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1. Introduction  
 

A critical step in carrying out a multiple imputation analysis [2] in the presence of 
missing data is the imputation model. Classically this is given some thought but it is often 
assumed that it is a simple step. A description or even an implementation of the method 
often concentrates on the other steps. Those include sampling from the imputed 
distributions, combining the multiply imputed groups and getting the resultant estimates 
and interpreting the results and how they compare to other more naïve methods. Here we 
focus on only the imputation step and only one method of imputation. The method is 
distribution free and robust against and number of deviations. It is also very general and 
does not make assumption about joint distributions or rely on ad hoc and arbitrary 
techniques when the data do not satisfy simple assumptions such as multivariate 
normality.  
 
We describe the technique which is an application of proportional hazard regression [1], 
apply it to a representative data set, and compare it to an alternative approach that makes 
common but questionable assumptions about the distributions of the data. The method 
performs well on the data set we exhibit. 
 

2. Background and Need for Alternative Methods 
 

Usually when we have a data set with some missing data we have to pass through a 
sequence of steps. First we use the relations ships between the data to build a model that 
we can use to predict the missing data. This usually is a relationship between the 
observed data and the missing data and is used to predict the parameters of a distribution 
of the missing data. The imputed distributions are then sampled to give a set of imputed 
data. These imputed values are used to complete several copies of completed data sets. 
Each completed data set is analyzed in a standard way and then the multiple estimates are 
combined. We will focus on the imputation step. 
 
It is common to assume some standard relationship between the observed data and the 
missing data. For example it is common to assume a multivariate normal relationship [4]. 
The usual relationships between the conditional means and the variance covariance 
matrix are then used to predict the means and variances of the missing data. The marginal 
normal distributions are then samples to complete the data set multiple times. When the 
missing data are not normal we resort to various common approaches. Transformations, 
logistic or Poisson regression, and sometimes truncation or dichotomization are used. 
When the independent, variables are not normal transformations or robustness are used to 
justify techniques. These methods have proven useful and sometimes robust [5].  
 
Here we propose a method for use when the dependent variable is missing and the 
independent variables in the imputation model can be of any type. We fit the independent 
variables to the dependent variable using Proportional Hazard Regression. This method 
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depends only on the ranks of the dependent variable and not its distribution. Thus any 
type of distribution can be used. Further the model once fit can be used to forecast the 
dependent variable with any type of independent variables. Later we will give an example 
of the procedure on some data and show that in that case the method does not lose power 
versus the utopian situation. 
 

3. Description of the Method 
 

Assume we have data with y the dependent variable to be analyzed. Let X be a matrix of 
independent covariates to be fitted to produce an imputation model. Assume that we use 
only the complete data. Fit the X to the y using the usual Proportional Hazard Regression 
method (ref). Some computer programs (e.g. SAS PHREG) which are designed to 
analyze time to event data will not accept negative values. This is easily solved by adding 
any constant making the smallest value positive. Since the PH fit depends only on the 
ranks of the dependent variable the coefficients will be the same. We can also replace the 
dependent variable with its ranks.  
 
The resulting fit will give a basis survival function S0 and that will give an estimated 
CDF of the dependent variable as a function of the independent variables as  
 

𝐹(𝑦) = 1 − [𝑆0(𝑦)]exp(−𝑋𝛽) 
 

Thus for any row of X we have an imputed value. To carry out the imputation we need to 
take a sample from 𝐹�(𝑦:𝑋𝛽). This is easily done by generating a uniform random 
number between 0 and 1. The result is inversely mapped through 𝐹�(𝑦:𝑋𝛽). Often some 
interpolation will be needed to get the correct value of y. Nothing we have done makes 
any assumption on the distribution of the y data. The resulting regression equation 
imputes the ranks of the missing data. Any type of data can be used in the independent set 
X. The stochastic part of the imputation is implemented by generating uniform random 
numbers on [0 1]. 
 
In the next section we will use the method on a vaccine data set in several different ways 
and compare it to more common method of handling deviations from normality or other 
assumptions.  
 

4. Example and Comparison to Standard Methods 
 
 
   We are going to give an example of the method on a vaccine trial comparing the 
response titers to vaccination 30 days after vaccination. The trial was carried out in 
Belgium, France and Germany. Subjects were randomized to one of the three groups –
two controls and an investigational group. The subjects were between 16 and 60 years 
old. The subset of data chosen for this analysis was complete and we randomly removed 
10% of the 30 day titers for the missing data. 
 
We analyzed the data three ways. We used our proposed method. We also carried out a 
standard method of Multiple Imputation assuming that the joint distribution of the 
dependent variable and the covariates was multivariate normal. One of the covariates was 
sex and we used separate imputation models for each gender. Finally we carried out an 
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analysis on all of the data without removing the random sample that we declared missing. 
Since we had the data we did this for a comparison. 
 
The covariates used in building the imputation model were sex, age and baseline titer 
taken immediately before vaccination. The same covariates were used in the analysis 
model along with the treatment group.  
 
This is a plot of the response titer versus baseline titer with the treatment group identified

 
Though noisy it has some predictive value in both groups. The relationship does not seem 
to be different in the two groups. 
 
The following is a graph of the response titer versus age. It is a little surprising that the 
relationship is not stronger. Often there is a significant reduction in response with age but 
it is very slight here.  

 
 
Finally the following give histogram of the response titers by sex. They are different and 
though the female group might pass as normal the male one does not seem to. 
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We also did a second round of fitting where we replace the dependent variable with its 
rankit score. This should make those values more nearly normal. 
 
The following table gives the result of the analyses after imputation. We generated 10 
imputations for each missing value. All of the programs were run in SAS 9.2. Proc MI 
and Proc MIANALYZE [3] were used for the multivariate regression. Proc PHREG was 
used to implement the proposed method.  
 

 
The above table indicates that the results are very similar. The multivariate regression 
assumed multivariate normality and stratified on sex. The PHREG simply used the values 
as they were in a regression equation yet the results, both for the strength of the 
covariates and the treatment effects were similar. The normal transformation made the 
dependent variable as normal as possible and again the results were similar.  
 
The following table shows the estimates of the treatment effect and the length of the 95% 
confidence intervals.  Again it shows that the two approaches give similar results. The 
result without the missing data is also given to show by comparison how much 
information is lost by the missing data.  
 
The lengths of the confidence intervals for the treatment effect are given in the table. The 
lengths are a good measure of the estimate of uncertainty resulting from each method. 
 

Results of analyses using PH regression and Normal Methods 
 PHREG Multivariate Regression 

EST. SE CI p EST. SE CI p 
 
Raw 
Data 

TRT -232.7 198.8 (-625.0, 159.6) .24 -256.1 190.0 (-631, 119) .18 

AGE -12.0 8.4 (-28.6, 4.58) .15 -13.5 8.14 (-29.6, 2.56) .10 

SEX 51.6 203.5 (-349.8, 453.0) .80 91.0 199.1 (-301 ,484) .65 

BASE .87 .42 (.04, 1.69) .04 .91 .41 (.10, 1.72) .03 

 
Normal 
Trans. 

TRT -.20 .18 (-.57, .16) .27 -.23 .18 (-.58, .13) .21 

AGE -.01 .01 (-.03, .001) .07 -.14 .09 (-.33, .04) .13 

SEX -.002 .19 (-.38, .38) .99 .07 .19 (-.29, .44) .70 

BASE .24 .06 (.13, .35) <..001 .27 .06 (.15, .38) <..001 
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 Raw Data Normalized Transform 

EST. 95% CI CI Length  EST. 95% CI CI Length  
PHREG -232.7 (-625.0, 159.6) 784.6 -.20 (-.57, .16) .73 
MULT 
REG 

-256.1 (-631, 119.) 
 

750.0 -.23 (-.58, .13) .71 

PP -297.1 (-684.1, 89.9) 774.0 -.25 (-.61, .11) .72 
 
Here again we see that there is very little difference in the two approaches. They both 
tend to lengthen the confidence interval as one would expect due to the loss of data and 
the do so by the same amount.  
 

5. Summary and Conclusions 
 
We have introduced a general method for building imputation models that can be used for 
any Multiple Imputation situation. It can be used in any situation with missing dependent 
data. It is independent of the distribution of the dependent data and does not depend on 
the type (continuous, categorical, ordered, etc.) of the covariates. The method is based on 
Proportional Hazard Regression which has proven to be very powerful and robust in the 
analysis of time to event data when the distribution of the dependent variable is seldom 
known. It is easy to implement with widely available software.  
 
We have demonstrate its use on a common data set and compared it to other commonly 
use methods. It did as well as other methods, including one that had to stratify on a 
binomial covariate (sex). This method simply included that binary covariate in the 
regression equation. 
 
The method relies on the proportion hazard assumption. This seems to be a robust 
assumption based on tremendous experience with time to event data. Even when violated 
the assumption can be mitigated by stratification or transformation.   
 
The method and resulting model also provide a possible approach to estimating the 
sensitivity due to non-random missingness. The form of the estimated CDF is the same as 
a Lehman Alternative and by varying the size of coefficients of the covariates it would be 
easy to investigate a wide range of alternative distributions resulting from non-random 
missingness. The aspect was not investigated yet. 
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