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Abstract
Meta-analysis has been widely used for synthesizing safetyand efficacy treatment effect infor-

mation from multiple clinical trials to support landmark decision-making during drug development.
Bayesian meta-analysis approach offers a very flexible modeling strategy. In this paper, several fixed
and random effect meta-analysis approaches under Bayesianframework are critically reviewed and
applied to binary data (2X2 binary response contingency table). Simulations are used to evaluate
the performance of different Bayesian meta-analysis approaches under the challenges of rare events,
data heterogeneity, and unbalanced randomization by design.
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1. Introduction

Meta-analysis generally refers to methods, in particular,statistical methods, focusing on
contrasting and combining results from different sources,in the hope of identifying pat-
terns, sources of disagreement, or other interesting relationships that may come to light
in the context of multiple studies and pipeline of information sources [6]. Or, in short, as
defined in Cochrane handbook, meta-analysis refers to the statistical combination of results
from two or more separate studies. In clinical trial setting, the aim of a meta-analysis is to
more powerfully estimate the true magnitude of the safety orefficacy treatment effect (e.g.
risk difference of a certain adverse event of special interest between two treatment options,
hazard ratio of two treatment options in terms of overall survival, etc.) as opposed to a
less precise estimation derived from a single study. Normally, such synthesized/integrated
estimator of the parameter of interest as well as its confidence interval is obtained by a
weighted average across individual studies in the meta-analysis. The weights in the meta-
analysis might be related to sample sizes or the standard error of the parameter of interest
within individual studies. When the studies in the meta-analysis can be reasonably consid-
ered homogeneous in terms of treatment effect (e.g. same study population, similar study
conduct, etc.), then it is appropriate to apply fixed-effectmeta-analysis method, which as-
sumes a true common effect size among studies. When the studies in the meta-analysis
involve varying study population or other factors which maypotentially impact the treat-
ment effect, then a random-effect meta-analysis method, which assumes the true treatment
effect varies among studies but follows a relevant distribution, should be considered to
incorporate the between-study variability (heterogeneity).

Besides conventional meta-analysis methods, Bayesian methods become to gain popu-
larity in meta-analysis area [1, 12, 13, 4, 14]. Bayesian meta-analysis approach naturally
incorporates all sources of variability and relevant quantifiable external information. It
provides a more informative summary and allows direct probabilistic inference of the pa-
rameters of interest, such as the overall treatment effect,the between-study variance, etc.
However, regardless which meta-analysis method is used, itis always a challenge when
facing rare events, data heterogeneity, or unbalanced randomization by design among stud-
ies. In this paper, three meta-analysis approaches under Bayesian framework — Leonard’s
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Bayesian Mantel Haenszel (MH) fixed-effect method, Abrams’approximated Bayesian
random-effect model method, and Scott Berry’s Bayesian method — are critically reviewed
and applied to dichotomous data (2X2 binary response contingency table). Statistical sim-
ulation study is conducted to evaluate their performance under either one or a combination
of the aforementioned challenges. The paper is organized inthe following way. The Meth-
ods section will give a brief review of each of the three methods as well as the setting of
the simulation study including how the simulation data are generated. The Results section
will summarize our findings by different challenging situation, such as rare events, het-
erogeneity, imbalanced sample size, or some combinations of the challenging factors, etc.
The conclusion and discussion section will conclude our comparison among each methods
studied in the paper and point directions for future research.

2. Review of the Three Selected Bayesian Meta-analysis Methods

2.1 Leonard (2002)’s Bayesian Mantel-Haenszel Fixed Effect Method

The Mantel-Haenszel (MH) model assumes that the common constant measure of asso-
ciation between the treatment and outcome across all studies exists. Leonard and Duffy
[8] proposed the Bayesian analysis of the Mantel-Haenszel model when applied to meta-
analysis. This analysis allows to check the plausibility ofthe Mantel-Haenszel model and to
draw inferences on the common measure of association, odds-ratio. In addition, the authors
provide formulae for the estimates of posterior mean and variance of the odds-ratio. We
investigated the performance of the method regarding the bias and coverage of 95 % confi-
dence intervals versus the performance of the classical MH,at the same time checking the
plausibility of the MH method performance. The Bayesian analysis of 2X2 contingency
table was also studied by [2] and [9]. We are interested in theanalysis of several contin-
gency tables. Adopting notations from the Leonard and Duffyin the Table 1, considerm
contingency2X2 tables with rows representing treatment or control and columns repre-
senting positive or negative outcome in the studyi, i = 1, . . . ,m. The totals in the rows are
fixed. The number of the patients with positive outcomes is defined by frequenciesyki; nki

denotes total number of patients in the treatment and control groups,k = 1, 2; i = 1, ...,m.

Table 1: Notations for2X2 contingency table of thei′th study

Outcome Totals
Positive Negative

Treatment y1i n1i − y1i n1i

Control y2i n2i − y2i n2i

Total y1i + y2i n1i + n2i − y1i − y2i ni

The frequenciesy1i andy2i are assumed to be binomially distributed with probabilities pki,
so that

yki ∼ B(pki, nki), k = 1, 2; i = 1, . . . m (1)

and all observed frequenciespki are assumed to be independent and to have Jeffreys’ priors.
Then the posterior density of the logit

θki = log pki − log (1 − pki) (2)
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π(θki) ∝
exp{θkiy

∗
ki}

(1 + eθki)n
∗
ki

(3)

wherey∗ki = yki+
1

2
, n∗

ki = nki+1. According to the assumptions of Mantel and Haenszel
model, the log-measures of association

η = θ1i − θ2i, i = 1, . . . ,m (4)

are constant acrossm tables. The formula for posterior density ofη obtained by Leonard
and Duffy (details can be found in their work [8]) allows to calculate the posterior mean of
the logarithm of odds-ratio

η̂ =

∑m
i=1

v−1

i li
∑m

i=1
v−1

i

(5)

where

li = log y∗1i − log (n∗
1i − y∗1i)− log y∗2i + log (n∗

2i − y∗2i) (6)

and
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1

y∗
1i

+
1

(n∗
1i − y∗

1i)
+

1

y∗
2i

+
1

(n∗
2i − y∗

2i)
(7)

The posterior variance of the logarithm of the odds-ratio isequal to

w =

(

m
∑

i=1

v−1

i

)−1

(8)

The Bayesian approach is contrasted by the classical Mantel-Haenszel estimate of the odds-
ratio [10], the measure of association

λ̂ =

∑m
i=1

y1i(n2i − y2i)/(n1i + n2i)
∑m

i=1
(n1i − y1i)y2i/(n1i + n2i)

(9)

and the variance estimate given by Robins, Breslow, and Greenland [11]

σ̂2 =

∑m
i=1

(y1i + n2i − y2i)y1i(n2i − y2i)/n
2

i

2 (
∑m

i=1
y1i(n2i − y2i)/ni)

2

+
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[(y1i + n2i − y2i)(n1i − y1i)y2i] /n
2

i
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+
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2

i

2 (
∑m
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2
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2

(10)

whereni = n1i + n2i.
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2.2 Abrams et al. (1998)’s Random Effect Method

A random effects model is more appropriate if considerable degree of heterogeneity is
present in the data. Bayesian methods in meta-analysis are common when the effect is
assumed to be random. In general, Bayesian inference requires extensive complex compu-
tational techniques. Abrams and Bruno [1] adopted a Bayesian hierarchical model, which is
the Bayesian version of the DerSimonian and Laird method [5], and proposed approxima-
tions for the first and the second moments of the Bayesian random effect model parameters
for meta-analysis. The proposed model adopted a hierarchical modeling approach, which
directly models on the study level summaries, i.e. mean difference, odds ratio, etc., and can
be applied to both continuous and binary data. By assuming a Gaussian error structure, the
following random effect model is obtained for the odds ratioestimation

zi ∼ N
(

ηi, σ
2

ηi
(1/n1i + 1/n2i)

)

, ηi ∼ N(µη, τ
2) i = 1, . . . ,m, (11)

wherezi andηi are the observed and unknown true log odds ratio for studyi, respectively,
µη is the population mean of the random log odds ratio withτ2 as the population variance.
This model can accommodate cases with little prior information as well as with substantial a
priori information. To save the time needed for MCMC sampling, approximation formulae
are provided in equations (2)-(7) of [1]. The approximationis claimed to be accurate for
moderate to large study sample sizes. But its performance isnot well understood for the
rare event scenario. Thus, we examine its performance underrare event scenario in our
simulation study.

2.3 Berry (1998)’s Bayesian Methods for Fixed Effect and Random Effect

Berry (1998) proposed a framework of Bayesian meta analysismethods for estimation of
the common odds ratio under both fixed effect and random effect scenarios. For random
effect scenario, he models the log odds as from a bivariate normal distributions in (12) and
derives the common odds ratio from the posterior distribution of the mean of the log odds.

(

θ1i
θ2i

)

∼ N

((

µ1

µ2

)

,

[

σ2

θ1
ρσθ1σθ2

ρσθ1σθ2 σ2

θ2

])

(12)

In (12),µθ1 andµθ2 represent the population mean of the random log odds of the treatment
group and the placebo group, respectively. Thus, the log odds ratio isη = µθ1 − µθ2 . The
credible intervals and point estimates of log odds ratio canbe derived from the posterior
distribution ofη. For hyper priors of the parameters in the normal distribution in (12),
please refer to [3]. The fixed effect model is a simplificationof the random effect model.
Since it is assumed there is a fixed common odds ratio, the log odds of the treatment group
can be derived from that of the treatment group, that isθ2 = θ1 + η. So, the fixed effect
model is

θ1i ∼ N(µθ1 , σ
2

θ1
), θ2i = θ1i + η (13)

The posterior distribution ofη yields the credible interval and the point estimate of the fixed
effect odds ratio. The hyper priors of parameters in (13) canbe found in [3].

3. Simulated Data Sets for the Meta-Analysis

Data sets for trials with balanced designs (randomization ratio 1:1) were generated to com-
pare the performance of the three methods under two scenarios, non-rare event situation,
where the incidence rates of placebo arms follow uniform distribution of U(0, 20%), and
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rare event case, where the incidence rates of placebo arms follow uniform distribution of
U(0, 0.2%). For each scenario, we generated 50 studies with equal sample sizes in active
and placebo arms. The sample sizes of each arm in each study were set to range from very
small to very large (n = 8, 10, 12, 14, 16, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102,
108, 114, 120, 126, 132, 138, 144, 150, 170, 190, 210, 230, 250, 270, 290, 310, 330, 350,
370, 390, 410, 430, 450, 470, 490, 510, 530, 550, 800, 1000, 1500, 2000, 2500). We inves-
tigated OR at 6 levels: 1, 1.3, 1.5, 1.8, 2 and 5. Letp1i andp2i be the incidence rates for the
treatment and placebo arms in theith study, respectively. For each given OR, we generated
p2i(i = 1, 2, . . . , 50) randomly from the uniform distribution specified above. Then we
calculatedp1i using: p1i = p2iOR/(1 − p2i + p2iOR)). We then generated number of
events of each treatment arm for each study assuming binomial distribution with the corre-
sponding sample size and incidence rate. The procedure is repeated104 times to generate
104 datasets. We also generated data sets for trials with unbalanced designs (randomization
ratio 2:1) to evaluate the Abrams (1998)’s method. All datasets were generated using R.

4. Simulation Results

4.1 Leonard (2002)’s Bayesian Mantel-Haenszel Method and Classical Mantel-Haenszel

We used (5) to calculate the average of posterior odds-ratios from104 simulations of meta-
analysis generated from the balanced with no rare events andwith rare events data sets from
the section 3 . Both (8) and (5) were utilized to calculate104 95 % confidence intervals for
the coverage evaluation. Logarithm of (9) and (10) were usedin a similar way to calculate
the same statistics for classical Mantel-Haenszel model. The results, when both methods
were applied to the balanced data sets without rare events are presented in the Table 4.

Table 2: Simulation Results: MH and Bayesian MH (Model 1 )

p2i ∼ U(0, 20%) p2i ∼ U(0, 20%)
True n1i : n2i = 1 : 1 n1i : n2i = 1 : 1

Odds Ratio MH Estimate Coverage % BMH Estimate Coverage %
1 1.00 95.16 1.00 95.53

1.3 1.30 94.97 1.29 95.13
1.5 1.50 95.19 1.49 94.86
1.8 1.80 94.87 1.78 94.20
2 2.00 94.62 1.98 94.25
5 5.00 94.87 4.91 90.81

The results, when both methods were applied to the balanced data sets with rare events are
presented in the Table 5.
The results on the odds ratio estimates and coverage of 95 % confidence intervals of the
classical MH and Bayesian MH methods are to a great extent similar. In the case of non-
rare events and balanced treatment and control groups in themeta-analysis, the estimates
of odds ratio from both methods are close to the true odds ratio and the coverage is close to
the nominal one. The classical MH method showed slightly better performance suggesting
that there is no advantage to use Bayesian MH method. In the case of rare events in the
balanced treatment and control groups of the meta-analysisdata sets, both classical MH and
Bayesian MH underestimated all odds ratios where the treatment effect was assumed to be
present (i.e odds ratio is greater than1) and respectively showed coverage below nominal
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Table 3: Simulation Results: MH and Bayesian MH (Model 1 with Rare Events )

p2i ∼ U(0, 0.2%) p2i ∼ U(0, 0.2%)
True n1i : n2i = 1 : 1 n1i : n2i = 1 : 1

Odds Ratio MH Estimate Coverage % BMH Estimate Coverage %
1 1.01 99.77 1.01 99.97

1.3 1.15 97.34 1.12 98.66
1.5 1.24 92.56 1.19 93.8
1.8 1.38 81.08 1.30 76.62
2 1.47 72.28 1.38 61.59
5 2.90 9.67 2.41 0.13

when treatment effect is large (i.e. odds ratio is above1.3) and coverage close to100%
when there is a negligible or no treatment effect (odds ratiois close to one).

4.2 Abrams et al. (1998)’s Random Effect Method

The approximation formulae (2)-(7) in [1] allow us to calculate odds ratio estimates and
respective confidence intervals without a computational burden. The104 simulations of
meta-analysis data as described in 3 were generated. The Table 4 odds ratio estimate and
95 % confidence intervals coverage were calculated using thedata without rare events; the
results from the data with balanced treatment and control groups were compared with the
results from the data with the unbalanced groups.

Table 4: Simulation Results: Approximate Bayesian Method: Additive Heterogeneity
(Non-rare events)

p2i ∼ U(0, 20%) p2i ∼ U(0, 20%)
True n2i : n1i = 1 : 1 n2i : n1i = 1 : 2

Odds Ratio Estimate Coverage % Estimate Coverage %
1 1.0113 96.05 1.0836 93.26

1.3 1.3543 95.50 1.4345 91.19
1.5 1.5852 95.24 1.6708 90.27
1.8 1.9355 94.16 2.0225 88.76
2 2.1694 93.47 2.2580 87.42
5 5.7108 85.31 5.7800 81.94

The results showing the performance of the method when applied to the balanced data set
without rare events versus with rare events are presented inthe Table 5.
The application of the method to both balanced and unbalanced data sets without rare events
showed that the method overestimates the odds ratio and the overestimation increases with
the size of the effect. However the coverage is closer to the nominal when the method is
applied to the balanced data set. When comparing the performance of the method applied to
the meta-analysis with balanced data without rare events versus the data with rare events,
the odds ratios are highly overestimated for the rare eventssetting in comparison to the
without rare events set-up, and the coverage is respectively much lower in the case of rare
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Table 5: Simulation Results: Approximate Bayesian Method: Additive Heterogeneity
(Non Rare vs. Rare events)

p2i ∼ U(0, 20%) p2i ∼ U(0, 0.2%)
True n2i : n1i = 1 : 1 n2i : n1i = 1 : 1

Odds Ratio Estimate Coverage % Estimate Coverage %
1 1.0113 96.05 1.2990 93.75

1.3 1.3543 95.50 1.9070 92.81
1.5 1.5852 95.24 2.3668 91.19
1.8 1.9355 94.16 3.0530 88.81
2 2.1694 93.47 3.5333 86.47
5 5.7108 85.31 10.4396 57.60

Table 6: Simulation Results: Scott Berry Bayesian Hierarchical Methods

n1i :n2i p2i OR Random Effect Coverage (%) Fixed Effect Coverage (%)
Model Model

1:1 U(0,20%) 1 1.02 93.4 1.00 93.5
2 1.76 75.5 1.99 93.6
5 3.95 36.3 4.95 91.9

U(0,0.2%) 1 1.60 94.5 0.97 86.4
2 1.81 82.5 1.85 88.2
5 2.07 34.1 4.42 82.7

events.

4.3 Berry (1998)’s Bayesian Method for Fixed Effect and Random Effect

The understand the performance of Berry (1998)’s method in the rare event and fixed effect
scenario, we performed103 simulations using the dataset created in§3. Because of the
computation burden, only the odds ratio 1, 2, and 5 scenariosare selected for the simulation,
which is sufficient for us to understand the frequentist property of this method.
Table 6 tabulates the posterior mean estimates and the coverage rates of the 95% credible
intervals. When the true odds ratio is great than 1, the fixed effect model works better than
the random effect model in terms of both the bias of the point estimates and the coverage
rates. The reason is that the simulated datset does not have random effect, which violates
the assumption of the random effect model. Thus, in practice, random effect model should
be used with caution if there is not strong evidence of a random effect. For the rare event
scenario (p2i ∼ U(0, 0.2%)), the coverage rates of the fixed effect model are about13% to
10% lower than the nominal95%, which suggests the normal priors for the log odds may
be improper for the rare event scenario.
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5. Conclusion and Discussion

Bayesian approach offers an appealing methodology framework to conduct meta-analysis
by naturally incorporating all sources of variability and relevant quantifiable external infor-
mation. It allows direct probabilistic inference on the overall treatment effect and quantifi-
cation of the between study heterogeneity. In particular, Leonard et. al. (2002)’s Bayesian
Mantel-Haenszel Fixed Effect Method offers a Bayesian alternative for Mantel-Haenszel
method. The performance of the Bayesian MH method and the classical MH method is
comparable for non-rare event case, but both methods do not perform well for rare event
case and the treatment effect is from moderate to large (e.g.odd ratio> 2). Abrams
et. al. (1998)’s approximate Bayesian random effect approach uses first and second mo-
ments to obtain an approximation of the parameters. Simulation studies have revealed that
the approximate Bayesian inference for random effect method is fine with non-rare event
and unbalanced sample size among treatment groups, but may not be appropriate for rare
events, especially when treatment effect is large (e.g odd ratio> 5). Berry (1998)’s method
provides a Bayesian framework for meta-analysis and uses Bayes factor to automate the se-
lection between fixed effect or random effect model. However, regardless under either rare
or non-rare event case, the performance of the fixed model is better than the one from the
random model, since the simulation data are not generated with random effect component.
This also suggests that incorporation of heterogeneity should be taken with caution if there
is no strong evidence of random effect.
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