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Abstract 
In open-label studies, partial predictability of permuted block randomization provides 
potential for selection bias. To lessen the selection bias in two-arm studies with equal 
allocation, a number of allocation procedures that limit the imbalance in treatment totals 
at a pre-specified level, but do not require the exact balance at the ends of the blocks were 
developed. In studies with unequal allocation, however, the task of designing a 
randomization procedure that sets a pre-specified limit on imbalance in group totals has 
not been completely resolved. Existing allocation procedures either do not preserve the 
allocation ratio at every allocation or do not include all allocation sequences that comply 
with the pre-specified imbalance threshold. Kuznetsova and Tymofeyev described the 
Brick Tunnel (BT) randomization for studies with unequal allocation that preserves the 
allocation ratio at every allocation and, in the two-arm case, includes all sequences that 
satisfy the smallest possible imbalance threshold. In this work, we expand two-arm BT 
randomization to allow for larger imbalance in treatment totals - which lowers selection 
bias in open-label studies with unequal allocation. 
 
Key Words: unequal allocation, open-label studies, brick tunnel randomization, 
imbalance in treatment totals, wide brick tunnel 
 
 

1. Introduction 
 
In clinical trials patients are commonly assigned to one of the studied treatment regimens 
using randomization [1]. Randomization is employed to reduce bias and make the 
treatment groups more similar with respect to baseline covariates. Permuted Block (PB) 
randomization [2] became a standard allocation procedure due to its simplicity and wide-
spread availability, flexibility to support equal and unequal allocation to two or more 
treatment arms, good control of the imbalance in the treatment group sizes throughout the 
enrollment (at least when the block size is small), and easy adaptation for multi-center 
trials and stratified randomization.  
 
However, in open-label studies with permuted block randomization, the investigator who 
knows the sequence of all previous allocations (as is the case in single-center studies or 
studies with randomization stratified by center) can sometimes deduce the next treatment 
assignment. This predictability is caused by the property of PB randomization to reach 
the targeted allocation ratio at the end of each block. Predictability of upcoming 
assignments, in turn, might lead to a selection bias and thus, biased study results.  
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To lessen the selection bias in open-label studies, randomization procedures other than 
permuted block can be employed. Complete randomization [1], where each patient is 
assigned independently to one of the treatment arms in a pre-specified allocation ratio, is 
absolutely unpredictable and thus, largely eliminates the selection bias. However, it can 
result in treatment groups being allocated in ratios very different from the targeted one 
throughout the enrollment. It makes this procedure susceptible to an accidental bias 
associated with the time trend; also, in small studies, the total numbers of patients 
enrolled in each group could quite differ from the target sizes which can negatively 
impact power or other study design needs.  
 
Biased Coin (BC) randomization designed for two-group studies with 1:1 allocation [3] 
provides a good balance in treatment assignments throughout the enrollment at the price 
of some selection bias. However, it does not fully control the imbalance in treatment 
assignments, as there is a small probability of a relatively large imbalance in moderate 
size samples [4].  
 
A number of allocation procedures developed for 1:1 allocation to 2 treatment arms can 
limit the imbalance in treatment assignments at a pre-specified level. Among these 
procedures are the replacement randomization [5], modified replacement randomization 
[6], maximal procedure [7], Soares and Wu’s big stick design [8], Chen’s biased coin 
design with imbalance tolerance [9], Ehrenfest urn design [10], and Baldi Antognini and 
Giovagnolli’s [11] adjustable biased coin design (with limited allowed imbalance). All 
these procedures restrict the set of allowed allocation sequences to those for which the 
absolute difference in numbers of treatment assignments NAi and NBi to Treatment A and 
B after i allocations never exceeds pre-specified threshold b: |NBi – NAi |≤b. However, 
these procedures differ in how they assign the probabilities to the allowed sequences.  
 
The replacement randomization [5] and the maximal procedure [7] assign equal 
probabilities to all allowed sequences which determines the conditional probability of 
Treatment A allocation to the (i+1)th subject given the existing group totals NAi and NBi 
after i allocations. The big stick design [8] keeps conditional probability of Treatment A 
allocation at 0.5 whenever the allocation to both treatments is permissible. Chen’s biased 
coin design with imbalance tolerance [9] follows the biased coin rule in assigning the 
underrepresented treatment with probability p>1/2 when allowed; however, if the 
imbalance threshold is reached, the underrepresented treatment is assigned with certainty. 
With Ehrenfest urn design [10] the allowed imbalance is limited to a pre-specified 
threshold, and the probability to assign an underrepresented treatment grows when the 
imbalance grows. Further flexibility is added to the procedure in Baldi Antognini and 
Giovagnolli’s [11] adjustable biased coin design where the probability of Treatment A 
allocation is a general function of the imbalance in the treatment totals. This function can 
be defined in a way that limits the imbalance in treatment totals; it can also make the 
allocation sequences to stay closer to the perfect balance in treatment assignments or be 
more spread within the allowed space.  
 
In studies with unequal allocation, however, the task of designing a randomization 
procedure that allows all allocation sequences that comply with the pre-specified 
imbalance in group totals is not completely resolved. Typically, in a two group study with 
C1:C2 allocation (C1<C2) to Treatments A and B, the absolute imbalance in treatment 
assignments after i allocations is defined as |NBi – NAi × C2/C1| (or proportional to this 
difference) [12, 13]. With permuted block allocation that uses the minimal block size 
S=C1+C2, the imbalance is 0 at the end of each block, that is for i=mS, m=1, 2, 3...  
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Salama, Ivanova and Quaqish [12] generalized the maximal procedure for unequal 
allocation to two treatment groups in the following way. They allowed all allocation 
sequences for which the absolute imbalance never exceeds a pre-specified threshold b:  
 
|NBi – NAi × C2/C1| ≤ b.         (1) 
 
They assigned equal probabilities to all permissible sequences. 
 
Kuznetsova and Tymofyeyev [14, 15] pointed out the following problem with this 
approach: having equiprobable sequences leads to the variations in the allocation ratio 
from allocation to allocation. For example, in a study with 2:3 allocation to Treatments A 
and B and b=2, the patients allocated first, second, fourth, and fifth, will be allocated in 
the 3:5 allocation ratio, while the patient allocated third will be allocated in the 1:1 ratio [ 
14, 15]. Such variations in the allocation ratio from allocation to allocation are 
undesirable, as they provide a potential for selection and evaluation bias even in double-
blind studies; they also provide a potential for accidental bias associated with a time 
trend, in particular, in multicenter studies [14, 15, 16, 17]. Variations in the allocation 
ratio also lead to problems with the randomization test [18, 16]. 
 
To eliminate variations in the allocation ratio, Kuznetsova and Tymofyeyev offered the 
Brick Tunnel (BT) Randomization for studies with unequal allocation to k≥ 2 treatment 
arms in C1:C2 : … : Ck ratio [14, 15]. The BT randomization allows all allocation 
sequences that, when depicted as paths on the k-dimensional integer grid, are constrained 
within the chain of k-dimensional unitary cubes pierced by the allocation ray AR = ( C1u, 
C2u, …, Cku), u ≥ 0. The key property of the BT randomization is that the transition 
probabilities are derived in a way that preserves the allocation ratio at every allocation 
[14, 15]. An example of the allocation space for 2:3 BT randomization to Treatments A 
and B is provided in Figure 1 (solid lines). 
 
In the two-group case, the BT randomization has the same the set of allowed allocation 
sequences as the Salama, Ivanova, and Quaqish [12] randomization with b = bBT , where 
bBT is the height of the BT, but has no variations in the allocation ratio. It can be shown 
that for C1 < C2, bBT = (C2 -1)/C1 +1.  
 
Two-group BT randomization has two nodes (NAi, NBi) in each generation i except at the 
end of the blocks (i=mS, m=1, 2, 3...), where it has a single node with coordinates (mC1, 
mC2). For one of the nodes, the treatment assignment is deterministic, while allocations to 
both arms are possible from the other node [14, 15]. The allocation schedule for BT 
randomization can be easily generated in SAS or another programming language.  
 
The BT randomization sequences ensure that the observed allocation remains very close 
to the targeted one throughout the enrollment. This is very useful in studies where the 
allocation ratio leads to a large block size and thus, permuted block randomization can 
lead to considerable deviations from the targeted allocation ratio within a block.  
 
However, to reduce predictability of the next treatment assignment in a two-group open-
label study with unequal allocation, one might want to expand the allocation space to 
cover strip (1) around the allocation ray wider than the one with b = (C2 -1)/C1 +1. The 
ways to do that while preserving the allocation ratio at every allocation have not been 
previously described. Zhao and Weng [19] described the Block Urn allocation procedure 
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whose allowed space consists of a sequence of overlapping permuted blocks of at least 
twice the minimal size with the lowest corner at (mC1, mC2). When the block size is 
large, the allocation space is too wide for most applications. Block Urn allocation 
preserves the allocation ratio at every step, but other than in 1:C2 randomization, it does 
not cover the whole strip around the allocation ray.  
 
In this paper we describe the technique that allows adding new nodes to the two-
treatment BT randomization while preserving the allocation ratio at every step. In 
particular, new nodes could be added to the BT allocation space to cover the strip (1). We 
will call this procedure Wide Brick Tunnel (WBT) randomization. The sequences of the 
WBT randomization could be made to stay closer to the allocation ray or to be spread 
more within the strip. The WBT allocation schedule can be easily generated in most 
programming languages, in particular, in SAS. 
 
In Section 2, we will demonstrate the switch technique that allows expanding the BT 
randomization to a wider set of allocation sequences while preserving the allocation ratio 
at every allocation. In Section 3 we will describe the iterative use of the switch technique 
that adds layers of bricks to the tunnel until the allowed space is filled. We will lay out 
the details of the implementation of the method In Section 4. We will consider 
applications of the technique, including those in multi-arm trials with equal or unequal 
allocation, in Section 5. Discussion completes the paper. 
 
 
2. Section 2. Adding Nodes to the Brick Tunnel Randomization Space Through the 

Switch Technique 
 
In this paper, we will visualize an allocation sequence in a two-group study as a path 
along the integer grid in the 2-dimensional space as described by [7]. The horizontal axis 
represents allocation to Treatment A, while the vertical axis represents allocation to 
Treatment B. The allocation path starts at the origin and with each allocation moves 
either one unit to the right (Treatment A assignment) or one unit up (Treatment B 
assignment). After i allocations, the allocation path ends up at the node with coordinates 
(NAi, NBi). The observed allocation ratio at this point is close to the targeted ratio C1:C2 if 
the node (NAi, NBi) is close to the allocation ray AR = (C1u, C2u), u ≥ 0.  
 
For some allocation procedures (complete randomization, biased coin design [1]), the 
allocation sequences can venture anywhere on the 2-dimensional grid, while for other 
allocation procedures (permuted block randomization, block urn design, randomization 
procedures that restrict the imbalance in the group totals) the sequences are restricted to 
the allowed allocation space. For C1:C2 allocation that requires |NBi – NAi × C2/C1| ≤ b the 
allowed allocation space consists of the strip ± b in height around the allocation ray. 
 
An easy way to add a new node to the allowed space of an allocation procedure is by 
switching two consecutive treatment assignments with certain probability. Kuznetsova 
[20] described an example of such a switch to reduce predictability of the permuted block 
randomization at the end of the block. When the last treatment assignment in a permuted 
block is switched with the first treatment assignments of the next permuted block, new 
allocation sequences that do not result in targeted allocation ratio at the end of each block 
are added to the allocation space. Thus, the treatment assignments at the mS allocations 
(where S is the block size) will no longer be completely predictable. 
 

JSM 2013 - Biopharmaceutical Section

805



X1
-1 TREATMENT A

TR
E

AT
M

E
N

T 
B

X1
1 X2

-1
X3

-1

X4
-1

X5
-1

X6
-1

X7
-1

X2
1

X3
1

X4
1

X5
1

X6
1

X7
1

X5
0

 
Figure 1: Adding Two Nodes to the 2:3 BT Randomization in the 5th Generation. Solid 
lines – 2:3 BT allocation space; dashed lines – newly added allocation segments. 
 
If the original randomization procedure preserved the allocation ratio at every step, the 
expanded procedure where allocations i and (i+1) are allowed to be switched with 
probability 0<δ<1, will also preserve the allocation ratio. By varying the probability of a 
switch 0<δ<1, we can change the probability for an allocation sequence to go through the 
newly added nodes.  
 
Let us illustrate the switch technique on the example of 2:3 BT randomization to 
Treatments A and B (S=5). The allowed space for the 10-allocation BT randomization is 
depicted by solid lines (Figure 1). For BT sequences, we will use the following notations: 
we will denote the two nodes above and below the allocation ray in generation i≠mS by 
Xi

1 and Xi
-1, respectively. We will denote the single node in generation i=mS by Xi

0. 
 
Let us add two more nodes to the 5th generation – node X5

-1 with coordinates (3, 2) and 
node X5

1 with coordinates (1, 4). This could be done by generating a BT randomization 
sequence and then allowing the 5th and 6th treatment assignments to switch places with 
probability 0<δ<1. 
 
Indeed, the two-step allocation path segment that started in node X4

1 and had the 5th and 
6th allocations to A and B, respectively, as allowed by the BT randomization, will 
become, after a switch of the 5th and 6th allocations, a BA segment. Thus, the new path 
(the dashed line going through the node X5

1 in Figure 1) will pass through the node X5
1 in 

the 5th generation. Similarly, the segment BA that started at the node X4
-1, will become, 

after a switch, AB segment, and thus, will pass through the node X5
-1 in the 5th generation 

(the dashed line going through the node X5
-1 in Figure 1).  
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The switch does not alter the resident probabilities in the 6th generation. Indeed, the new 
and altered two-step sequences arrive at the same node in the 6th generation, while they 
split the probability of the original two-step allocation sequence. 
 

Table 1: Original and Reversed 2-Step Allocation Segments From the Nodes in the 4th 
Generation to the Nodes in the 6th Generation 

 
4th 
Generatio
n Node 

Resident 
Probabilit
y 

Original 
or 
Reversed 
2-step 
Allocatio
n 
Segment 

2-step 
Allocatio
n 
Segment 

Conditiona
l 
Probability 
of the 2-
step 
Allocation 
Segment 

5th 
Generatio
n Node 

6th 
Generatio
n Node 

X4
-1 3/5 original BA 2/5×(1-δ) X5

0  X6
-1  

X4
-1 3/5 reversed AB 2/5×δ X5

-1  X6
-1 

X4
-1 3/5 original BB 3/5×(1-δ) X5

0 X6
1 

X4
-1 3/5 reversed BB 3/5×δ X5

0 X6
1 

X4
1 2/5 original AA 2/5×(1-δ)  X5

0 X6
-1 

X4
1 2/5 reversed AA 2/5×δ X5

0 X6
-1 

X4
1 2/5 original AB 3/5×(1-δ) X5

0 X6
1 

X4
1 2/5 reversed BA 3/5×δ X5

1  X6
1 

 
 
The new transition probabilities in the 5th and 6th generation as well as the new resident 
probabilities across the 5th generations nodes X5

-1 , X5
0 , and X5

1 could be easily derived 
by listing all 2-step allocation segments (original and reversed) from the 4th generation 
nodes and their conditional probabilities (Table 1). The original 2:3 BT resident 
probabilities are taken from [15]. Of note, for the allocation sequences with the same 5th 
and 6th treatment assignments, the original and reversed segments are the same. 
 
As can be seen from Table 1, from the node X4

-1 in generation 4 the allocation path will 
go to the node X5

-1 (allocation to A) with probability 2/5×δ  and to the node X5
0 

(allocation to B) with probability 1-2/5×δ. Similarly, the transition probabilities from the 
node X4

1 are 3/5×δ and 1-3/5×δ, to the nodes X5
1 (allocation to B) and X5

0 (allocation to 
A), respectively. Thus, the resident probabilities in the 5th generation are: 
 
R5

-1= R5
1=6/25×δ,  

R5
0=1-12/25×δ 

 
By varying the probability of the switch δ, the resident probability in the new node R5

-1 
(or R5

1) can be made as high as 6/25 (when δ =1) or as low as 0 (when δ =0). 
 
The transition probabilities from the 5th to the 6th generation are the following. From node 
X5

-1, the allocation path follows to X6
-1 (allocation to B) with probability 1; from X5

1, the 
allocation path follow to X6

1 (allocation to A) with probability 1. From X5
0, the 

probability of A allocation is (10-6δ)/(25-12δ), and the probability of B allocation is (15-
6δ)/(25-12δ). 
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3. Iterative Expansion of the Brick Tunnel in Layers of Bricks 
 
The BT randomization can be expanded to cover all the nodes within the strip ± b in 
height surrounding the allocation ray. We will call the allowed space the Wide Brick 
Tunnel (WBT) and the allocation procedure the WBT Randomization. 
 
Consider the allowed space for the 2:3 BT randomization depicted on Figure 2 (pale blue 
solid cells). The space includes the squares on unitary grid (the bricks of the name) 
pierced by the allocation ray AR=(2u, 3u), u≥0 (slanted double line). Within each block 
of 5 allocations, the BT consists of two columns, each of two bricks in height. Let us 
expand the brick tunnel by placing one brick on top of each column and also attaching 
one brick at the bottom of each column (starting with the second column, as the 
allocation space is restricted to the positive quadrant of the grid). We will call newly 
added bricks (shaded with red horizontal stripes) the Layer 1 of bricks; we will call the 
original BT the Layer 0. Each of the Layer 1 bricks shares two sides with the bricks of 
the original BT. 
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Figure 2: Allowed space for 2:3 BT randomization (shaded solid) and two layers added 
to it. First layer bricks are shaded with horizontal stripes; second layer bricks are shaded 
with diagonal stripes. 
 
Together the original BT and the First Layer of bricks cover the nodes of the original BT, 
the BT shifted one step up, and the BT shifted one step down (within the 1st quadrant). 
Since the original BT covers all nodes within the strip of height ± bBT around the 
allocation ray, where bBT = 2, the expanded set covers all nodes within the strip of height 
± (bBT +1) = ± 3 around the allocation ray. We will call this space a 2:3 Wide Brick 
Tunnel (WBT) of height ± 3 and denote it WBT2:3(3).  
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Similarly, the second layer of bricks can be added to the allocation space by placing one 
brick on top of each Layer 1 brick, and attaching one brick below each Layer 1 brick 
(within the first quadrant of the grid). The Layer 2 bricks are shaded by green diagonal 
stripes in Figure 2. Together the original BT and the two layers of bricks cover all nodes 
within the strip ± (bBT +2) = ± 4 around the allocation ray, or WBT2:3(4) in our notation.  
 
Adding the full 3rd layer of bricks will cover all nodes within the strip ± 5 around the 
allocation ray, that is WBT2:3(5). However, it is possible to cover a strip wider than 
WBT2:3(4), but narrower than WBT2:3(5) by adding an incomplete 3rd layer. For example, 
to cover a strip of height b=4.5, a third layer brick is placed on top of the second column, 
but not the first column, to form WBT2:3(4.5).  
 
We will denote the nodes within a WBT as following. Within the generation i, the nodes 
above the allocation ray will be numbered Xi

1, Xi
2, Xi

3, … , in the direction away from the 
allocation ray, while the nodes below the allocation ray will be numbered Xi

-1, Xi
-2, Xi

-3, 

…, in the direction away from the allocation ray. 
 
Now let us explain how WBT randomization sequences can be generated through 
iterative switching of the allocations on the original BT randomization sequence. We will 
illustrate the process on the example of expanding the 10-allocation BT randomization to 
Treatments A and B in 2:3 ratio to cover WBT2:3(4.5) depicted in Figure 3 (Example 2). 
Of note, WBT2:3(4.5) allocation space is wide enough to include the allocation space for 
the permuted block randomization with block size 5, but is narrower than the allocation 
space for the permuted block randomization with block size 10.  
 
The first layer of bricks brings in the new nodes X2

-2, X3
2, X5

-1, X5
1, X7

-2, and X8
2 (marked 

by red dots on Figure 3) into the allowed space. The node X2
-2 is added to the allowed 

space by switching the 2nd and 3rd treatment assignments of a BT allocation sequence that 
starts with ABA. Of note, if any other BT sequence has its 2nd and 3rd treatment 
assignments switched, the new sequence will remain within the original BT allocation 
space. Similarly, the first layer node X3

2 is added to the allowed space by switching the 
3rd and 4th treatment assignments of a BT allocation sequence that starts with BBA, and 
so on.  
 
The second layer of bricks contributes nodes X4

-2, X4
2, X6

-2, and X6
2 (marked by green 

triangles on Figure 3). The 3rd , incomplete, layer of brick contributes the two nodes: X3
-2, 

and X7
2 (marked by brown pentagons). The i-th generation node of Layer j is added to the 

allocation space by switching the i-th and the (i+1)-th treatment assignments in the 
respective allocation sequence that belongs to the allocation space formed by the original 
BT and all earlier added layers (up to Layer (j-1)).  
 
A 10-allocation WBT2:3(4.5) allocation sequence is generated in the following way. First, 
a 10-allocation BT allocation sequence is generated as described in [15]. Then, the 
switches of consecutive pairs of treatments that correspond to addition of a new Layer 1 
node are executed with probability δ, in allocation order. After that, the switches are 
executed for Layer 2, and after that, for Layer 3. The order of the switches is presented in 
Table 2. 
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Table 2: Treatment Assignments that Are Switched in the Three Layers of the 10-
allocation WBT2:3(4.5) Example (Example 2). 
 

Order of 
Execution 

Layer Being 
Added 

Treatment Assignment 
That Is Switched With the Next One With 

Probability δ  
1 1 2  
2 1 3  
3 1 5  
4 1 7  
5 1 8  
6 2 4  
7 2 6  
8 3 3  
9 3 7  

 
 
It should be noted that when the switches are applied to the 10-allocation BT sequence 
(Example 2), not all the nodes within the 10 generations inside the strip ± 4.5 in height 
surrounding the allocation ray are added to the allowed space. While all the nodes in 
generations 1 through 7 within the strip are included in the allowed space, there are nodes 
in generations 8, 9, and 10 that are left out. Indeed, by switching the existing allocations, 
we only obtain the 10-allocation sequences that end up at the node (4, 6) and thus provide 
exactly the 2:3 allocation ratio at the end of the sequence.  
 
Reaching the exact allocation ratio at the end of the allocation sequence might be needed 
in some cases - for example, when a small sample at a study center needs to be split in 
exact ratio. However, in other cases lowering predictability takes higher priority and it 
might be better to allow an allocation sequence to end up anywhere within the strip after 
10 patients are randomized. To fill all the nodes within the strip across the 10 
generations, one should start with the BT sequence that has more than 10 allocations – for 
example, 15 allocations – and proceed with the switches. The resulting 15-allocation 
sequences will fill all the nodes inside the strip ± 4.5 in height surrounding the allocation 
ray across the first 10 generations. In the remainder of this paper we will explore the 
approach where the allocation sequences can end at any node within the WBT and not 
necessarily result in the exactly targeted allocation ratio. 
 
Example 3 also illustrates the problem that can arise when there are two consecutive 
allocations in the same Layer j that are to be switched – the first one at the upper border 
of the allocation space and the second one at the lower border of the allocation space. For 
some allocation sequences with segments that go along the upper border of Layer j, if 
both switches are executed, the new sequence falls outside Layers 0 through (j+1). 
 
Indeed, consider the 10-allocation sequence that follows the upper border of the 2nd layer 
of bricks – the sequence BBBBA BABBA. Suppose, the two consecutive switches in the 
3rd layer – the switch of the 7th and 8th treatment assignments and the switch of the 8th and 
9th treatment assignments are applied to this sequence. The switch of the 7th and 8th 
treatment assignments will turn this sequence into the sequence BBBBA BBABA that 
follows the upper border of the 3rd layer of bricks. When the 8th and 9th treatment 
assignments of the new sequence are switched next, the resulting sequence BBBBA 
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BBBAA exits the 4th layer and crosses the border of the allowed space above the 
allocation ray. 
 
Thus, whenever two consecutive switches can take the sequence outside the designated 
layer, we will allow only one of the switches to be executed. If the prespecified 
probability of a single switch δ ≥0.5, we will execute one the two switches chosen at 
random. Thus, the probability of the either switch will be 0.5. If δ<0.5, we will choose 
one of the two switches at random and then execute it with probability 2δ. Thus, the 
probability of either switch will be δ.  
 
Not every pair of consecutive switches will take the allocation path two layers above its 
original layer. In particular, a switch of the two allocations at the bottom border followed 
by the switch of the two allocations on the top border will carry no such danger. An 
example is provided by the two consecutive switches in the first layer in Example 3, of 
the 2nd and 3rd assignments (at the bottom border) and of the 3rd and 4th assignments (at 
the top border). Thus, these two switches could be executed independently, each with 
probability δ. 
 
We will discuss how to determine when two consecutive switches in a row present a 
danger of taking a sequence out of its designated layer in the section on implementation 
details (Section 4). 
 
 

4. Implementation Details 
 
This chapter lays out the steps required to generate a WBT randomization sequence that 
allocates patients to treatments A and B in C1:C2 ratio with the imbalance threshold b - 
WBTC1:C2(b). The set of all such sequences fills in the strip (1). 
 
Below we will provide the derivations used to generate an allocation sequence. 
 
The number of complete layers in WBTC1:C2(b) is 
 
L=floor(b – bBT) = floor(b –(C2 -1)/C1 -1).      (2) 
 
WBTC1:C2(b) might also include some nodes from the (L+1)-th layer. 
 
Consider the allocation space for the C1:C2 BT randomization pictured on a two-
dimensional unitary grid (Figure 3). It can be visualized as the set of vertical columns of 
width 1, with C1 columns per block. The m-th column is located above the horizontal 
segment [m-1, m], with its top at  
 
Ytop(m)=ceil(m×C2/C1)         (3) 
 
and its bottom at  
 
Ybot(m)=floor((m-1)×C2/C1).       (4) 
 
The first layer nodes above the BT will be added by placing a brick on top of each 
column. The node (m, Ytop(m)) above the m-th column is at the inner corner of the BT. 
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When allocation A on the top border of BT before the node is switched places with the 
allocation B after the node, the Layer 1 node (m -1, Ytop(m)+1) is added to the allocation 
space. This node is added by switching the allocations  
 
m+Ytop(m) and m+Ytop(m)+1          
 
of the BT sequence, where Ytop(m) is defined by (3). The new node and the two new 
allocation segments form an outer corner of the allocation space (blue dashed lines on 
Figure 5) of the WBT that includes Layers 0 and 1. 
 
 

TREATMENT A

TR
E

AT
M

E
N

T 
B

m

(m-1, Ybot(m))

(m, Ytop(m))

 
 
Figure 3: Details of Building WBT Layers. Solid squares: the allocation space for the 
C1:C2 BT. Dashed lines: 1st layer bricks added. Dotted line: two consecutive switches 
would have generated a node outside of the Layer 1  . 
 
As we can see from Figure 3, now the height of the m-th column with Layer 1 brick 
added is the same as the height of the (m+1)-th column of the BT. Thus, if the switch 
m+Ytop(m) ↔ m+Ytop(m)+1 is followed by the switch of the subsequent allocations, 
m+Ytop(m)+1 and m+Ytop(m)+2, no new segments outside Layer 1 will be added. In 
general, following the switch m+Ytop ↔ m+Ytop(m)+1 with the switch m+Ytop(m)+1 ↔ 
m+Ytop(m)+2 will add an allocation segment outside Layer 1, if and only if the difference 
in height between the m-th and (m+1)-th columns is at least two: 
 
ceil((m+1)×C2/C1)- ceil(m×C2/C1)≥2.      (5) 
 
For example, after the 1st layer node is added at the top of the first column on Figure 3 by 
switching the 3rd and 4th allocations (blue dashed lines), the switch of the new 4th and the 
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existing 5th allocations of the border sequence (red dotted lines) would take the allocation 
sequence above the 1st Layer.  
 
The 1st Layer nodes will also be added below the BT by attaching a brick to the bottom of 
each column starting with the second one (the first column has no space in the 1st 
quadrant below it). The inner corner node of the BT at the bottom of the m-th column is 
the node (m-1, Ybot(m)), where Ybot(m)) is defined by (4). When the two allocations on 
both sides of this node on the bottom border of the BT (B and A) are switched places 
(blue dashed lines), the Layer 1 node (m, Ybot(m)-1) is added to the allocation space. This 
node is added by switching the allocations  
 
m-1+Ybot(m) and m+Ybot(m)          
 
of the BT sequence following the border segment. The new node and the two new 
allocation segments form an outer corner of the WBT that includes Layers 0 and 1. 
 
As can be seen from Figure 3, if now the subsequent allocations m+Ybot(m) and 
m+Ybot(m)+1 are switched places, the allocation sequence cannot exit the 1st layer space, 
as both allocations are to treatment B. Thus, the undesirable border exit can only occur in 
a pair of consecutive switches where the switch at the top border of the allocation space is 
followed by the switch at the bottom border of the allocation space, but not the other way.  
 
Layer after layer will be added to WBT above the BT. Similar to Layer 1, the Layer j 
node (m -1, Ytop(m)+j) will be added on top of the m-th column, m≥1, by switching the 
allocations 
 
m+Ytop(m)+j and m+Ytop(m)+j+1,      (6) 
 
and the Layer j node (m, Ybot(m)-j) will be added at the bottom of the m-th column, m ≥ 
j+1, by switching the allocations 
 
m-j+Ybot(m) and m-j+Ybot(m) +1.       (7) 
 
When L complete layers are added to the tunnel, we will determine if any of the nodes of 
the (L+1)-th layer fit within the strip (1). The (L+1)-th layer node above the m-th column 
(m -1, Ytop(m)+L+1) fits within the strip (1) iff  
 
Ytop(m)+L+1- (m-1)×C2/C1≤b .      (8) 
 
From (3), (8) can be written as 
 
ceil(m×C2/C1) - (m-1)×C2/C1 ≤ b-L-1      (9) 
 
Similarly, the (L+1)-th layer node below the m-th column (m, Ybot(m)-L-1) where 
Ybot(m)≥L+1 fits within the strip (1) iff  

m×C2/C1- (Ybot(m)-L-1) ≤b. 

or, from (4), 

m×C2/C1- floor((m-1)×C2/C1) ≤ b-L-1      (10). 
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With all the essentials of the method derived above, the WBTC1:C2(b) sequence is 
generated using the following steps: 
  

1. BT allocation sequence is generated per Kuznetsova & Tymofyeyev [15] 
2. The number of complete layers L is derived per (2). 
3. The nodes in the last, incomplete, (L+1)-th layer, if any, are identified through 

(9)- (10) 
4. Repeat for layers 1 through L+1 

a. the nodes to be switched at the top border of the allocation space within 
the layer are identified through (6)  

b. separately, the nodes to be switched at the bottom border of the 
allocation space within the layer are identified through (7)  

c. the allocations at which either top or bottom switches (or both) are 
possible are ordered sequentially 

d. all consecutive pairs of switches where the switch at the top border is 
followed by the switch at the low border and condition (5) is met are 
identified ( “bad pairs” of switches); only one switch in such pair can be 
executed).  

e. each switch that is not a part of a “bad pair” is executed with probability 
δ 

f. for a “bad pair” of switches, do the following 
i. if δ ≥0.5, execute one the two switches chosen at random. 

ii. if δ<0.5, choose one of the two switches at random and then 
execute it with probability 2δ.  

  
To add further flexibility to the method, probability of a switch δ can vary from layer to 
layer. When the probability of a switch increases in the outer layers, the resident 
probability in these nodes also increases.  
 

5. Discussion 
In this paper we offered a solution (Wide Brick Tunnel) for previously unresolved 
problem of designing the unequal allocation procedure for a two-arm study that sets a 
pre-specified limit for allowed imbalance in treatment totals while preserving the 
allocation ratio at every step. Existing allocation procedure by Salama et al. [12] includes 
all sequences that comply with the imbalance threshold, but does not preserve the 
allocation ratio at every step, while the Block Urn randomization procedure by Zhao and 
Weng [19] preserves the allocation ratio at every step, but does not include all 
randomization sequences that satisfy the maximum imbalance condition.  
 
The Brick Tunnel randomization proposed by Kuznetsova and Tymofeyev earlier [14, 
15] generates the allocation procedure that preserves the allocation ratio at every step and 
complies with the smallest possible imbalance threshold. Wide Brick Tunnel 
randomization increases the threshold and thus, is useful in open-label studies where it 
reduces the selection bias. We have not performed simulations to quantify the selection 
bias or average predictability of the treatment assignments in this paper – our goal was to 
introduce a new technique and describe its properties and applications.  
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The allocation sequences of the WBT can be made to stay closer to the allocation ray or 
to be spread more around it by changing the probability of a switch – possibly, from a 
layer to layer. While using high probability of switch δ  increases the resident 
probabilities in the nodes removed from the allocation ray, they remain low even for δ 
close to 1. This typically matches the goals of WBT randomization: keep the allocation 
sequence close to the allocation ray, but allow some restricted deviations to lessen the 
selection bias in open-label studies. Simulations of long sequences of WBT show that the 
resident probabilities (and, therefore, the transitional probabilities) converge very soon to 
some stable values. 
 
The switch technique can be used in multi-arm studies with equal allocation to reduce the 
predictability of the last assignment in a block. Additionally, the WBT procedure can be 
used as a part of randomization algorithm in the multi-arm studies with unequal 
allocation.  
 
WBT allocation sequences are easy to generate. A computer program that implements 
WBT allocation is available from the authors. 
 

References 
 

1. Rosenberger WF, Lachin JM. Randomization in Clinical Trials. John Wiley & 
Sons, New York, 2002.  

2. Zelen M. The randomization and stratification of patients to clinical trials. 
Journal of Chronic Disease 1974; 27: 365-375. 

3. Efron B. Forcing a sequential experiment to be balanced. Biometrika 
1971;58:403–17. 

4. Markaryan T, Rosenberger WF. Exact properties of Efron’s biased coin 
randomization procedure. The Annals of Statistics, 2010; 38: 1546-1567. 
DOI:10.1214/09-AOS758. 

5. Pocock SJ. Allocation of Patients to Treatment in Clinical Trials. Biometrics 
1979; 35: 183-197. 

6. Abel U. Modified replacement randomization. Statistics in Medicine 1987; 6: 
127–135. 

7. Berger VW, Ivanova A, Knoll M. Minimizing Predictability while Retaining 
Balance trough the Use of less Restrictive Randomization Procedures. Statistics 
in Medicine 2003; 22, 3017-3028. DOI:10.1002/sim.1538 

8. Soares JF, Wu CF. Some restricted randomization rules in sequential designs. 
Commun Stat Theory Methods 1983;12:2017–34. 

9. Chen YP. Biased coin design with imbalance tolerance. Commun Stat Stochastic 
Model 1999;15:953–75. 

10. Chen YP. Which design is better? Ehrenfest urn versus biased coin. Adv Appl 
Probab 2000;32:738–49. 

11. Baldi Antognini A. and Giovagnoli A. A new “biased coin design” for the 
sequential allocation of two treatments. Journal of the Royal Statistical Society 
C, 2004; 53:651-664 

12. Salama I, Ivanova A, Qaqish B. Efficient generation of constrained block 
allocation sequences. Statistics in Medicine 2008; 27: 1421-1428. 
DOI:10.1002/sim3014. 

JSM 2013 - Biopharmaceutical Section

815

http://onlinelibrary.wiley.com/doi/10.1002/sim.4780060205/abstract


13. Han B, Enas NH, McEntegart D. Randomization by minimization for unbalanced 
treatment allocation. Statistics in Medicine 2009; 28: 3329-3346. 
DOI:10.1002/sim.3710 

14. Kuznetsova O, Tymofyeyev Y. Brick Tunnel Randomization – a Way to 
Accommodate a Problematic Allocation Ratio in Adaptive Design Dose Finding 
Studies. ASA Proceedings of the Joint Statistical Meetings, 1356-1367. American 
Statistical Association (Alexandria, VA). 

15. Kuznetsova O, Tymofyeyev Y. Brick Tunnel Randomization For Unequal 
Allocation to Two or More Treatment Groups. Statist. Med. 2011a, 30: 812—
824, DOI: 10.1002/sim.4167. 

16. Kuznetsova OM, Tymofyeyev Y. Preserving the Allocation Ratio at Every 
Allocation with Biased Coin Randomization and Minimization in Studies with 
Unequal Allocation. Statist. Med 2012; 31: 701-723; DOI: 10.1002/sim.4447. 

17. Kuznetsova OM, Tymofyeyev Y. Expansion of the modified Zelen's approach 
randomization and dynamic randomization with partial block supplies at the 
centers to unequal allocation. Contemporary Clinical Trials 2011b; 32: 962–972; 
doi:10.1016/j.cct.2011.08.006. 

18. Proschan M, Brittain E, Kammerman L. Minimize the use of minimization with 
unequal allocation. Biometrics 2011; 67: 1135-1141. DOI: 10.1111/j.1541-
0420.2010.01545.x. 

19. Zhao W, Weng Y. Block urn design — A new randomization algorithm for 
sequential trials with two or more treatments and balanced or unbalanced 
allocation. Contemporary Clinical Trials, 2011, 32, 6, 953. 

20. Kuznetsova OM. Randomization Schedule. In: D'Agostino R, Sullivan L, 
Massaro J, editors.Wiley Encyclopedia of Clinical Trials. Hoboken: John Wiley 
&Sons., Inc; 2008. DOI: 10.1002/9780471462422.eoct314.  

 
 

JSM 2013 - Biopharmaceutical Section

816


