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Abstract 
Bayesian directed graphical models have been described as multivariate models that 

accommodate many interacting variables and therefore can be useful to describe many 

interacting genetic and non-genetic variants and their association with a complex genetic 

trait. We review different concepts of interactions and show that directed graphical models 

can conveniently represent biological interactions. We show how reading off these 

relations from a directed graph uses conditional independence between variables, and we 

review simple algorithms to check if two variables in a directed acyclic graph are 

conditionally independent given a third variable.    
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1. Introduction 

 
The time of genome-wide association studies and simple genetic association analyses is 

winding down, and there is strong interest in translating the vast amount of genetic data 

that have been generated in the past few years into practical knowledge. Some of the goals 

of this new phase of research are to gain a better understanding of the biological 

mechanisms that link genotype to phenotype, to translate genetic findings into therapeutics, 

and to use genetic data for personalized medicine through the development of accurate 

genetic risk prediction models (Bush and Moore 2012). However, while genetics may play 

an important role in shaping predisposition to disease, this role may be small compared to 

the effect of other non-genetic risk factors. Therefore, crucial to the success of these new 

investigations is the ability to factor in the effect of the environment and of non-genetic 

risk factors in in-depth analysis of the relations between genotypes and phenotypes.  

 

In previous work, we proposed using Bayesian directed graphical models, also known as 

Bayesian networks, to dissect the genetic basis of a complex phenotype (Sebastiani, 

Ramoni, Nolan, Baldwin and Steinberg 2005), and we used a simple Bayesian directed 

graphical model in the analysis of a genome-wide association study of exceptional 

longevity (Sebastiani, et al. 2012a). In this manuscript we show how Bayesian graphical 

models can be used to integrate the association of many genetic and non-genetic risk factors 

with one or more phenotypes and clarify the types of interactions that can be captured by 

this model formalism. We will show some simple examples of networks that describe 

additive and interacting variables. 
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2. Bayesian Graphical Models 

 
A Bayesian graphical model is a vector of random variables with a joint probability 

distribution that factorizes according to the Markov properties represented by a directed 

acyclic graph. Figure 1 shows an example Bayesian graphical model with 6 variables 

(represented by the nodes in the graph). The nodes in the network are often called children 

and parents based on the edge directions: For example X1 is a parent of X2, and X2 is a 

child of X1. A node can have multiple parents and multiple children. The figure summarizes 

the local and global Markov properties represented by the directed acyclic graph (Lauritzen 

1996). The local Markov property states that the probability of a variable conditioned on 

its parents is independent of its non-descendants. The global Markov property states that 

the probability of a variable conditioned on its Markov blanket is independent of all the 

remaining variables in the graph. Note that the directions of the edges represent the 

factorization of the joint probability distribution of the variables that is consistent with the 

local Markov property, and should not be interpreted as causal relations (Cowell, Dawid, 

Lauritzen and Spiegelhalter 1999). Causality in directed graphical models is discussed at 

length in (Pearl 2010). 

 

 

Bayesian graphical models have been described as models that show the effect of many 

interacting variables (Friedman, Linial, Nachman and Pe'er 2000, Needham, Bradford, 

Bulpitt and Westhead 2007), but the word interaction is often used to describe mutual 

associations and does not necessarily match the notion of statistical interaction, or the 

various definitions of interactions used in epidemiology and public health (Clayton 2009, 

Thomas 2010) (See Table 1 for a summary). Our goal is to use graphical models to describe 

the joint effect of many genetic and non-genetic factors on a trait. Therefore it is important 

to clarify the type of interactions that can be represented in a graphical model, and to map 

prototypical graphs to standard epidemiology concepts of association, confounding, 

 
 
Figure 1: Example of a Bayesian directed graphical model in which nodes represent random 

variables, directed edges represent conditional dependencies, and the graph represents local and 

global Markov properties used to factorize the joint probability distribution of the variables. The 

sets of parents and children of a node X are denoted by parent(X) and children(X). MB(X) 

denotes the Markov blanket of a node that comprises all parents, children, and parents of the 

children nodes. 
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mediation and interaction. Here, we will focus on interaction, and the detection of 

interacting variables in a graphical model. 

 

3. Notions of Interaction 

 
Statistical interaction is model dependent: in a parametric statistical model  

 

),,( XfY   

describing the effects of covariates X on an outcome Y through parameters and errors 

interaction terms are those parameters that describe departure from a model with only 

main effects. This definition makes interaction dependent on the measurement scale.  For 

example, when the parametric model is linear regression: 

 

   kh hkkhj jj xxxY
,0  

 

the interaction terms hk represent the lack of fit of the model with only main effects h in 

the linear scale (additive interaction), and interaction can disappear after transformation of 

the data. In a logistic regression model for a binary outcome Y: 
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the interaction terms hk represent the lack of fit of the model with only main effects h in 

the logistic scale (multiplicative interaction). Interaction in the linear scale does not imply 

interaction in the multiplicative scale and vice versa. This issue has received substantial 

attention in the past (Jewell 2003).  

 

Definitions of interaction used in genetic epidemiology are often more qualitative in nature, 

and often invoke the concept of “biological interaction”. See Table 1 and references 

(Rothman, Greenland and Walker 1980, Thomas 2010).  

 

 

4. Probabilistic Interactions in Graphical Models 

 
Consider a simple example with 3 variables: G is a discrete variable that represents the 

alleles of a gene (e.g., G=AA, AB, or BB); E is a binary variable that represents 

exposure/no exposure to a non-genetic risk factor; and P is a binary variable that represents 

Table 1: Definition of Interaction in Epidemiology 

Statistical interaction 
Departure from a model with only main effects. This definition is 

model based, and is linked to the parametric model used for analysis 

Biological interaction 

A biologic response produced by the simultaneous exposure to two 

or more agents that differs from the combined response to the agents 

when applied independently.  

Effect modification The effect of one factor changes as the other factor changes 

Quantitative interaction 
The effect of one factor changes as the other factor changes (effect 

modification) but the direction of effects does not. 

Qualitative interaction 
The effect of one factor changes as the other factor changes (effect 

modification) and the direction of effects also changes. 
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presence/absence of a phenotype. Suppose that the probabilistic relations between the 3 

variables are represented by a directed graph. We provide a definition of interaction 

between G and E in their association with P, and show examples of graphical models for 

interaction between G and E.  

 

As in graphical log-linear models (Whittaker 1990, Lauritzen 1996) we can say that G and 

E do not interact in their association with P if the joint probability distribution of the three 

variables factorizes as: 

 
),(),(),,( PEhPGfPEGp   

 

where f(∙) and h(∙) are two functions that take positive values. The factorization of the joint 

probability distribution into a product of two factors in which G and E never appear 

together is equivalent to conditional independence of G and E given P (written G ^ E |P
(Whittaker 1990). The factorization ),(),(),,( PEhPGfPEGp   can be interpreted as the 

property that the joint effect of G and E on P (measured by the joint probability of G, E, 

and P) is equivalent to the combined actions of the individual factors (measured by the 

product of f(G, P) and h(E,P)). Therefore, we can use conditional independence of two 

variables given a third variable to denote a lack of biological interactions of the two 

variables in their joint association with the third variable.  

 

 

Figure 2 shows four directed graphical models with examples of no interactions between 

G and E in their association with P (graphs a, b and c), and an example of interaction 

between G and E (graph d). The different graphs represent the probability distributions that 

could be estimated from data, conditionally on the study design, rather than causal 

relations. As an example, the graphical structure in a) is appropriate to represents the 

associations between gene, environment and a phenotype that can be estimated from a case-

control study (Sebastiani, et al. 2012a). The graphical structure in d) is appropriate for 

modeling the dependence of P on G and E using data from a prospective study.  

 

The model represented by graph a) has been used to represent the joint effect of many genes 

on a complex trait, although it has been erroneously described as a model with many 

interacting genes (Okser, et al. 2010). The graphical structure does not represent 

interactions between the children nodes of P but only pairwise associations. We showed 

 
Figure 2: Four directed graphical models that display the mutual relation between gene alleles 

(node G), environmental exposure (node E), and expression of a phenotype (node P). The 

Markov property represented by the graph a) is conditional independence of G and E given P. 

Graphs b) and c) show conditional independence of G and E given P. Graph d) shows conditional 

dependence of G and E given P.  The first three graphs show pairwise associations, and lack of 

interaction between G and E in their association with P. The graph in d) shows joint dependence 

of P on both G and E, and interaction between G and E in their association with P. 
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that prediction of a complex genetic trait based on such a graphical model is equivalent to 

prediction based on a logistic regression model with the genetic effects of multiple genes 

summarized into a genetic risk score. We also showed how this graphical model can be 

extended to include “pairwise” interactions. See the discussion in (Sebastiani, Solovieff 

and Sun 2012b) for additional details. The simple structure can be extended to represent 

pleiotropic genes (i.e. genes that are associated with different, apparently unrelated 

phenotypes). Hartley et al (Hartley, Monti, Liu, Steinberg and Sebastiani 2012) developed 

a method to infer these extended structure from genome-wide genotype data and evaluated 

the approach in simulated and real data. The method is implemented in the computer 

program PleioGrip (Hartley and Sebastiani 2013) that is freely available  from the Boston 

University digital library (http://hdl.handle.net/2144/4367).  

 

 

5. Ascertaining Probabilistic Interactions in Graphical Models 

 
The concept of probabilistic interaction requires three actors: the two agents and a response 

of interest. Interaction (or lack of it) between the two agents has to be interpreted relative 

to the association of the two agents with the response. In a Bayesian graphical model with 

many variables, say keg PPEEGG ,...,,,...,,,..., 111 , two genes may interact in their association 

with one of the possible phenotypes of interest, and may not interact in their association 

with a different phenotype. Although the ascertainment of interacting variables essentially 

requires determining whether the variables are conditionally independent given the 

response, establishing conditional independence that are not directly represented by the 

local and global Markov properties may be daunting. Several algorithms have been 

proposed for this purpose. One approach uses the concept of d-separation, where “d” stands 

for “directional,” see (Cowell, Dawid, Lauritzen and and Spiegelhalter 1999). There are 

applets over the WWW that can verify whether two variables in a graph are conditionally 

independent given a third variable by checking for d-separability (see for example: 

http://www.phil.cmu.edu/~wimberly/dsep/dSep.html). An alternative algorithm requires 

some simple graph manipulations described in the table below. The proof that the graph 

manipulation can actually detect conditional independence can be found in (Barber 2011). 

Figure 3 shows an example. 

 

 

 

The algorithm can also be applied to check whether two variables are marginally 

independent by letting variable Z = . For example, one can easily show that G1 and G2 

are marginally independent.  

 

 

Table 2: Are X and Y conditionally independent given Z? 

Step 1: select ancestral 

graph 

Remove all nodes in the graph that are not X, Y, Z, and their 

ancestors. The ancestors of X, Y and Z are the nodes in the graph 

from which there is a directed path to X, Y and Z. 

Step 2: moralization of 

the ancestral graph 

Add undirected edges between any pair of nodes with a common 

child, and drop the direction of the remaining directed edges.   

Step 3: pruning the 

ancestral graph 
Remove all edges from the node Z 

Step 4: separation 
In the remaining graph, look for a path linking X and Y. If there is 

no such a path, then X and Y are conditionally independent of Z 
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6. Conclusions 

 
Directed graphical models provide a flexible model formalism to describe complex 

biological interactions between genetic and non-genetic factors and their effects on 

multiple phenotypes. Biological interactions are described using probability to define the 

joint effects of many variables and the combined individual effects. Interaction is described 

by conditional dependency and lack of interaction is described by conditional 

independence. The same approach based on conditional independence can be used to 

describe mediation of genetic and environmental effects. Tools to easily ascertain 

conditional independence of variables in a network that are not captured by the local and 

global Markov properties are needed to easily characterize the set of interacting variables. 

In addition, simple summaries are also needed to quantify the effect of interactions.  
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