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Abstract

In the context of semi-functional partial linear regression model, we study the problem of error

density estimation. The unknown error density is approximated by a mixture of Gaussian densi-

ties with means being the individual residuals, and variance a constant parameter. This mixture

error density has a form of a kernel density estimator of residuals, where the regression function,

consisting of parametric and nonparametric components, is estimated by the ordinary least squares

and functional Nadaraya-Watson estimators. The estimation accuracy of the ordinary least squares

and functional Nadaraya-Watson estimators jointly depends on the same bandwidth parameter. A

Bayesian procedure is proposed to simultaneously estimate the bandwidths in the kernel-form er-

ror density and in the regression function. Under the kernel-form error density, we derive a kernel

likelihood and posterior for the bandwidth parameters. For estimating the regression function and

error density, a series of simulation studies show that the Bayesian procedure yields better accuracy

than the benchmark functional cross validation. Illustrated by a spectroscopy data set, we found

that the Bayesian procedure gives better point forecast accuracy of the regression function than the

functional cross validation, and it is capable of producing prediction intervals nonparametrically.

Key Words: functional Nadaraya-Watson estimator, functional regression, Gaussian kernel mix-

ture, error density estimation, Markov chain Monte Carlo

1. Introduction

The standard error distributional assumptions, such as normality, typically have advantage

of simplicity in deriving theoretical results and inference in functional regression models.

However, it is often the case that such parametric assumptions do not apply to the real

data. In this case, we will need to sacrifice the analytical convenience in order to obtain an

acceptable fit to the data by using flexible error distributions. This paper proposes a method

to address error distribution (or density) estimation in functional regression models, and

demonstrates its usage with the semi-functional partial linear regression model.

Since the introductory work by Ansley & Wecker (1983), the partial linear model has

been widely studied (see for example, Heckman 1986, Rice 1986, Chen 1988, Robinson

1988, Speckman 1988, Severini & Staniswalis 1994, Härdle et al. 2000) and implemented

in many fields of applied statistics, such as to study the impact of weather on electricity

demand (Engle et al. 1986), to model household gasoline consumption in the United State

(Schmalensee & Stoker 1999), and to model hedonic price function (Anglin & Gencay

1996). The advantage of this regression model is to allow some of explanatory variables to

act in a nonparametric manner, while others are governed in a parametric manner. Thus, it

reconciles the flexibility of nonparametric models and fast convergence rate of parametric

models. However, the explanatory variables in the classical partial linear regression are

limited to be real values (see Härdle et al. 2000, for detail).

In recent years, the presence of functional variables is common in many applied fields,

ranging from minute-by-minute electricity demand forecasting (Shang 2013b) to high-

frequency financial stock returns (Gabrys et al. 2010). These practical challenges demand
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the innovations of new statistical data analysis techniques for analyzing ever-increasingly

high-dimensional data. This leads to the development of functional data analysis from a

parametric viewpoint (Ramsay & Silverman 2005) and a nonparametric viewpoint (Fer-

raty & Vieu 2006). While Horváth & Kokoszka (2012) studied statistical properties of

functional time series, Ferraty & Romain (2010) and Ferraty (2011) collected a number of

research papers on the latest development of functional data analysis.

To our knowledge, Aneiros-Pérez & Vieu (2006) were among the first to extend the

partial linear regression to the functional setting, and demonstrate its superiority over the

functional linear regression and functional nonparametric regression. Since then, the semi-

functional partial linear regression has been widely studied in theory and practice (see for

example, Aneiros-Pérez & Vieu 2008, Dabo-Niang & Guillas 2010, Zhou & Chen 2012,

Zhang & Wang 2012). This work aims to contribute to the semi-functional partial linear

regression model by incorporating error density into bandwidth estimation.

The estimation of error density is important to understand the residual behaviour and

to assess the adequacy of error distribution assumption (see for example, Akritas & Van

Keilegom 2001, Cheng & Sun 2008). The estimation of error density is useful to test the

symmetry of the residual distribution (see for example, Ahmad & Li 1997, Dette et al. 2002,

Neumeyer & Dette 2007). The estimation of error density is vital to statistical inference,

prediction and model validation (see for example, Efromovich 2005, Muhsal & Neumeyer

2010). The estimation of error density is also crucial for the estimation of response vari-

able (see for example, Escanciano & Jacho-Chávez 2012). Despite its importance, error

density estimation in the semi-functional partial linear regression model remains largely

unexplored.

This motivates the investigation of a kernel-form error density for estimating unknown

error density in a semi-functional partial linear regression model with function-valued pre-

dictor and real-valued response. This kernel-form error density explores data-driven fea-

tures, such as skewness and multimodality, and it depends on three parameters: (1) the

type of semi-metric used in the regression function to measure distances among curves,

such as semi-metric based on second-order derivative; (2) residuals fitted through the func-

tional Nadaraya-Watson (NW) estimator of the regression function; and (3) bandwidth of

residuals.

In the context of a multivariate nonparametric regression model, this kernel-form error

density estimator has been investigated by Cheng (2002, 2004), who proved weak, strong

and uniform consistency. Samb (2011) established the optimal convergence rate of this

estimator. Recently, Shang (2013a) extended this kernel-form error density estimator to a

nonparametric functional regression model. Building upon the work of Shang (2013a), we

also consider this kernel-form error density estimator, in the context of the semi-functional

partial linear regression model.

The Bayesian procedure equipped with Markov chain Monte Carlo technique allows

us to simultaneously estimate the bandwidth parameters. Conditional on the bandwidth

parameter in the regression function, we sample the bandwidth parameter in the kernel-

form error density that maximizes the posterior (also known as cost or utility function

in econometrics). Based on the sampled bandwidth parameter in the kernel-form error

density, we then sample the bandwidth parameter in the regression function that maximizes

the posterior.

The rest of the paper is organized as follows. In Section 2, we introduce the semi-

functional partial linear model. The proposed Bayesian procedure is described in Section 3.

Illustrated by a series of simulation studies in Section 4, we evaluate and compare the

finite-sample estimation accuracy of the regression function and error density between the

Bayesian procedure and the functional cross validation (CV). Illustrated by a well-studied
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spectroscopy data set, the point forecast accuracy of the regression function is compared

between the Bayesian procedure and the functional CV in Section 5. Section 6 concludes

the paper, along with some thoughts on how the methods developed here might be further

extended.

2. Model and estimator

There are a growing literature on the development of parametric functional regression mod-

els, such as functional linear regression model (Ramsay & Silverman 2005) and functional

quadratic regression model (Yao & Müller 2010). As well, there are an increasing amount

of literature on the development of functional estimators in nonparametric functional re-

gression models, such as functional NW estimator (Ferraty & Vieu 2006), functional local

linear estimator (Berlinet et al. 2011), functional k-nearest neighbour estimator (Burba et al.

2009), and distance-based local linear estimator (Boj et al. 2010). In this paper, we focus

on the semi-functional partial linear regression model because it combines the advantages

of both parametric and nonparametric models.

2.1 Semi-functional partial linear regression

Let {(yi,Xi1, · · · ,Xip, Ti)}ni=1 be n(p+ 2)-variate random vectors identically distributed

as (y,X1, · · · ,Xp, T ), where y represents a real-valued response variable, which can be

predicted by a set of real-valued explanatory variable (X1, . . . ,Xp) and a function-valued

explanatory variable T in a semi-functional partial linear regression model given by:

yi = Xiβ +m(Ti) + εi, i = 1, 2, . . . , n, (1)

where Xi represents the ith observation of the real-valued explanatory variables, β =
(β1, . . . , βp)

⊤ is a vector of unknown regression coefficients in the parametric component,

m is an unknown smooth real function, and (ε1, . . . , εn) are identically distributed random

error satisfying

E (εi|Xi, Ti) = 0. (2)

Following Aneiros-Pérez & Vieu (2008), it is natural to estimate the vector β and the

function m by the ordinary least squares and functional NW estimator, given by

β̂hn
=

(
X̃⊤

hn
X̃hn

)−1
X̃⊤

hn
ỹhn

, (3)

m̂hn
(t) =

n∑

i=1

whn
(t, Ti)

(
yi −Xiβ̂hn

)
(4)

where X = (X1, . . . ,Xn)
⊤ and y = (y1, . . . , yn)

⊤, X̃hn
= (I − Whn

)X and ỹhn
=

(I − Whn
)y, Whn

= (whn
(Ti, Tj))i,j is a weight matrix with whn

(t, Ti) being the NW-

type weights,

whn
(t, Ti) =

K(d(t, Ti)/hn)∑n
j=1K(d(t, Tj)/hn)

, (5)

where K is a kernel function, such as the Gaussian kernel function considered in this pa-

per; hn is a positive real-valued estimated bandwidth parameter, controlling the trade-off

between squared bias and variance in the mean squared error; and d(·, ·) is a semi-metric

used to quantify differences among curves. Since our simulated and real data in Sections 4
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and 5 are quite smooth, we follow the early work of Goutis (1998), Ferraty & Vieu (2002,

2009) and chose a semi-metric based on second derivative, which is given by

dderiv
q (Ti, T ) =

√∫

t

[
T
(q)
i (t)− T (q)(t)

]2
dt, q = 2. (6)

For a non-smooth functional data set, a semi-metric based on functional principal compo-

nent analysis is advocated (see Ferraty & Vieu 2006, Chapters 3 and 13 for detail on the

choice of semi-metric from the practical and theoretical aspects, respectively).

The regression coefficients β̂hn
in (3) can be seen as the ordinary least squares estimator

obtained by regressing the partial residual vector ỹh on the partial residual matrix X̃h

(Aneiros-Pérez & Vieu 2008). Alternatively, m̂hn
(t) in (4) can be seen as the functional

NW estimator with the partial residual vector as the response variable. Therefore, the

estimation accuracy of β̂hn
and m̂hn

(t) depends crucially on the optimal choice of h.

In the statistical literature, the bandwidth parameter is commonly determined by func-

tional CV in many nonparametric functional regression models (see, for example, Burba

et al. 2009, Ferraty & Vieu 2009, Barrientos-Marin et al. 2010, Ferraty et al. 2010). In

the semi-functional partial linear regression model, Aneiros-Pérez & Vieu (2006, 2008)

considered functional CV to select optimal bandwidth. However, the functional CV fails

to incorporate error density of a regression model into bandwidth estimation. Due to the

importance of error density, this motivates us to propose a Bayesian procedure to estimate

bandwidth parameters in regression function and error density, simultaneously.

3. Bayesian bandwidth estimation

3.1 Estimation of error density

We assume that the unknown error density f(ε) is approximated by a location-mixture

Gaussian density, given by

f(ε; b) =
1

n

n∑

j=1

1

b
φ

(
ε− εj

b

)
, (7)

where φ(·) is the probability density function of the standard Gaussian distribution, and

Gaussian densities have means at εj , for j = 1, 2, . . . , n and a common standard deviation

b. Note that our proposed kernel-form error density has only one parameter to be estimated

from data, as opposite to many parameters in the location-scale mixture (see McLachlan

& Peel 2000, for detail on finite mixture models). Although β and m are unknown, they

can be estimated by the ordinary least squares and functional NW estimators, respectively.

Based on the residuals, the density of εj is approximated by the estimated error density

f̂(ε; bn), expressed as

f(ε; b) ≈ f̂(ε; bn) =
1

n

n∑

j=1

1

bn
φ

(
ε− ε̂j
bn

)
, (8)

where bn represents the residual bandwidth in a finite sample, and bn → 0 as n → ∞. As

pointed out by Samb (2011), the kernel estimator f̂(ε; bn) is a feasible estimator that does

not depend on any unknown quantity, in contrast to (7).

Jaki & West (2008, p.989) and Jaki & West (2011) also proposed to estimate the error

density by a kernel density estimator given by (8), and estimate parameters by maximizing

the so-called kernel likelihood. The kernel likelihood of y is defined as the product of the
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density given by (8), based on the independent and identically distributed (iid) assumption

of the error term. In the context of bandwidth estimation, it is however impossible to

estimate b by maximizing the kernel likelihood without a slight modification, because it

contains un-desirable term φ(0)/bn. The kernel likelihood would approach infinity as bn
approaches to zero. To address this issue, a leave-one-out version of the kernel likelihood

is used and expressed by

f̂(ε̂i,hn
; bn) =

1

n− 1

n∑

j=1
j 6=i

1

bn
φ

(
ε̂i,hn

− ε̂j,hn

bn

)
, (9)

where ε̂i,hn
= yi−m̂hn

(t)−Xiβ̂hn
is the ith residual for i = 1, 2, . . . , n, and hn represents

the bandwidth estimate in the ordinary least squares and functional NW estimators. Given

hn and bn, the kernel likelihood of y = (y1, y2, . . . , yn)
⊤ can be approximated by

L̂(y|hn, bn) =
n∏

i=1

[
1

n− 1

n∑

j=1
j 6=i

1

bn
φ

(
ε̂i,hn

− ε̂j,hn

bn

)]
. (10)

3.2 Prior density

We now discuss the issue of prior density for the bandwidths. Let π(h2) and π(b2) be the

prior of squared bandwidths h and b. Since h2 and b2 can be considered as a variance

parameter in the Gaussian distribution, we consider the conjugate prior of h2 and b2. Let

the prior densities of h2 and b2 be inverse Gamma densities, denoted as IG(αh, βh) and

IG(αb, βb), respectively. The prior densities can be expressed as

π(h2) =
(βh)

αh

Γ(αh)
(
1

h2
)αh+1 exp(−βh

h2
), π(b2) =

(βb)
αb

Γ(αb)
(
1

b2
)αb+1 exp(−βb

b2
),

where αh = αb = 1 and βh = βb = 0.05 are hyperparameters. Notice that IG(1, 0.05) has

previously been used as a prior density in Geweke (2010).

3.3 Posterior density and Bayesian sampler

According to Bayes theorem, the posterior of h2n and b2n is approximated by (up to a nor-

malizing constant)

π(h2n, b
2
n|y) ∝ L̂(y|h2n, b2n)π(h2)π(b2), (11)

where L̂(y|h2n, b2n) is the approximate kernel likelihood function with squared bandwidths.

The parameters are sampled from its posterior density and estimated by the means of

Markov chain Monte Carlo (MCMC). In essence, the MCMC method sets up a Markov

chain so that its stationary distribution is the same as the posterior density. When the

Markov chain converges, the ergodic averages of the simulated realizations are treated

as the estimated parameter values. For a detailed exposition on MCMC method, consult

Geweke (1999), Gilks et al. (1996) and Robert & Casella (2010).

From (11), we use a generic algorithm known as the adaptive random-walk Metropolis

algorithm of Garthwaite et al. (2010) to sample (h2n, b
2
n) jointly. The sampling algorithm is

described below.

Step 0 Specify a Gaussian proposal density, with an arbitrary starting point b2
n,(0) and h2

n,(0).

The starting points can be drawn from a uniform distribution U(0, 1).
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Step 1 At the kth iteration, the current state b2
n,(k) is updated as b2

n,(k) = b2
n,(k−1) + τ(k−1)ε,

where ε ∼ N(0, 1), and τ(k−1) is an adaptive tuning parameter with an arbitrary

initial value τ(0).

Step 2 The updated b2
n,(k) is accepted with probability min

{
π(b2

n,(k)
,h2

n,(k−1)
|y)

π(b2
n,(k−1)

,h2
n,(k−1)

|y)
, 1

}
, where

π represents the posterior density.

Step 3 By using the stochastic search algorithm of Robbins & Monro (1951), the tuning

parameter is

τ(k) =

{
τ(k−1) + c(1− p)/k if b2

n,(k) is accepted;

τ(k−1) − cp/k if b2
n,(k) is rejected,

where c =
τ(k−1)

p(1−p) is a varying constant, and p = 0.44 is the optimal acceptance

probability for drawing one parameter (Roberts & Rosenthal 2009).

Step 4 Repeat Steps 1-3 for h2
n,(k), conditional on b2

n,(k) and y.

Step 5 Repeat Steps 1-4 for M+N times, discard (h2
n,(0), b

2
n,(0)), (h

2
n,(1), b

2
n,(1)), . . . , (h

2
n,(M), b

2
n,(M))

for burn-in in order to let the effects of the transients wear off, estimate ĥ2n =
∑M+N

k=M+1 h
2
n,(k)

N
and b̂2n =

∑M+N
k=M+1 b

2
n,(k)

N
. The burn-in period is taken to be M = 1, 000

iterations, and the number of iterations after burn-in period is N = 10, 000 iterations.

The analytical form of the kernel-form error density can be derived based on ĥ2n and

b̂2n. It is noteworthy that a similar error density result can be obtained by taking the

average of the kernel-form error densities computed at all iterations, but at the cost

of much slower computational speed.

The mixing performance of the sample paths can be measured by total standard er-

ror (SE) and batch-mean SE, from which we can also calculate simulation inefficiency

factor (see also Kim et al. 1998, Meyer & Yu 2000, Tse et al. 2004, Zhang et al. 2009,

Shang 2013a). The simulation inefficiency factor can be interpreted as the number of draws

needed to have iid observations.

3.4 Localized estimation of error density

In the kernel density estimation, it has been observed that the leave-one-out estimator, such

as (9), can be heavily affected by extreme observations in the data sample (see for exam-

ple, Bowman 1984, Zhang & King 2011). When the error density has sufficient long tails

or heavy skewness, the leave-one-out kernel density estimation with its bandwidth esti-

mated under the Kullback-Leibler criterion, is likely to overestimate the tail density. This

may cause by the use of a global bandwidth. To rectify this problem, localized bandwidth

method proposed by Zhang & King (2011) is implemented.

The idea of localized bandwidths is to assign small bandwidths to the observations

in the high density region, while large bandwidths to the observations in the low density

region. The localized error density estimator proposed by Zhang & King (2011) is given

by

f̂(ε̂i,hn
; bn, τε) =

1

n− 1

n∑

j=1
j 6=i

1

bn(1 + τε|ε̂j,hn
|)φ

[
ε̂i,hn

− ε̂j,hn

bn (1 + τε|ε̂j,hn
|)

]
, (12)

where bn(1 + τε|ε̂j,hn
|) is the bandwidth assigned to ε̂j , for j = 1, 2, . . . , n. Together,

τε and the magnitude of the residuals control the amount of adjustment to the localized

bandwidths. The vector of parameters is now (hn, bn, τε).
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4. Simulation study

The main goal of this section is to illustrate the proposed methodology through simulated

data. One way to do that consists in comparing the true regression function with the es-

timated regression function, and comparing the true error density with the estimated er-

ror density. To measure the estimation accuracy between γ = m(T ) + Xβ and γ̂ =
m̂(T ) +Xβ̂, we first calculate the mean absolute error and mean squared error, given by

MAE = E(|γ − γ̂|), MSE = E[(γ − γ̂)2].

Averaged across 100 replications, the averaged mean absolute error (AMAE) and the aver-

aged mean squared error (AMSE) are used to assess the estimation accuracy of regression

function. They are defined as

AMAE =
1

B

B∑

b=1

MAEb, AMSE =
1

B

B∑

b=1

MSEb.

where B = 100 represents the number of replications.

To measure the discrepancy between f(ε) and f̂(ε), we first calculate the mean inte-

grated absolute error (MIAE) and mean integrated squared error (MISE), defined by

MIAE[f̂(ε)] =

∫ b

a

|f(ε)− f̂(ε)|dε, MISE[f̂(ε)] =

∫ b

a

[f(ε)− f̂(ε)]2dε,

for ε ∈ [a, b]. For each replication, the MIAE and MISE can be approximated at 1,001 grid

points bounded between an interval, such as [−5, 5]. These can be expressed as

MIAE[f̂(ε)] ≈ 1

100

1001∑

i=1

∣∣∣∣f
[
− 5 +

(i− 1)

100

]
− f̂

[
− 5 +

(i− 1)

100

]∣∣∣∣ , (13)

MISE[f̂(ε)] ≈ 1

100

1001∑

i=1

{
f
[
− 5 +

(i− 1)

100

]
− f̂

[
− 5 +

(i− 1)

100

]}2

. (14)

Averaged across 100 replications, the approximated mean integrated absolute error (AMIAE)

and the approximated mean integrated squared error (AMISE) are used to assess the esti-

mation accuracy of error density. They are defined as

AMIAE =
1

B

B∑

b=1

MIAEb, AMISE =
1

B

B∑

b=1

MISEb.

Building the simulated samples We briefly describe the construction of the simulated

data. First of all, one builds simulated discretized curves

Ti(tj) = ai cos(2tj) + bi sin(4tj) + ci(t
2
j − πtj +

2

9
π2), i = 1, 2 . . . , n, (15)

where 0 ≤ t1 ≤ t2 · · · ≤ t100 ≤ π are equispaced points, ai, bi, ci are independently drawn

from a uniform distribution on [0, 1], and n represents the sample size. The functional form

of (15) is taken from Ferraty et al. (2010).

Once the curves are defined, one simulates a functional regression model to compute

the responses:

• construct a nonparametric component m(Ti) = 10 × (a2i − b2i ), which performs the

mapping from function-valued space to real-valued space.
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• construct a parametric component, where Xi1 and Xi2 are independently drawn from

a uniform distribution U(0, 1), for i = 1, 2, . . . , n. The true values of regression

coefficients are set to be β = (−1, 2). The regression function is constructed as

γi = m(Ti) +Xiβ, for i = 1, 2, . . . , n. (16)

• generate ε1, ε2, . . . , εn from a student-t distribution with df = 5, as an illustration.

For further comparison, we have also simulated error densities from 15 different

normal mixtures (see Marron & Wand 1992, Table 1 for detail).

• compute the corresponding response:

yi = γi + εi = m(Ti) +Xiβ + εi, for i = 1, 2, . . . , n.

Estimating the regression function For a fixed bandwidth hn and regression coefficient

β, one compute the discrepancy between γi and γ̂i, for i = 1, 2, . . . , n. To do that, one

uses the following Monte-Carlo scheme:

1) Build 100 replications {(ysi ,Xs
i , T

s
i )i=1,...,n}s=1,...,100;

2) Compute 100 estimates [(γi − γ̂si )i=1,...,n]s=1,...,100, where γ̂si represents the regres-

sion function estimated by the functional NW estimator for the nonparametric com-

ponent and the ordinary least squares estimator for the parametric component;

3) For each replication, we calculate the MAE and MSE between the true regression

function γ and the estimated regression function γ̂. Averaged over 100 replications,

we use the AMAE and AMSE to assess the estimation accuracy of the regression

function.

Table 1 presents the AMAE and AMSE for the parametric part, nonparametric part and

regression function in the semi-functional partial linear regression, where the bandwidth

was estimated by the functional CV and Bayesian methods. When the error density is

simulated from t5, the Bayesian methods perform better than the functional CV across

inference sample sizes.

Estimating the error density With a set of residuals and a fixed residual bandwidth, one

can apply a univariate kernel density estimator and compute the discrepancy between f(ε)
and f̂(ε). The Monte-Carlo scheme can be described as follows:

1) Compute 100 replications of residuals [(ysi − γsi )i=1,...,n]s=1,...,100;

2) The Bayesian approach jointly estimates the bandwidths in the regression function

and error density, but we also consider a two-stage CV method for the purpose of

comparison. Based on 100 replications of residuals and the corresponding residual

bandwidths estimated by likelihood CV (Bowman 1984), the two-stage CV method

applies a univariate kernel density to estimate error density. The asymptotic optimal-

ity of the bandwidth selected by the likelihood CV has been studied by Hall (1987).

3) For s = 1, . . . , 100, compute the MIAE in (13) and MISE in (14) between the true

error density f(ε) and the estimated error density f̂ s(ε).

4) Averaged over 100 replications, we calculate the AMIAE and AMISE to assess the

estimation accuracy of the error density.
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Table 1: Estimation accuracy of the parametric component, nonparametric component and

regression function in the semi-functional partial linear model, between the functional CV

and Bayesian methods when the error density is t5. The number in parenthesis represents

the sample standard deviation of the mean absolute errors and mean squared errors. The

bolded text represents the minimal AMAE and minimal AMSE.

Method n Parametric part Nonparametric part Regression function

|β − β̂| (β − β̂)2 |m− m̂| (m− m̂)2 |γ − γ̂| (γ − γ̂)2

CV 50 1.3976 2.9927 1.6428 4.4863 1.3898 3.2232

(0.7018) (2.9283) (0.4839) (2.4719) (0.1577) (0.6816)

150 0.8203 1.0558 1.0540 1.8659 0.9066 1.4555

(0.4495) (0.9858) (0.2575) (0.8124) (0.0851) (0.2479)

250 0.5770 0.5159 0.8495 1.2669 0.7583 1.0605

(0.3098) (0.5350) (0.1769) (0.4607) (0.0650) (0.1523)

Bayesian 50 0.9448 1.2690 1.4132 3.4261 1.3122 2.8930

global (0.4768) (1.2514) (0.2578) (1.1962) (0.1608) (0.6675)

150 0.3824 0.2329 0.8776 1.4000 0.8460 1.3159

(0.2005) (0.2107) (0.0973) (0.2565) (0.0746) (0.2195)

250 0.2726 0.1136 0.7373 1.0013 0.7125 0.9491

(0.1425) (0.1173) (0.0657) (0.1639) (0.0485) (0.1186)

Bayesian 50 0.9457 1.2733 1.4100 3.4248 1.3001 2.8685

local (0.4698) (1.2325) (0.2526) (1.1723) (0.1493) (0.6299)

150 0.3822 0.2308 0.8746 1.3908 0.8441 1.3089

(0.1988) (0.2013) (0.0978) (0.2523) (0.0735) (0.2085)

250 0.2738 0.1140 0.7367 0.9999 0.7117 0.9477

(0.1422) (0.1165) (0.0651) (0.1635) (0.0476) (0.1176)

Table 2 presents AMISE and AMIAE for the kernel-form error density with bandwidth

estimated by the likelihood CV and Bayesian methods. When the error density is simulated

from t5, the Bayesian methods perform uniformly better than the likelihood CV across

inference sample sizes.

Table 2: Estimation accuracy of the error density in the semi-functional partial linear model,

between the likelihood CV and Bayesian methods when the error density is t5. The num-

ber in parenthesis represents the sample standard deviation of the integrated absolute and

squared errors. The bolded text represents the minimal MIAE and minimal MISE.

n Likelihood CV Bayesian global Bayesian local

MIAE MISE MIAE MISE MIAE MISE

50 0.8002 0.1160 0.6551 0.0785 0.5098 0.0479

(0.0915) (0.0277) (0.1181) (0.0279) (0.1098) (0.0215)

150 0.6633 0.0787 0.5148 0.0507 0.4082 0.0300

(0.0988) (0.0236) (0.0838) (0.0153) (0.0816) (0.0129)

250 0.5866 0.0636 0.4786 0.0450 0.3904 0.0280

(0.1058) (0.0221) (0.0828) (0.0147) (0.0786) (0.0117)
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5. Application to food quality control

Let us consider a food quality control application, previously studied by Ferraty & Vieu

(2006) and Aneiros-Pérez & Vieu (2006). The data set was obtained from http://lib.

stat.cmu.edu/datasets/tecator. Each food sample contains finely chopped

pure meat with different percentages of the fat, protein and moisture contents. For each

unit i (among 215 pieces of finely chopped meat), we observe one spectrometric curve,

denoted by Ti, which corresponds to the absorbance measured at a grid of 100 wave-

lengths (i.e., Ti = (Ti(t1), . . . , Ti(t100))). For each i, we also observe its fat, protein

and moisture contents X ∈ R3, obtained by analytical chemical processing. Each con-

tent will be in turn treated as the response variable, hence the data set contains the pairs

(yi,Xi1,Xi2, Ti)i=1,...,215. For example, given a new spectrometric curve Tnew and new

measurements of protein and moisture contents Xnew1 and Xnew2, we aim to predict the

corresponding fat content ynew. Similarly, we also examine the point forecast accuracy of

the protein and moisture contents.

In order to assess the out-of-sample point forecast accuracy of the nonparametric func-

tional estimator, we split the original samples into two subsamples (see also Ferraty &

Vieu 2006, p.105). The first one is called learning sample, which contains the first 160

units {yi,Xi1,Xi2, Ti}i=1,...,160. The second one is called testing sample, which contains

the last 55 units {yj,Xj1,Xj2, Tj}j=161,...,215. The learning sample allows us to build the

regression model with the optimal smoothing parameter. The testing sample allows us to

evaluate the prediction accuracy.

For comparison, we consider a nonparametric functional regression model studied in

Shang (2013a) and the semi-functional partial linear regression model. Within each re-

gression model, we consider the functional CV and Bayesian methods for estimating band-

widths, using modified R functions in the npfda package (http://www.math.univ-toulouse.

fr/staph/npfda). To measure the performance of each bandwidth estimation method,

we consider the mean absolute prediction errors (MAPE) and mean squared prediction er-

rors (MSPE). They are expressed as

MAPE =
1

55

215∑

j=161

|yj − ŷj|, MSPE =
1

55

215∑

j=161

(yj − ŷj)
2.

For three different bandwidth estimation methods, the corresponding values of MAPE

and MSPE obtained from two regression models are shown in Table 3. We found that

the semi-functional partial linear regression model gives higher prediction accuracy than

the nonparametric functional regression model, regardless the bandwidths are selected by

functional CV or Bayesian methods. The Bayesian methods perform better than the func-

tional CV in all three response variables based on the MSPE. When the aim is to predict fat

content, the functional CV is superior to the Bayesian methods, as measured by the MAPE.

We are also interested in computing the prediction intervals nonparametrically. To this

end, we first compute the cumulative density function (cdf) of the error distribution, over

a set of grid points within a range, say -8 and 8. Then, we take the inverse of the cdf and

find two grid points that are closest to the 2.5% and 97.5% quantiles. The 95% prediction

intervals of the holdout samples are obtained by adding the two grid points to the point

forecasts. For instance, the point forecasts of the fat content obtained from the Bayesian

method with localized bandwidths are shown by black dots in Figure 1, while the 95%

prediction intervals are shown by red parentheses.
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Table 3: Out-of-sample MAPE and MSPE in the semi-functional partial linear regression

model with bandwidth estimated by the functional CV and Bayesian methods. The num-

ber in parenthesis represents the sample standard deviation of the squared and absolute

prediction errors. The bolded text represents the minimal MAPE and minimal MSPE.
Method Response variable

Fat Protein Moisture

MAPE MSPE MAPE MSPE MAPE MSPE

Nonparametric functional regression model

CV 1.8466 5.5331 1.0283 2.5417 1.6389 4.3186

(1.4705) (7.4324) (1.2295) (7.6842) (1.2895) (6.3178)

Bayesian 1.8125 5.3097 1.0282 2.5313 1.6010 4.1125

local (1.4359) (7.1241) (1.2253) (7.6973) (1.2561) (5.9090)

Semi-functional partial linear regression model

CV 0.9075 1.7855 0.8359 1.4319 0.8266 1.5440

(0.9898) (4.6592) (0.8642) (3.2824) (0.9363) (3.7173)

Bayesian 0.9863 1.9044 0.7896 1.3837 0.8417 1.5627

global (0.9741) (4.7294) (0.8800) (3.2289) (0.9328) (3.7750)

Bayesian 0.9687 1.6031 0.8022 1.3887 0.7944 1.4952

local (0.8228) (2.9567) (0.8712) (3.2027) (0.9381) (3.8744)
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Figure 1: Plot of predicted fat contents in percentage and the 95% prediction intervals.

The point forecasts of the fat content obtained from the Bayesian method with localized

bandwidths are shown by black dots, while the 95% prediction intervals are shown by red

parentheses.
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6. Conclusion

This paper addresses the issue of bandwidth estimation in the semi-functional partial linear

regression model. The regression function, consisting of a parametric component and a

nonparametric component, is estimated by the ordinary least squares and functional NW

estimators. However, the estimation accuracy jointly depends on optimal estimation of

the same bandwidth parameter hn. In addition, since we approximate the unknown error

density by a kernel-form error density, the estimation accuracy of error density also depends

on (at least) another bandwidth parameter bn. In the context of semi-functional partial

linear regression model, we introduce a Bayesian procedure for estimating both bandwidth

parameters, simultaneously.

Illustrated by a series of simulation studies, the Bayesian method with localized band-

widths gives the most accurate estimation of regression function, followed closely by the

Bayesian approach with a global bandwidth. In contrast, the benchmark functional CV

performs the worst for estimating regression function. Based on the residuals, we fur-

ther compared the estimation accuracy of error density between the Bayesian methods and

so-called two-stage CV. The Bayesian method with localized bandwidths generally gives

the most accurate estimation of error density, followed closely by the Bayesian method

with a global bandwidth. To our surprise, the Bayesian method with a global bandwidth

sometimes performs slightly better than the Bayesian method with localized bandwidths

for complex error densities (such as, error densities (10)-(15) shown in the supplement

material B). In comparison to the Bayesian methods, the two-stage CV gives the worst es-

timation accuracy across different error densities, except the strongly skewed and outlying

error densities.

Illustrated by a well-studied spectroscopy data set, we found that the functional CV

performs better than the Bayesian methods in terms of MAPE, when the aim is only to

predict fat content. As measured by MSPE, the Bayesian methods are more superior to the

functional CV in all three different response variables. In addition, the Bayesian methods

are capable of producing nonparametric prediction intervals for quantifying the prediction

uncertainty.
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