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Abstract
Pilot data is a valuable resource for sizing full studies, but parameter estimates based on pilot data
can be highly variable. This can lead to substantial under- or overestimation of the necessary sam-
ple size, resulting in low power or wasted resources. Several approaches may help decrease the
likelihood of underpowering a study, including the use of upper confidence limits of pilot param-
eter estimates, adaptive approaches with planned interim analyses, and sample size re-estimation
without unblinding. In this study, we explore how various methods affect estimated sample size and
resulting power. We show that certain re-estimation strategies may substantially improve power,
particularly when the pilot study is small. Furthermore, although using upper confidence limits pro-
vides increased power, this method leads to large overestimates of sample size. Finally, we show
that in most cases considerable benefits come from increasing the number of observations in the
pilot study.

Key Words: Sample size, pilot study

1. Introduction

One important reason for conducting pilot studies is to inform the sample size calculations
for larger future studies. Especially when prior knowledgeof study outcomes is low, pilot
data provides a valuable basis for sizing full trials. However, investigators often use pi-
lot parameter estimates in subsequent power calculations as if they are known quantities,
when in fact the estimates are themselves variable. We may therefore overestimate or un-
derestimate the needed sample size for the full study, resulting in underpowered analyses
or wasted resources.

Limitations of pilot parameter estimates and methods to improve sample size calcu-
lations are described in the statistics literature. Browne[1] showed that for continuous
outcomes, using the standard deviation estimated from a pilot study (̂σ) would often result
in actual power less than the planned value. He suggested using the one-sided upper 100(1-
γ)% confidence limit of̂σ in place ofσ̂ in the power calculations. He showed through sim-
ulation that the probability of realizing actual power greater than or equal to the planned
value is approximately (1-γ) when one uses the 100(1-γ)% upper confidence limit. One
drawback of this approach is that the upper confidence limit of σ̂ is an overestimate ofσ.
We will therefore overestimate sample size on average, which at best is costly and at worst
could make a study infeasible.

Further work in this area includes the analysis of Kieser andWassmer [7] who inves-
tigated the theoretical properties behind the method proposed by Browne. They demon-
strated why the upper confidence limit approach led to reliable probabilities of power
greater than or equal to the planned value. Julious and Owens[6] provided an alternate
method with the goal of obtaining expected power equal to thenominal level chosen. They
observed that the variance of the pilot standard deviation leads to expected power less than
the chosen value, and provided a method to compensate for this uncertainty.

Adaptive trial designs also address the uncertainty causedby pilot parameter estimates.
Planned interim analyses with early stopping rules are popular methods to accommodate
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uncertainty in the true treatment effect, but multiple possible sample sizes can also address
uncertainty in other parameters such as the standard deviation. [8] The drawback of these
methods is the required modification to the type-I error to account for multiple comparisons.
[3, 2] Sample size re-estimation techniques more directly address the effect of nuisance
parameters in sample size calculation, particularly the method of blinded sample size re-
estimation. [5] Once part of the data is collected during thefull study, we can obtain more
precise estimates of standard deviations or (pooled) proportions, and by masking treatment
group type-I error is theoretically preserved. [4]

In this analysis, we consider sample size calculations for continuous outcomes with two
groups, suitable for analyzing with the two-sample t-test.We hold the detectable difference
of interest as fixed, and focus only on estimation of the standard deviation using pilot data.
We consider the effects of increasing the number of pilot samples when we naı̈vely consider
the pilot parameters to be fixed constants in the sample size calculation. We demonstrate
that for small or even moderately sized pilots (under 50), there is a substantial probability
of meaningful overestimation or underestimation of the required sample size. We then
compare the naı̈ve sample sizes to the method of Browne [1] and to adaptive approaches
using simulations.

2. Properties of the näıve sample size estimate

We first review standard sample size calculations for a two-sided, two-sample t-test. Letα
andβ be the desired type I and II error, respectively. We defineδ as detectable difference
of interest,σ as the true standard deviation, andN as the true sample size per arm needed
to power the study given all parameters.

N = 2σ2(Z1−α/2 + Z1−β)
2/δ2 (1)

Unfortunately the true value ofσ is unknown, so based on pilot data investigators often
use

N∗ = 2σ̂2

m(Z1−α/2 + Z1−β)
2/δ2 (2)

Wherem is the size of the pilot study,̂σm is the standard deviation estimated in the pilot
sample, andN∗ is the size of the study estimated using observed pilot data.

As the data from the pilot study are subject to variability,σ̂m andN∗ are therefore
random variables. As discussed by Browne (1995),

(m− 1)σ̂2
m

σ2
∼ χ2

m−1
(3)

It directly follows that

(m− 1)δ2N∗

2σ2(Z1−α/2 + Z1−β)2
∼ χ2

m−1

Therefore, the probability thatN∗ > N = Pr(X > (m− 1)), whereX is distributed
χ2

m−1
.

In practice, we would like our estimate ofN∗ to be close toN . Say thatcL andcU are
some acceptable margins of error we are willing to tolerate in N∗, wherecL is the lower
margin(0 ≤ cL ≤ 1), andcU is the upper margin(1 ≤ cL) Let G(m) be the probability
thatN∗ falls within this range.

G(m) = Pr(cLN ≤ N∗ ≤ cUN) = Pr(N∗ ≤ cUN)− Pr(N∗ ≤ cLN)
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Based on the distribution ofN∗, this is simply

G(m) = Fx((m− 1)cU )− Fx((m− 1)cL)

WhereX ∼ χ2

m−1
, andFx is the cumulative distribution function. Interestingly, this

quantity does not depend onσ.
We demonstrate this empirically in Figure 1, wherecL = 0.8 andcU = 1.2. We let

δ=0.1,α=0.05, and1− β=0.8. Using a range of values forσ, we drew a sample of sizem
from the normal distribution to represent pilot data, and calculated the sample size estimate
N∗ using equation (2). Points represent the proportion of timewhenPr(0.8N ≤ N∗ ≤
1.2N) based on 1,000 simulations.
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Figure 1: Theoretical and observed probability that estimated sample size is within 20%
of trueN

We see that even with large pilot studies, there is still a fairly high probability thatN∗

will be outside the± 20% range. We note that a 20% margin for sample size does not
translate into a 20% margin for power. For example, ifσ = 1, ± 20% inN∗ translates into
a range of 1,254-1,882, yielding 71-87% power.

We conducted an empirical exploration of power using simulation methods. Using sim-
ilar methods as above, withδ=0.1 andσ = 1, we again drewm pilot observations from the
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normal, and calculatedN∗. We then estimated power as1−β = Φ−1

(√
N∗δ/2σ − Z1−α/2

)

.

The resulting power was categorized as too low (≤ 70 %), too high (≥90%), or within an
acceptable range (70-90%). We then repeated this procedure1,000 times for each value of
m. Results are shown in Figure 2. We note that range of power acceptable to an investiga-
tor may vary, but the 70-90% range should be practical for most purposes when the desired
power is 80%.

Figure 2: Probability that naı̈ve sample size estimate will produceacceptable power

Based on this simulation, we see that for small pilot studies, it is common to obtain
power lower or higher than the desired value. As the pilot sample size increases it becomes
less common, with 50 appearing to be a practical cutoff. Larger pilots do improve the
probability of acceptable power, but the probability of reasonable power grows more slowly
asm increases.

3. Improvements to standard power calculations

Clearly, larger pilot studies will produce more reliable parameter estimates, but even in
large pilot studies, error in these estimates can still leadto suboptimal sample size esti-
mates for full trials. Furthermore, large pilot studies will not be feasible in all cases. This
motivates methods which improve final study power over the naı̈ve calculation.

3.1 Use upper confidence intervals

As described in the introduction, Browne [1] proposed usingthe (1-γ)*100% Upper Con-
fidence Limit (UCL) for σ̂m. This is easily calculated from the distribution ofσ̂m. (See
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equation 3) Browne notes that using the (1-γ)*100% UCL should result in at least a (1-
γ)*100% chance of obtaining greater than or equal to the desired power. He suggests using
the 80% UCL, but the best choice forγ is not necessarily clear. We note that a major
drawback of this procedure is that, on average, the sample size will be overestimated.

3.2 Interim analysis for efficacy

It is widely recognized that an intervention may be demonstrably beneficial (or harmful)
before the full trial is complete, and that under such circumstances it is desirable to ter-
minate the study early, motivating methods for interim analyses. If the data are analyzed
at multiple timepoints as the study progresses, this can lead to inflation of type-I error, so
several authors propose using modified values ofα to preserve overall type I error, with
different “α spending” functions. [3] Study designers can choose how many analyses are
desirable and which spending function to use, but all methods must be pre-specified. [2]

The well-known methods for interim analyses may also help overcome the uncertainty
of pilot parameter estimates as having multiple planned analysis points effectively allows
for multiple sample sizes. They are also appealing as they are well-understood and widely
accepted. However, the analysis points we pre-specify willdetermine the set of possible
final sample sizes, and choosing the best ones presents a challenge. An early analysis
(sample size< N∗) would be beneficial if we overestimatedN , and extending the planned
final sample size (final size> N∗) would be beneficial ifN∗ was too low. The more
analysis points we allow, the more likely one of them is goingto be close to the trueN .
However, at each analysis point we must spend part of our type-I error, so using a limited
number of points is important or it may be difficult to detect differences at the modified
values ofα.

3.3 Sample size re-estimation

Sample size re-estimation directly addresses the uncertainty of N∗ by allowing some por-
tion of the trial to be conducted, and then using this data to calculate an adjusted sample
size. Blinded sample size re-estimation is particularly appealing, as treatment indicators
are not revealed, which should preserve type-I error without the need for adjustment. [5]
In this procedure, the nuisance parameter (σ) is estimated from partial data, but treatment
indicators are blinded and the observed effect size is not calculated. This estimate ofσ can
then be used for a new sample size calculation.

For continuous measures, we must estimateσ from combined treated and untreated pa-
tients without knowing treatment indicators. This can be accomplished via an expectation-
maximization algorithm, or by the approximation [5]

σ̂2 ≈
n− 1

n− 2
(σ̂2

B − δ2/4),

whereσ̂B is the estimated standard deviation from the blinded sampleandδ is assumed to
be the true difference. In this procedure, we must pre-specify when the re-estimation will
occur, and how different the new estimate can be from our original σ̂m before we modify
the final study size.

4. Performance of methods to improve attained power

We conducted simulation experiments to evaluate the likelihood of under- or overpowering
a study using the designs discussed above. Our baseline method is simply the use of the
naı̈ve sample size estimate,N∗. We compared the naı̈ve power to that of the three strategies
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discussed above. Although each strategy entails its own setof choices for parameters and
analysis points, we chose simple designs for illustrative purposes.

Our first alternative method followed Browne, [1], where we used the 75% UCL of̂σm
to estimateN . (denotedN∗

UCL) In our second alternative method, the planned final sample
size wasN∗

UCL, allowing for one interim analysis atN∗ with stopping for efficacy using
the Pocock boundary. In our third alternative, we conductedblinded re-estimation ofσ at
N∗/2, which we denotêσB . If σ̂B was more than 20% different from̂σm, we re-estimated
the final sample size (denotedN∗

RE) .
To assess realized power for each method, we conducted simulation studies as follows

using R software (version 3.0.1). For each value ofm = 5 tom = 100:

1. Drawm pilot observations from the Normal distribution with a meanof 0 and stan-
dard deviation of 1

2. CalculateN∗ andN∗

UCL based on̂σm

3. Calculate empirical power given̂σm

(a) Draw 1,000 sets of full data (with the sample size determined by the method
under consideration) from Normal(0,1) and Normal(δ,1) to represent the two
different study arms

(b) In adaptive approaches, follow rules stated above to setfinal sample size

(c) Conduct a 2-sided 2-sample t-test (with 5% type I error) in each of the 1,000
data sets

(d) Empirical power is therefore the proportion of times thenull hypothesis was
rejected.

4. Repeat 1,000 times for each value ofm

We found that the sample size re-estimation strategy was generally superior to all other
methods explored. This alternative method often provided power within 70-90%, even
when the pilot sample sizes were small. Other methods improved as the pilot size increased,
but the re-estimation strategy had the highest probabilityof acceptable power for every pilot
size tested (see Figure 3).

Use of the 75% UCL for̂σm was superior to the other methods at preventing underpow-
ering (see Figure 4), but had the drawback of often overpowering, and hence oversizing the
final study (see Figure 5). The interim look similarly prevented underpowering at the ex-
pense of often oversizing the study. Interestingly, considering only obtaining acceptable
(70-90%) power, both the 75% UCL and interim look methods performed slightly worse
than the naı̈ve method (see Figure 3).

5. Conclusion

We have shown that the use of parameter estimates from small pilot studies when sizing
full trials can often result in poor estimates of the required sample size, which leads to
underpowered studies or wasted resources. Interestingly,when the true distribution of the
data is Normal, error in the estimated sample size follows a predictable pattern that does
not depend on the true underlying standard deviation but only the size of the pilot study. We

JSM 2013 - ENAR

836



20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability that power is within 70−90%

Pilot sample size

P
ro

ba
bi

lit
y

Naïve
75% Upper CL
Interim look
Size reestimate

Figure 3: Comparison of probabilities that realized power is withinan acceptable range
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Figure 4: Comparison of probabilities that realized power is too low
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Figure 5: Comparison of probabilities that realized power is too high

demonstrated that large pilot studies produce more robust estimates, with sizes over 50 of-
ten resulting in acceptable power. We also found that samplesize re-estimation can substan-
tially improve realized power, but that strategies using upper confidence limits or interim
analyses were sub-optimal. Although a single interim analysis and the Browne method [1]
were not very successful as tested here, we note that there are many different ways that an
investigator could use these approaches. Different choices of percent confidence limits or
additional interim analyses may improve the performance ofthese approaches.

The main drawbacks of the blinded sample size re-estimationmethod are practical con-
siderations. Without knowing a priori what study size is needed, it is difficult to determine
whether the necessary recruitment is feasible or whether financial resources are sufficient
to fund the required sample size. Although such limitationsare beyond the scope of this
analysis, they do provide a barrier to implementation in practice.

We have shown that for Normally distributed outcomes, sample size re-estimation
should be considered if limited pilot data is available to size a full trial. In future work,
we will more thoroughly evaluate the UCL, interim look, and re-estimation methods. Fur-
thermore, we will investigate the performance of these methods for binary outcomes.
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