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Abstract:  

 

 Right tail risk is very important in risk management theory, since it represent the small 

probability and severity losses event. There are many researches on this topic. This paper 

focuses on how to estimate and evaluate the right tail risk. The different distributions will 

be considered. Some numerical examples to illustrate the results will be given.  
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1. Introduction 

 

The right tail of a distribution is the part of the distribution corresponding to large values 

of a random variable. In real life, it means the small probability that have the greatest loss. 

So it has the great impact on the total loss. Any random variables have the higher 

probabilities to larger values are said to be heavier-tailed. 

 

One of classification methods of the random variable which only take positive weather to 

be heavy-tailed distribution or not is determined by the kth raw moment  

∫
∞

=

0

)()( dxxf
k

x
k

XE  

In general agree, if all positive moments exist, the distribution has a light tail, otherwise 

have heavier tail. 

 

Tail distribution may have great impact on the total loss, therefore many researchers have 

been done excellent job in this field. See Ahn and Shyamalkumar (2011), Zhu and Li 

(2012), McNeil, Frey, and Embrechts, (2005), Resnick (2007), and Klugman (2008). 

 

In this paper we are going to discuss risk measurements and tail distributions. We are 

going to consider mixtures of uniform distribution and also other mixture of the 

important distribution. In fact, determine the risk measurement of Mixture distribution is 

really challenging and the numerical evaluation is very hard. Therefore we are going to 

consider some special cases.   

 

 

2. Basic Risk Measurements and Background 

 

Many risk measurements have been introduced. Value-at-Risk (VaR) is one of them. VaR 

used to evaluate exposure to risk, it can be treat as the amount of capital required to 

ensure with a give degree of certainty, that enterprise doesn’t become insolvent. 

Mathematical definition as follows, 
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Let X be a loss random variable with a cumulative distribution )(xF
X

. Then the VaR of a 

random variable  X  is 100pth percentile of the distribution of X .  Use 
p

X denote the 

100pth percentile of distribution of X , we have 

pp
XVaR =  or 

pXFxVaRF
pXpX

== )())((  or 

pXSxVaRXP
pXp

−==> 1)())((  

Where )(xS
X

is the survival function, in order to make sure uniqueness we may use more 

general definition, 

})(,inf{ pxFRxVaR
p

≥∈=  

 

Another important risk measurement related to Value-at-Risk which is called Tail-Value-

at Risk (TVaR, TCE) or Conditional Tail Expectation (CTE). It is the expected value of 

loss given that an event outside of a given probability level has occurred. Mathematical 

definition as follows, 

 

Let X be a loss random variable, the Tail-Value-at-Risk of X at 100p% level, denoted by  

)(xTVaR
p

, and defined by,  

)|()(
pp
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If this quantity is finite, the by integral by parts and change variable, we can easily show 

that  

)(xTVaR
p

p

duxVaR
p

u

−
=
∫

1
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Therefore, Tail-Value-at-Risk can be explained as average of all VaR  values above 

level p . In other words, TVaR tell us information about the tail of the distributions. 

 

We also can rewrite TVaR  as follows,  
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p
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Ahn and Shyamalkumar (2011) consider the larger sample behavior of the CTE and VaR, 

they introduce functions F  and *F satisfies vary complex assumptions, then pointed that 

for the quantile estimator,  
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They also had the result for CTE estimator, which as follows 
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Zhu and Li (2012) considered the Multivariate Tail Conditional Expectation (TVaR ), and 

introduced the a strictly increasing homogeneous function with )()( xccx ψψ = for 0≥c . 

Then they had the first results 
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They also gave another result under the certain condition, 
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3. Mixture Uniform Distribution and Other Mixture Distributions. 
 

At first, we consider the simple example. Let )(xF be probability distribution of the equal 

mixture of the uniform distributions of )1,0(U , )3,2(U , and )5,4(U . Then the probability 

density function is given as the following 
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It is not hard to find the probability cumulative distribution, 
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For 3/2=p , then we can easily to find value-at-risk 
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and the tail value-at-risk 
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Theorem 3.1 Let
n

xxx <<< L
21

, and )(xF is the probability distribution of the equal 

mixture of uniform distributions )1,(
11

+xxU , )1,(
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+xxU , )1,(, +
nn

xxUL . For 

any ,
n

J
p = nJ <<0 . Then the value-at-risk is given by 
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Proof: Since the probability distribution is equal mixture of uniform distributions, so the 

probability density function is given by  
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where { }EI denotes the indicator function of set E . Then we can find )(xF is the 

piecewise function and nontrivial pieces are given by   
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This finish the proof. 

 

Our simple example is the special case of the theorem 3.1 when 3=n , 2=J , 0
1

=x , 

2
2

=x , and 4
3

=x . According to theorem for 3/2=p ,  
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The results exactly same as the simple example results. 

 

Theorem 3.2 Let
nn

yxyxyx <<<<<< L
2211

, and )(xF is probability distribution of 

mixture of uniform distributions ),(
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Proof: Based on the probability density function, the cumulative probability distribution 

)(xF  is the piecewise function and nontrivial pieces are given as follows 
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This finish the proof. 

 

One of the special cases of Theorem 3.2 is, when
n

kkk
n

1
21

==== L , 1+=
ii

xy , where 

ni ,,2,1 L= , and Jh = . Then 
n

J
kp

h

i

i
==∑

=1

 

)(xTVaR
p

( )







++

−

= ∑
+=

n

hi

ii
xx

n

n

J
1

1
1

)1(2

1
 

JSM 2013 - Business and Economic Statistics Section

892



















+

−

−
= ∑

+=

n

Jk

k
x

nn

Jn

Jn

n

1

1

2
 

This is the Theorem 3.2. 

 

Now we consider another simple example。 Let )(xF be the probability distribution of 

equal probability mixture of two triangular distribution )1;1(T and )1;3(T . The general 

triangular distribution );( byT is given by the following definition 

The probability density function is  
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Therefore the density function of equal probability mixture of two triangular distribution 

)1;1(T and )1;3(T is given by 
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and it is not hard to find the cumulative probability distribution is given by  
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Theorem 3.3 Let
n

yyy <<< L
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, and )(xF is the probability distribution of the equal 

mixture of triangular distribution )1;(
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Proof: The triangular probability density function of )1;(
i

yT is given by 
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and the corresponding cumulative function is given by 
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This finish the proof. 

 

Our simple example is the special case of the theorem 3.3 when 2=n , 1=J , 1
1
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The results exactly same as the simple example results. 

 

Theorem 3.4 Let
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Proof: Based on the probability density function, the cumulative probability distribution 

)(xF  is the piecewise function and nontrivial pieces are given as follows 
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This finish the proof. 

One of the special cases of Theorem 3.4 is, when
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This is the result of Theorem 3.3. 

 

Example 1: Now let’s consider the Pareto distribution. Consider the equal probability 

mixture of two Pareto distributions with parameters 

2,2;12 ==== θαθα ， respectively. Then we can easily find the mixture cumulative 

function 
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Example 2: We may also consider more general case of the Pareto distribution. Consider 

the equal probability mixture of two Pareto distributions with parameters ;11 => θα ，  

2,1 => θα respectively. Then we also can find the mixture cumulative function 
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The first example is the special case of the second example when 2=α . We may get the 

result   
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Theorem 3.5 Let )(xF is the probability distribution of the equal mixture of n Pareto 

distribution with parameters ;11
1

=> θα ， ;21
2

=> θα ， ;1; n
n

=> θα ，L  respectively. 
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Proof: Based on the probability density function of the Pareto distribution, the 

cumulative probability distribution )(xF  is the piecewise function and nontrivial pieces 

are given as follows 
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Then solve the equation, we may have the value-at-risk is given by 
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Since the cumulative probability distribution is piecewise function, therefore the integral 
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Therefore, the tail value at risk can be found by 
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This proved the theorem. 

 

Example 2 is the special case of the Theorem 3.5 when 2=n , 1=k , therefore for 
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The results exactly same as the example 2 results. 
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Theorem 3.6: Let )(xF is the probability distribution of the equal mixture of n Pareto 

distribution with parameters ;01
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Proof: Based on the probability density function of the Pareto distribution, the 

cumulative probability distribution )(xF  is the piecewise function and nontrivial pieces 

are given as follows 
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By the similar method in Theorem 3.5, we have the following; 
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Therefore, the tail value at risk can be found by 
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This proved the theorem. 

  

When we substitute k
k

=θ for nk ,,2,1 L= , we will get the result of Theorem 3.5. 

 

Theorem 3.7: Let )(xF is the probability distribution of the arbitrary mixture of n Pareto 
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and the tail value-at-risk is given by 
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Proof: By the similar method of Theorem 3.6, we can prove the results. The Theorem 

3.6 is the special case of Theorem 3.7 when 
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