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Abstract
The concept of cointegration processes is one of the most used concepts in economics and finance.
Mainly, researchers are interested in behavior of the estimators of the model parameters. In this
paper, we will investigate the asymptotic behavior of the estimators of an infinite-order cointegrated
vector autoregressive series under nonindependent errors by showing its asymptotic distribution.
Using this result, we will construct a Likelihood Ratio (LR) test of the cointegration rank. One can
also develop a method under unrestrictive assumptions to select the autoregressive order.
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1. Introduction

Multivariate time series are widely used in economics since a substantial part of economic
theory generally deals with long-run equilibrium relationships generated by market forces
and behavioral rules. In order to study the long run relationship, Engle & Granger (1987)
introduced the concept of cointegration which is used in many recent studies across sev-
eral fields. One can say that time series variables are cointegrated if they have a common
stochastic trend, or simply, a linear combination of these variables can be represented by
a stationary process. The number of independent linear combinations is the cointegrating
rank and is an important parameter in analyzing economic data. However, if cointegrating
relations are present in a system of variables, the vector autoregressive (VAR) form is not
the most convenient model setup. In that case, it is useful to consider specific parametriza-
tion that supports the analysis of the cointegration structure known as vector error correc-
tion models (VECM). For the VECM, most studies suppose two important assumptions.
The first assumption is related to the order of the VECM representation which is supposed
finite and known. Of course, this assumption is unrealistic in practice for various reasons.
For instance, the true data-generation processes (DGP) may not be a finite order process. If
it is a finite order VAR process then the true order is not likely to be known. Therefore it is
of interest to know the consequences of a violation of the assumption that the DGP is a VAR
process with known finite order. The second condition is related to the innovations process
which are supposed to be independent and identically distributed (i.i.d). This assumption
is too restrictive when economic or financial data is to study. Most of the macroeconomic
time series exhibit a conditional heteroscedasticity or any nonlinear form. To introduce
the IVAR(∞), Saikkonen (1992) proposed a different way to write a VECM representation
than the well known one proposed by Johansen (1988), see Juselius (2006).
To clarify details, let consider the following d-dimensional process Y = {Yt , t ∈ Z}. The
data generating process has the form:

∆Yt = JΘ′Yt−1 + ut (1)
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where, ∆Yt = Yt − Yt−1, J and Θ are matrices containing the model parameters and the
process ut is assumed to have an infinite-order VAR representation

∞∑
l=0

Glut−l = ϵt, G0 = Id, (2)

where ϵt is usually assumed i.i.d with mean zero and positive definite covariance matrix
Σϵ. Under some regular conditions on Gl, the process ut and hence the process Yt can
be approximated by a finite order autoregression. In the literature, studying the behav-
ior of the parameter estimators of an IVAR(∞) with i.i.d errors was done by Saikkonen
(1992) and Saikkonen & Lütkepohl (1996). They showed the asymptotic properties of the
estimated coefficients of the autoregressive error correction model (VECM) and the pure
vector autoregressive (VAR) representations derived under the assumption that the autore-
gressive order goes to infinity with the sample size. Under the same strong assumptions
on the innovations process, Saikkonen & Lütkepohl (1996) constructed a test for linear
(zero) restrictions which arise in exogeneity or Granger causality analyses. In Bouhad-
dioui & Dufour (2008), the rate of convergence of the least square (LS) estimators was
found and used to test the non-correlation between two IVAR(∞). In this project, under
the more general model which is represented by an infinite-order cointegrated process with
uncorrelated but dependent errors, denoted by WIVAR(∞), we will address two main aims.

The First aim is to study the behavior of the estimators of the cointegration. The dif-
ficulty of this problem comes from the fact that we have to consider the approximation of
the infinite-order cointegrated process by a finite-order autoregressive process where the
order of the fitted autoregression is a function of the sample size and the fact that the errors
are uncorrelated but dependent which needs the use of a more general result than the cen-
tral limit theorem which assume that the errors are independent. In the case of i.i.d errors,
Saikkonen & Lütkepohl (1996) showed that the least square (LS) estimators of the coeffi-
cients representing the short-run dynamics in the VECM and the pure VAR are seen to have
asymptotic normal distribution when suitable normalizations are used. Seo (2007) explored
the asymptotic distribution of the maximum likelihood estimator (MLE) of a finite-order
cointegrating vector with conditionally heteroskedastic errors. He showed that the MLE of
the cointegrating vector follows mixture normal, and its asymptotic distribution depends
on the conditional heteroskedasticity and the kurtosis of the innovations. However, the
conditional heteroskedasticity does not preclude other forms of dependence, see Francq &
Zakoian (1998) and Francq, Roy & Zakoian (2005).

The second aim is to study the validity the likelihood ratio (LR) tests of the cointegra-
tion rank where the process is WIVAR(∞) . This aim is mainly related to the first one, since
the investigation of the cointegration properties at early stage (before the estimation stage)
of the analysis has become standard practice by now. The problem is more complicate than
the regular LR tests proposed by Johansen (1988), Johansen (1991) and Reinsel & Ahn
(1992) where the tests are performed conditionally on the order being the true one. In some
studies, it was shown that the choice of the lag order or truncation lag has an important
impact on the unit root and cointegration tests, see Ng & Perron (1995) and Haug (1996).
Lütkepohl & Saikkonen (1997) extended the LR tests proposed by Ng & Perron (1995) to
the case of the IVAR(∞). Rahbek, Hansen & Dennis (2002) studied the impact of ARCH
innovations on the LR test. An important output of their work is that the LR test remains
valid when the error process is a martingale difference. Also, In the context of uncorrelated
but dependent errors, Raı̈ssi (2009) showed that the LR test remains valid where the order
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of the VECM is predetermined and finite.

2. Preliminaries and Notations

Following the notations of Saikkonen (1992) and Saikkonen & Lütkepohl (1996), we con-
sider a d-dimensional process X = {Xt , t ∈ Z} partitioned into two subprocesses
Xi = {Xit , t ∈ Z}, i = 1, 2, with d1 and d2 components respectively (d1 + d2 = d).
The data generating process has the form:

X1t = C1X2t + ε1t, (3)

∆X2t = ε2t, (4)

where C1 is a given d1 × d2 matrix, ∆ is the usual difference operator, and ε = (ε′1t, ε
′
2t)

′

is a stationary process with zero mean and continuous spectral density matrix which is
positive definite at zero frequency. X2t is an integrated vector process of order one (with no
cointegrating relationship), while X1t and X2t are cointegrated. By taking first differences
in (3), the above system can be written in the form

∆Xt =

[
−Id1 C1

0 0

]
Xt−1 + bt = JΘ′Xt−1 + bt (5)

where Id represents the d × d identity matrix, J ′ = [−Id1 : 0], Θ′ = [Id1 : −C1],
bt = [b′1t : b

′
2t]

′ is nonsingular transformation of εt defined by

b1t = ε1t +C1ε2t , b2t = ε2t . (6)

The notation A = [A1 : A2] means that the matrix A is partitioned into a matrix A1

consisting of the first d1 columns and a matrix A2 with d2 columns.
We suppose also that the process bt (and hence εt) has an infinite-order autoregressive

representation

∞∑
l=0

Glbt−l = at, G0 = Id, (7)

where at is independent and identically distributed white noise process with E(at) = 0
and E(ata

′
t) = Σa is a definite positive matrix. Setting G(z) = Id −

∑∞
l=1Glz

l, the
stationarity hypothesis of the process bt implies that the zeros of the equation det{G(z)} =
0 all lie outside the unit circle |z| = 1, where det{A} denotes the determinant of the square
matrix A. A further assumption is that the coefficient matrices Gl satisfy the summability
condition

∞∑
l=1

ln∥Gl∥ < ∞ (8)

for some n ≥ 1 and ∥.∥ is the Euclidean matrix norm defined by ∥A∥2 = tr(A′A). This
is a standard condition for weakly stationary processes, which ensures that the process be
well defined. Depending on n, it imposes weak restrictions on the autocorrelation struc-
ture of the process bt. Also, it implies that the process bt and, consequently, Xt can be
approximate by a finite-order autoregression. The order pN of the fitted autoregression is a
function of the sample size; i.e., pN = p(N). In order to reduce approximation errors, we
allow the maximal order pN to increase to infinity, at some rate, simultaneously with real-
ization length N , see Burnham & Anderson (2002). In the sequel, we assume the following
assumption on the finite autoregressive order.
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Assumption 2.1 N−1/3pN → 0 and
√
pN
∑∞

l=pN+1 ∥Gl∥ → 0 as N → ∞.

The condition pN = o(N1/3) for the rate of increase of pN ensures that enough sample
information is asymptotically available for estimators to have standard limiting distribu-
tions. The condition

√
pN
∑∞

j=pN+1 ∥Gj∥ → 0 imposes a lower bound on the growth rate
of pN , which ensures that the approximation error of the true underlying model by a finite-
order autoregression gets small when the sample size increases. A more detailed discussion
of these conditions is available in Burnham & Anderson (2002) and Lütkepohl (2005).

Using the equations (5) - (7) and rearranging terms, we obtain the autoregressive error
correction model (ECM) representation

∆Xt = ΨΘ′Xt−1 +

pN∑
l=1

Πl∆Xt−l + et, t = pN + 1, pN + 2, . . . (9)

where et = at −
∑∞

l=pN+1Glbt−l, Ψ = −
∑pN

l=0GlJ , and the d × d1 matrix Ψ is of
full column rank (at least for pN large enough). Details for this derivation can be found in
Saikkonen & Lütkepohl (1994). Note that the coefficient matrices Πl(l = 1, . . . , pN ) are
functions of Θ and Gl(l = 1, 2, ...), and they depend on pN . Furthermore, the sequence
Πl(l = 1, . . . , pN ) is absolutely summable as pN → ∞.

The autoregressive ECM in (9) can also be rewritten in a pure vector autoregressive
(VAR) form

Xt =

pN+1∑
l=1

ΦlXt−l + et (10)

where Φ1 = Id +ΨΘ′ +Π1, Φl = Πl −Πl−1, l = 2, . . . , pN and ΦpN+1 = −ΠpN .
Although the Πl depend on pN , the same is not true for the Φl except for ΦpN+1.

Saikkonen & Lütkepohl (1996) derived the asymptotic properties of the multivariate
least square (LS) estimators of the VAR coefficients under a standard assumption. Let
Φ(pN ) = (Φ1, . . . , ΦpN ) be the matrix of the first pN autoregressive parameter matrices
in the representation (10) and denote by Φ̂(pN ) = (Φ̂1, . . . , Φ̂pN ) the corresponding LS
estimator. Let the process et satisfy the following assumptions:

Assumption 2.2 (Uncorrelated but Dependent Errors) The error process et is strictly
stationary and such that Cov(et, et−h) = 0 for all t ∈ Z and all h ̸= 0.

Such error processes are commonly named weak white noise. Now, let consider the α-
mixing coefficients

αa(l) = sup
A∈σ(au,u≤t),B∈σ(au,u≥t+l)

|P (A ∩B)− P (A)P (B)| (11)

that measure the temporal dependence of the stationary process {at} and the following
assumption on the structure of the errors.
Let consider also the following two assumptions:

Assumption 2.3 The process et satisfies ∥et∥2+ν+η < ∞, and the mixing coefficients of
the process et are such that

∑∞
l=0{αe(l)}ν/(2+ν) < ∞ for some ν > 0 and η > 0.

Note that this kind of assumptions are very common and considered as a mild assumption
for the process et. In addition, the folowing assumption is needed to strength 2.3

Assumption 2.4 The process et satisfies ∥et∥4+2ν < ∞, and the mixing coefficients of the
process et are such that

∑∞
l=0{αe(l)}ν/(2+ν) for some ν > 0.
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3. Consistency of QMLE Estimators

In the case of i.i.d error process, Saikkonen & Lütkepohl (1996) derived the asymptotic
properties of the multivariate least square (LS) estimators of the VAR coefficients. The
following theorem is a generalization of this result to the case of weak error process. First,
let Φ(pn) = (Φ1, . . . , Φpn) be the matrix of the first pn autoregressive parameter matrices
in the representation (10) and denote by Φ̂(pn) = (Φ̂1, . . . , Φ̂pn) the corresponding Quasi
Maximum Likelihood Estimators (QMLE).

Theorem 3.1 Let {Xt} a process given by (10) and assume that et satisfies Assumptions
2.2-2.4. Then, √

n/p3n

(
Φ̂(pn)−Φ(pn)

)
⇒ N (0,Σϕ) (12)

where Σϕ is well defined covariance matrix.

The proof and the details of Φ̂(pn) and Σϕ can be found in the technical report Bouhad-
dioui (2013) upon request from the author. This theorem is more general than the one
proved by Raı̈ssi (2009) which shows the consistency for the decomposed parameters in
(10) Ψ and Θ.

4. LR test under weak error process

Now, we will study the validity the likelihood ratio (LR) tests of the cointegration rank
where the process is WIVAR(∞). This aim is mainly related to the first one, since the
investigation of the cointegration properties at early stage (before the estimation stage) of
the analysis has become standard practice by now. The problem is more complicate than
the regular LR tests proposed by Johansen (1988), Johansen (1991) and Reinsel & Ahn
(1992) where the tests are performed conditionally on the order being the true one. In some
studies, it was shown that the choice of the lag order or truncation lag has an important
impact on the unit root and cointegration tests, see Ng & Perron (1995).
Lütkepohl & Saikkonen (1997) extended the LR tests proposed by Ng & Perron (1995) to
the case of the IVAR(∞). Rahbek et al. (2002) studied the impact of ARCH innovations
on the LR test. If r0 is the cointegrated rank, let consider the test where, for some r
(0 ≤ r ≤ d), the null hypothesis

H0 : r0 = r vs. H1 : r0 > r.

Now, in order to test the null hypothesis, we consider the LR test statistic

R = −2 logQr = −T

d∑
i=r+1

log(1− λ̂i),

where λ̂1 ≥ . . . ≥ λ̂d are the d largest solutions of the eigenvalue for a well defined matrix.
The main result of this part is given by the following theorem.

Theorem 4.1 Let {Xt} a process given by (10) and assume that et satisfies Assumptions
2.2-2.4. Then, the LR test statistic, denoted by R, has the same asymptotic distribution as
in the iid Gaussian case and true VAR order is known, i.e.

R0 ⇒ tr

([∫ 1

0
K(dB)′

]′ [∫ 1

0
KK′du

]−1 [∫ 1

0
K(dB)′

])
(13)

where K is a function of standard Brownian motion.

A detailed proof of this theorem can be found in the technical report.
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