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Elizabeth A. Handoff Eric A. Ros$

Abstract

Pilot data is a valuable resource for sizing full studied,garameter estimates based on pilot data
can be highly variable. This can lead to substantial undesverestimation of the necessary sam-
ple size, resulting in low power or wasted resources. Séeg@proaches may help decrease the
likelihood of underpowering a study, including the use opepconfidence limits of pilot param-
eter estimates, adaptive approaches with planned interatyses, and sample size re-estimation
without unblinding. In this study, we explore how varioustheals affect estimated sample size and
resulting power. We show that certain re-estimation sgiagemay substantially improve power,
particularly when the pilot study is small. Furthermoré¢halgh using upper confidence limits pro-
vides increased power, this method leads to large overatsrof sample size. Finally, we show
that in most cases considerable benefits come from incige#sinnumber of observations in the
pilot study.
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1. Introduction

One important reason for conducting pilot studies is torimfthe sample size calculations
for larger future studies. Especially when prior knowled§study outcomes is low, pilot

data provides a valuable basis for sizing full trials. Hoerewnvestigators often use pi-
lot parameter estimates in subsequent power calculatiifstizey are known quantities,

when in fact the estimates are themselves variable. We neagftite overestimate or un-
derestimate the needed sample size for the full study,tieguh underpowered analyses
or wasted resources.

Limitations of pilot parameter estimates and methods toravg sample size calcu-
lations are described in the statistics literature. BroWtjeshowed that for continuous
outcomes, using the standard deviation estimated fromoagiildy ¢) would often result
in actual power less than the planned value. He suggested tin& one-sided upper 100(1-
~)% confidence limit of in place ofs in the power calculations. He showed through sim-
ulation that the probability of realizing actual power gegathan or equal to the planned
value is approximately (39 when one uses the 1003% upper confidence limit. One
drawback of this approach is that the upper confidence liflnit is an overestimate of.
We will therefore overestimate sample size on average,wditibest is costly and at worst
could make a study infeasible.

Further work in this area includes the analysis of Kieser &dsmer [7] who inves-
tigated the theoretical properties behind the method mepdy Browne. They demon-
strated why the upper confidence limit approach led to ridiggvobabilities of power
greater than or equal to the planned value. Julious and Ofgémsovided an alternate
method with the goal of obtaining expected power equal totmainal level chosen. They
observed that the variance of the pilot standard deviagadd to expected power less than
the chosen value, and provided a method to compensate $auribertainty.

Adapitive trial designs also address the uncertainty caog@iot parameter estimates.
Planned interim analyses with early stopping rules are lopuethods to accommodate
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uncertainty in the true treatment efﬁg,&tQBH_rEHRi;Q'e flmessample sizes can also address
uncertainty in other parameters such as the standard ievig8] The drawback of these
methods is the required modification to the type-I error tmaat for multiple comparisons.
[3, 2] Sample size re-estimation techniques more direallyress the effect of nuisance
parameters in sample size calculation, particularly théhowkeof blinded sample size re-
estimation. [5] Once part of the data is collected duringfthiestudy, we can obtain more
precise estimates of standard deviations or (pooled) ptiops, and by masking treatment
group type-I error is theoretically preserved. [4]

In this analysis, we consider sample size calculationsdoticuous outcomes with two
groups, suitable for analyzing with the two-sample t-t@ét hold the detectable difference
of interest as fixed, and focus only on estimation of the stechdeviation using pilot data.
We consider the effects of increasing the number of pilofgaswhen we naively consider
the pilot parameters to be fixed constants in the sample alzelation. We demonstrate
that for small or even moderately sized pilots (under 5@relis a substantial probability
of meaningful overestimation or underestimation of theunegfl sample size. We then
compare the naive sample sizes to the method of Browne flj@adaptive approaches
using simulations.

2. Properties of the ndve sample size estimate

We first review standard sample size calculations for a tidees two-sample t-test. Let
andg be the desired type | and Il error, respectively. We defilas detectable difference
of interest,o as the true standard deviation, aNdas the true sample size per arm needed
to power the study given all parameters.

N =20*(Zy_a2 + Z1-p)° /6 (1)

Unfortunately the true value ef is unknown, so based on pilot data investigators often
use
N* =262 (Zy—aj2 + Z1-5)%/6° (2

Wherem is the size of the pilot studyi,, is the standard deviation estimated in the pilot
sample, andV* is the size of the study estimated using observed pilot data.

As the data from the pilot study are subject to variabilty, and N* are therefore
random variables. As discussed by Browne (1995),

m —1)62,
L ©

It directly follows that

(m —1)§2N*
202(Z1_aj2 + Z1-p)?

2
~ Xm—1

Therefore, the probability thaV™ > N = Pr(X > (m — 1)), whereX is distributed
2
Xm—1-

In practice, we would like our estimate &f* to be close taV. Say thatc;, andc;; are
some acceptable margins of error we are willing to tolemat&i, wherecy, is the lower
margin(0 < ¢;, < 1), andey is the upper margitil < c;,) Let G(m) be the probability
that N* falls within this range.

G(m) =Pr(czN < N* <cyN) =Pr(N* <¢yN) — Pr(N* < ¢LN)
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Based on the distribution a¥*, this 'hg'ai%%y ENAR
G(m) = Fy((m — Dey) — Fu((m — 1)er)

Where X ~ x2,_,, and F, is the cumulative distribution function. Interestinglyyist
quantity does not depend on

We demonstrate this empirically in Figure 1, whefe= 0.8 andcy = 1.2. We let
0=0.1,2=0.05, andl — $=0.8. Using a range of values fot we drew a sample of size
from the normal distribution to represent pilot data, andulated the sample size estimate
N* using equation (2). Points represent the proportion of tvhenPr(0.8N < N* <
1.2N) based on 1,000 simulations.
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Figure 1: Theoretical and observed probability that estimated $arsige is within 20%
of true N

We see that even with large pilot studies, there is still dyfdiigh probability thatV*
will be outside the+ 20% range. We note that a 20% margin for sample size does not
translate into a 20% margin for power. For example;, # 1, + 20% in N* translates into
arange of 1,254-1,882, yielding 71-87% power.

We conducted an empirical exploration of power using sitamethods. Using sim-
ilar methods as above, witl=0.1 ands = 1, we again drewn pilot observations from the
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normal, and calculatedy *. We then gsfjmgigdmpmer &s3 = @1 (Wd/% — Zl_a/g).
The resulting power was categorized as too IeW70 %), too high £90%), or within an
acceptable range (70-90%). We then repeated this procéd08 times for each value of
m. Results are shown in Figure 2. We note that range of powepéable to an investiga-
tor may vary, but the 70-90% range should be practical fortpogposes when the desired
power is 80%.

Probability of power within given range
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Figure 2: Probability that naive sample size estimate will prodaceeptable power

Based on this simulation, we see that for small pilot stydieis common to obtain
power lower or higher than the desired value. As the pilotidarsize increases it becomes
less common, with 50 appearing to be a practical cutoff. &amlots do improve the
probability of acceptable power, but the probability ofseaable power grows more slowly
asm increases.

3. Improvements to standard power calculations

Clearly, larger pilot studies will produce more reliablergraeter estimates, but even in
large pilot studies, error in these estimates can still kasuboptimal sample size esti-
mates for full trials. Furthermore, large pilot studieslwibt be feasible in all cases. This
motivates methods which improve final study power over theenaalculation.

3.1 Use upper confidence intervals

As described in the introduction, Browne [1] proposed udhey(1<)*100% Upper Con-
fidence Limit (UCL) forg,,. This is easily calculated from the distribution ®f,. (See
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eqguation 3) Browne notes that USi%QA P UCL should result in at least a (1-
~v)*100% chance of obtaining greater than or equal to the éeégsiower. He suggests using
the 80% UCL, but the best choice feris not necessarily clear. We note that a major
drawback of this procedure is that, on average, the sanygsensil be overestimated.

3.2 Interim analysis for efficacy

It is widely recognized that an intervention may be demadyr beneficial (or harmful)
before the full trial is complete, and that under such cirstances it is desirable to ter-
minate the study early, motivating methods for interim gees$. If the data are analyzed
at multiple timepoints as the study progresses, this cahteanflation of type-I error, so
several authors propose using modified values: ¢d preserve overall type | error, with
different “a spending” functions. [3] Study designers can choose howyraaalyses are
desirable and which spending function to use, but all metmodst be pre-specified. [2]

The well-known methods for interim analyses may also helrawme the uncertainty
of pilot parameter estimates as having multiple plannedyaisapoints effectively allows
for multiple sample sizes. They are also appealing as theywal-understood and widely
accepted. However, the analysis points we pre-specifydetiérmine the set of possible
final sample sizes, and choosing the best ones presentslangeal An early analysis
(sample size< N*) would be beneficial if we overestimatéd, and extending the planned
final sample size (final sizee N*) would be beneficial ifN* was too low. The more
analysis points we allow, the more likely one of them is gdiadpe close to the truév.
However, at each analysis point we must spend part of ourltgpeor, so using a limited
number of points is important or it may be difficult to detedtedences at the modified
values ofa.

3.3 Sample size re-estimation

Sample size re-estimation directly addresses the unartai N* by allowing some por-
tion of the trial to be conducted, and then using this dataatoutate an adjusted sample
size. Blinded sample size re-estimation is particularlpesgbing, as treatment indicators
are not revealed, which should preserve type-I error withiogi need for adjustment. [5]
In this procedure, the nuisance parametgrig estimated from partial data, but treatment
indicators are blinded and the observed effect size is notileged. This estimate ef can
then be used for a new sample size calculation.

For continuous measures, we must estinsale®m combined treated and untreated pa-
tients without knowing treatment indicators. This can beoatplished via an expectation-
maximization algorithm, or by the approximation [5]

—1
52 (62— 62 /4),

n—2

wheres i is the estimated standard deviation from the blinded sasudé is assumed to
be the true difference. In this procedure, we must pre-gpadien the re-estimation will
occur, and how different the new estimate can be from ouira@ig,,, before we modify
the final study size.

4. Performance of methods to improve attained power

We conducted simulation experiments to evaluate the likelil of under- or overpowering
a study using the designs discussed above. Our baselin@dnistlimply the use of the
naive sample size estimaf€;. We compared the naive power to that of the three strategies
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discussed above. Although each sftgteay entails its owof sttoices for parameters and
analysis points, we chose simple designs for illustrativgpses.

Our first alternative method followed Browne, [1], where vged the 75% UCL of,,
to estimateV. (denotedVy;~;) In our second alternative method, the planned final sample
size wasNVj;~;, allowing for one interim analysis ay* with stopping for efficacy using
the Pocock boundary. In our third alternative, we condubtletied re-estimation of at
N*/2, which we denot& . If 65 was more than 20% different frof,,, we re-estimated
the final sample size (denotédy, ) .

To assess realized power for each method, we conductedagiomustudies as follows
using R software (version 3.0.1). For each valuenof 5 to m = 100:

1. Drawm pilot observations from the Normal distribution with a mexr0 and stan-
dard deviation of 1

2. CalculateN* and N, based or#,,

3. Calculate empirical power givety,

(a) Draw 1,000 sets of full data (with the sample size deteeaiiby the method
under consideration) from Normal(0,1) and Normdlj to represent the two
different study arms

(b) In adaptive approaches, follow rules stated above téredtsample size

(c) Conduct a 2-sided 2-sample t-test (with 5% type | erno@ach of the 1,000
data sets

(d) Empirical power is therefore the proportion of times thél hypothesis was
rejected.

4. Repeat 1,000 times for each valuenof

We found that the sample size re-estimation strategy wasrghiyisuperior to all other
methods explored. This alternative method often providedgr within 70-90%, even
when the pilot sample sizes were small. Other methods in@pras the pilot size increased,
but the re-estimation strategy had the highest probalaifigcceptable power for every pilot
size tested (see Figure 3).

Use of the 75% UCL fo#,,, was superior to the other methods at preventing underpow-
ering (see Figure 4), but had the drawback of often overpogeand hence oversizing the
final study (see Figure 5). The interim look similarly preteshunderpowering at the ex-
pense of often oversizing the study. Interestingly, cosrdid) only obtaining acceptable
(70-90%) power, both the 75% UCL and interim look method$quared slightly worse
than the naive method (see Figure 3).

5. Conclusion

We have shown that the use of parameter estimates from sitwdlsfudies when sizing

full trials can often result in poor estimates of the reqdisample size, which leads to
underpowered studies or wasted resources. Interestingin the true distribution of the
data is Normal, error in the estimated sample size followsediptable pattern that does
not depend on the true underlying standard deviation byttbel size of the pilot study. We
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Figure 3: Comparison of probabilities that realized power is withimacceptable range
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Figure 4: Comparison of probabilities that realized power is too low
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Figure 5: Comparison of probabilities that realized power is tochhig

demonstrated that large pilot studies produce more rolstish&es, with sizes over 50 of-
ten resulting in acceptable power. We also found that sasipdere-estimation can substan-
tially improve realized power, but that strategies usingearpconfidence limits or interim
analyses were sub-optimal. Although a single interim asialsgind the Browne method [1]
were not very successful as tested here, we note that theereaay different ways that an
investigator could use these approaches. Different cha€percent confidence limits or
additional interim analyses may improve the performandhefe approaches.

The main drawbacks of the blinded sample size re-estimatigthod are practical con-
siderations. Without knowing a priori what study size isdesh it is difficult to determine
whether the necessary recruitment is feasible or whethendial resources are sufficient
to fund the required sample size. Although such limitatiars beyond the scope of this
analysis, they do provide a barrier to implementation irctica.

We have shown that for Normally distributed outcomes, sangite re-estimation
should be considered if limited pilot data is available twesa full trial. In future work,
we will more thoroughly evaluate the UCL, interim look, amdastimation methods. Fur-
thermore, we will investigate the performance of these oashor binary outcomes.
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