulatudies have revealed that
the approximate Bayesian inference for random effect nieibidine with non-rare event
and unbalanced sample size among treatment groups, butahég mppropriate for rare
events, especially when treatment effect is large (e.g atilalx 5). Berry (1998)’'s method
provides a Bayesian framework for meta-analysis and usgsHactor to automate the se-
lection between fixed effect or random effect model. Howenegyardless under either rare
or non-rare event case, the performance of the fixed modetierithan the one from the
random model, since the simulation data are not generatidanidom effect component.
This also suggests that incorporation of heterogeneityldhme taken with caution if there
is no strong evidence of random effect.
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