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Abstract
This paper reviews main features of the combination-based approach for shape analysis.
It is worth noting that inference in shape analysis is a crucial point and robust testing
is much needed. Our nonparametric permutation-based approach provides a suitable and
powerful testing also in presence of many correlated landmarks and a limited sample size.
An important feature of combination-based tests is the finite sample consistency property
(Pesarin and Salmaso, 2010 and Brombin and Salmaso, 2013) which allows to gain power
in the testing procedure by increasing the number of variables rather than the sample size,
provided that added variables yield additional information.
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1. Introduction and motivation

Statistical shape analysis is considered a cross-disciplinary field characterized by
flexible theory and techniques, potentially adaptable to any appropriate configura-
tion matrix. Specific applications of shape analysis may be found in archaeology, ar-
chitecture, biology, geography, geology, agriculture, genetics, medical imaging, secu-
rity applications such as face recognition, entertainment industry (movies, games),
computer-aided design and manufacturing, and so on. Inferential methods known
in the shape analysis literature make use of configurations of landmarks optimally
superimposed using a least-squares procedure, or analyse matrices of interlandmark
distances, e.g. by means of Euclidean Distance Matrix Analysis (EDMA). In the
two-sample case, a practical method for comparing the mean shapes in the two
groups is to use Procrustes tangent space coordinates and if data are concentrated
(i.e. close in shape or presenting small variations in shape), calculate the Maha-
lanobis distance and then Hotelling’s T 2 test statistic. Under the assumption of
isotropy, another simple approach is to work with statistics based on the squared
Procrustes distance and then consider Goodall’s F test statistic (Goodall, 1991).

These tests are based on quite stringent assumptions, such as the equality of
covariance matrices, the independency of variation within and among landmarks or
the multinormality of the model describing landmarks.

As pointed out in Good (2000), the assumption of equal covariance matrices
may be unreasonable in certain applications, the multinormal model in the tangent
space may be doubted and sometimes there are fewer individuals than landmarks,
implying over-dimensioned spaces (course of dimensionality) and loss of power for
Hotelling’s T 2 test (Blair et al., 1994). Hence an alternative procedure is to consider
a permutation approach. Further limitations of traditional inferential procedures
have been highlighted in Terriberry et al. (2005). Actually, useful shape models con-
tain parameters lying in non-Euclidean spaces. More specifically, in morphometrics,
four kinds of parameters should be taken into account: nuisance parameters (e.g.
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translation and rotation); geometric parameters, such as shape coordinates; statis-
tical parameters, such as mean differences or correlations; and finally another set
of geometric parameters, such as partial warp scores or Procrustes residuals (Slice
et al., 1996). Some of these parameters may have a large variance, may be highly
correlated, or have completely different scales, thus invalidating analyses and final
results. Hence traditional statistical tools designed for Euclidean spaces must be
used with particular care when they are applicable. On the contrary, permutation
tests are appealing because they make no distributional assumptions, requiring only
that the data in each group are exchangeable under the null hypothesis. Terriberry
et al. (2005) presented an application of NPC methodology in shape analysis, but
the properties of the method itself are not further investigated. On the strength of
these considerations, we suggest an extension of NPC methodology to shape anal-
ysis. In fact, under very mild and reasonable conditions, the NPC method is found
to be consistent, unbiased and extendable to unconditional inferences. We remark
that in the parametric approach, this extension is possible when the data set is
randomly selected by well-designed sampling procedures on well-defined population
distributions.

We emphasize that permutation tests require homogeneous covariance matrices
in order to guarantee exchangeability only in H0, thus relaxing more stringent as-
sumptions required by parametric tests since they do not require homoscedasticity
in the alternative.

Firstly we review inferential methods known in the shape analysis literature,
highlighting some drawbacks to the use of Hotelling’s T 2 test. Then, focussing
on the two-sample case, through an exhaustive comparative simulation study, we
evaluate the behaviour of traditional tests along with nonparametric permutation
tests using multi-aspect (MA) procedures and domain combinations as well. In this
nonparametric framework we also analyze the case of heterogeneous and dependent
variation at each landmark. Furthermore we examine the effect of superimposition
on the power of NPC tests. Due to their nonparametric nature, we may assert that
the suggested tests provide efficient solutions which allow us to deal with data sets
including many informative landmarks and few specimens.

2. Testing for shape data

The statistical community has shown an increased interest in shape analysis in the
last decade and particular efforts have been addressed towards the development of
powerful statistical methods based on models for shape variation of entire configu-
rations of points corresponding to the locations of morphological landmarks. Rohlf
(2000) reviews the main tests used in the field of shape analysis and compares the
statistical power of the various tests that have been proposed to test for equality
of shape in two populations. Although his work is limited to the simplest case
of homogeneous, independent, spherical variation at each landmark and the sam-
pling experiments emphasize the case of triangular shapes, it allows practitioners
to choose the method with the highest statistical power under a set of assumptions
appropriate for the data. By means of a simulation study, he found that Goodall’s
F test had the highest power followed by T 2 test using Kendall tangent space co-
ordinates. Power for T 2 tests using Bookstein shape coordinates was good if the
baseline was not the shortest side of the triangle. The Rao and Suryawanshi shape
variables had much lower power when triangles were not close to being equilat-
eral. Power surfaces for the EDMA-I T statistic revealed very low power for many
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shape comparisons including those between very different shapes. Power surface for
the EDMA-II Z statistic depended strongly on the choice of baseline used for size
scaling.

All these tests are based on quite stringent assumptions. In particular, the tests
based on the T 2 statistic; e.g. T 2 tests using Bookstein, Kendall tangent space
coordinates, Rao and Suryawanshi shape variables, such as Rao-d (1996) and Rao-a
(1998) require independent samples and homogeneous covariance matrices in both
H0 and H1, and shape coordinates distributed according to the multivariate normal
distribution. We remark that Hotelling’s T 2 is derived under the assumption of
population multivariate normality and it is not recommended unless the number
of subjects is much larger than that of landmarks (Dryden and Mardia, 1998). It
is well known in the literature that Hotelling’s T 2 test is formulated to detect any
departures from the null hypothesis and therefore often lacks power to detect specific
forms of departures that may arise in practice, i.e. the T 2 test fails to provide an
easily implemented one-sided (directional) hypothesis test (Blair et al., 1994).

Goodall’s F test requires a restrictive isotropic model in which configurations
are isotropic normal perturbations from mean configurations, and assumes that
the distributions of the squared Procrustes distances are approximately chi-squared
distributed.

If we consider the methods based on interlandmark distances, EDMA-I T as-
sumes independent samples and the equality of the covariance matrices in the two
populations being compared (Lele and Cole, 1996), while EDMA-II Z assumes only
independent samples and normally distributed variation at each landmark.

In order to complete the review on main tests used in shape analysis, we recall
the pivotal bootstrap methods for k-sample problems, in which each sample consists
of a set of real (the directional case) or complex unit vectors (the two-dimensional
shape case), proposed in the paper by Amaral et al. (2007). The basic assumption
here is that the distribution of the sample mean shape (or direction or axis) is highly
concentrated. This is a substantially weaker assumption than is entailed in tangent
space inference (Dryden and Mardia, 1998) where observations are presumed to be
highly concentrated. For mathematical, statistical and computational details we
refer to Amaral et al. (2007). As pointed out in Good (2000), the assumption of
equal covariance matrices may be unreasonable, especially under the alternative,
the multinormal model in the tangent space may be doubted and sometimes there
are few individuals and many more landmarks, implying over-dimensioned spaces
and loss of power for Hotelling’s T 2 test. Hence when sample sizes are too small,
or the number of landmarks is too large, it is essentially inefficient to assume that
observations are normally distributed. An alternative procedure is to consider a
permutation version of the test (see Good, 2000; Dryden and Mardia, 1993; Book-
stein, 1997; Terriberry et al., 2005). Permutation methods are distribution-free and
allow for quite efficient solutions which may be tailored for sensitivity to specific
treatment alternatives providing one-sided as well as two-sided tests of hypotheses
(Blair et al., 1994).

In the wake of these considerations, we propose an extension of the NPC method-
ology (Pesarin and Salmaso, 2010) to shape data. Generally, permutation tests
require homogeneous covariance matrices under H0 in order to guarantee exchange-
ability, thus relaxing the stringent assumptions of parametric tests. This is consis-
tent with the notion that the true H0 implies the equality in multivariate distribu-
tion of observed variables.
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3. NonParametric Combination (NPC) and shape analysis

Let X1 be the n1 × (k ×m) matrix of aligned data (e.g. specimens or individuals)
in the tangent space in the first group. By the term ‘aligned’ we mean that we are
considering the shape coordinates obtained through GPA. We recall that the direct
analysis of databases of landmark locations is not convenient because of the presence
of nuisance parameters, such as position, orientation and size. Usually, in order
to carry out a valuable statistical shape analysis, a GLS or GPA superimposition
is performed to eliminate non-shape variation in configurations of landmarks and
to align the specimens to a common coordinate system (Rohlf and Slice, 1990).
Hence the GPA procedure is performed to estimate a mean shape and to align the
specimens to it.

Similarly X2 is the n2×(k×m) matrix of aligned specimens in the tangent space,

i.e. the second group of subjects. Let X =

(

X1

X2

)

be the n × (k ×m) matrix of

aligned specimens in the tangent space, i.e. our data set (that may be written as
X = X1

⊎

X2), where n = n1 + n2. Hence X is a matrix of data with specimens in
rows and landmark coordinates in columns. The unit-by-unit representation of X
is then {Xhji, i = 1, . . . , n, j = 1, 2, h = 1, . . . , km;n1, n2}.

For simplicity, we may assume that the landmark coordinates in the tangent
space behave according to the model Xhji = µh+δhj+σhZhji, i = 1, . . . , n, j = 1, 2,
h = 1, . . . , km, where:

• k is the number of landmarks in m dimensions;

• µh represents a population constant for the h-th variable;

• δhj represents treatment effect (i.e. the noncentrality parameter) in the jth
group on the hth variable which, without loss of generality, is assumed to be
δh1 = 0, δh2 ≥ (or≤) 0;

• σh is the scale coefficient specific to the h-th variable;

• Zhji are random errors assumed to be exchangeable with respect to treatment
levels, independent with respect to units, with null mean vector (E(Z) = 0),
and finite second moment.

With reference to the scale coefficients σh, we observe that these parameters may
be very useful since they reflect the ‘intrinsic’ biases in the registration of landmarks.
There are in fact landmark points readily available, hence easier to capture than
others by the operator or machine. As a consequence, they are less variable in their
location. Hence landmark coordinates in the first group differ from those in the
second group by a ‘quantity’ δ, where δ is the km-dimensional vector of effects.
{

X∗
hji, i = 1, . . . , n, j = 1, 2, h = 1, . . . , km;n1, n2

}

indicates a permutation of the

original data.
Therefore the specific hypotheses may be expressed as

H0 :

{

km
⋂

h=1

[

Xh1
d
= Xh2

]

}

against H1 :

{

km
⋃

h=1

[

Xh1

d

> (<) Xh2

]

}

,

where
d
> stands for distribution (or stochastic) dominance.
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Figure 1: Different levels of combination.

Let T ∗
h = Sg(δh)

∑

i≤n1
X∗

h1i, h = 1, . . . , km, be the km partial tests where
Sg = +1 if δh > 0 and −1 otherwise. All these tests are exact, marginally unbiased
and consistent, and significant for large values, so that the NPC theory properly
applies. The hypothesis testing problem is broken down into two stages, considering
both the coordinate and the landmark level (and, if present, the domain level). We
actually refer to domains as subgroups of landmarks sharing anatomical, biological
or locational features. However, we wish to remark that a domain may be seen as
a latent variable.

Hence, we formulate partial test statistics for one-sided hypotheses and then we
consider the global test T ′′ obtained after combining at the first stage with respect
to m, then with respect to k (of course, this sequence may be reversed). We may
also apply the multi-aspect procedure to each coordinate of a single landmark and
then consider their combination. For example, if we consider 4 landmarks, first
of all we can consider a test for each coordinate (x and y coordinates in the 2D
case) of each landmark. Once the aspects of interest have been decided (e.g. first
two moments), we can focus on the coordinate level, or on the landmark level after
combining coordinates, or on the domain level as well, and finally on the global test
(see Figure 1).

One of the main features and advantages of the proposed approach is that by
using the multi-aspect procedure and the information about domains, we are able
to obtain not only a global p-value, as in traditional tests, but also a p-value for
each of the defined aspects or domains. Hence following our procedure it is possible
to construct a hierarchical tree, allowing for testing at different levels of the tree
(see Figure 1). On the one hand, partial tests may provide marginal information
for each specific aspect; on the other, they jointly provide information on the global
hypothesis. In this way, if we find a significant departure fromH0, we can investigate
the nature of this departure in detail. Furthermore, we can move from the top of
the tree to the bottom and, for interpreting results in a hierarchical way, from the
bottom to the top. It is worth noting that “intermediate” level p-values need to be
adjusted for multiplicity.
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4. Finite sample consistency of combination-based tests

In order to introduce Finite Sample Consistency property from a practical point of
view, let us consider the two independent sample case and assume that the response
variables behave according to the following model:

Xhji = µh + δhj + Zhji,

i = 1, . . . , nj, j = 1, 2, h = 1, . . . , k, where nj is the sample size, µh represents a
population constant for the h-th variable; δhj represents the fixed treatment effect
(i.e. the noncentrality parameter) in the j-th group on the h-th variable and Zhji

are k-dimensional random errors exchangeable with respect to treatment levels with
null mean vector (E(Z) = 0) and finite second moment.
Let X̄hj , j = 1, 2, be the sample mean for the h-th variable, Sj the biased sample
covariance matrix (with divisors n1 and n2) and S the common covariance matrix,
given by S = (n1S1 + n2S2)/(n1 + n2 − 2).
We define T

′′∗ the nonparametric permutation counterpart of Hotelling T 2 given by

T
′′∗ =

k
∑

h=1

(

X̄∗
h1 − X̄∗

h2

s∗h

)2

where the symbol ∗ indicates a permutation of the original data, X̄∗
hj, j = 1, 2

are multivariate permutation sample means and s∗h are the diagonal elements of
S∗. We remark that the underlying dependence structure is nonparametrically and
implicitly ‘captured’ by the permutation procedure (see e.g. Pesarin and Salmaso,
2010). We also emphasize that in a shape analysis framework Xhji will indicate the
2D or 3D landmark coordinates.
When carrying out nonparametric permutation tests we use raw coordinates and
not the shape coordinates. Hence we do not use the coordinates obtained after
filtering out location, scale and rotational effects from the original data.
We have compared the traditional parametric Hotelling’s T 2 test (T 2) with the
nonparametric T 2-type counterpart (T

′′∗) showing that the power for the suggested
test increases when increasing the number of the processed variables (see Table 1)
with the same noncentrality parameter δ, even when the number of covariates (k)
is larger than the permutation sample space (see results in Table 2 and Table 3).
We remark that Hotelling’s T 2 test considered in Table 1 is computed using raw
coordinates and not shape variables. Moreover, when n1 = n2 = 10 and k = 19,
the test statistic is constantly equal to 0. Hotelling’s T 2 statistic can be related to
the F -distribution by the well-known relation

T 2 =
n1n2(n1 + n2 − k − 1)

(n1 + n2)(n1 + n2 − 2)k
D2 ∼ Fk,n1+n2−1−k,

where D2 is the Mahalanobis squared distance.
B is the number of permutations (Monte Carlo sampling) used for estimating the
permutation distribution, and CMC is the number of Monte Carlo iterations of the
simulation procedure. Note that for n1 = n2 = 3 we explored the whole permuta-
tion sample space.
These interesting findings allow us to assess the usefulness of the nonparametric
permutation solution for high-dimensional data in small sample size case.
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Table 1: Simulations underH1 (n1 = n2 = 10, µ = 0, δ = 0.40, B = CMC = 1000)

α=0.01 α=0.05 α=0.10 α=0.20 α=0.30 α=0.50

k = 15 T 2 0.027 0.118 0.233 0.419 0.566 0.789

T
′′∗ 0.231 0.484 0.623 0.771 0.856 0.941

k = 16 T 2 0.026 0.098 0.192 0.361 0.504 0.741

T
′′∗ 0.228 0.496 0.633 0.792 0.866 0.946

k = 17 T 2 0.019 0.081 0.158 0.325 0.455 0.703

T
′′∗ 0.258 0.534 0.681 0.811 0.875 0.950

k = 18 T 2 0.013 0.067 0.132 0.269 0.414 0.642

T
′′∗ 0.253 0.543 0.667 0.816 0.874 0.956

k = 19 T
′′∗ 0.244 0.544 0.700 0.837 0.905 0.977

k = 20 T
′′∗ 0.318 0.552 0.683 0.825 0.904 0.965

k = 21 T
′′∗ 0.307 0.570 0.693 0.832 0.901 0.962

k = 22 T
′′∗ 0.340 0.618 0.744 0.845 0.906 0.964

k = 23 T
′′∗ 0.344 0.629 0.750 0.857 0.918 0.974

k = 24 T
′′∗ 0.338 0.622 0.741 0.862 0.919 0.973

k = 25 T
′′∗ 0.365 0.656 0.774 0.880 0.930 0.970

Table 2: Simulations under H1 (n1 = n2 = 3, µ = 0, δ = 0.40, B = MC = 1000)

α=0.10 α=0.20 α=0.30 α=0.50

k = 3 T
′′∗ 0.059 0.194 0.337 0.554

k = 18 T
′′∗ 0.097 0.278 0.408 0.618

k = 20 T
′′∗ 0.090 0.264 0.390 0.611

k = 25 T
′′∗ 0.117 0.274 0.422 0.643

k = 30 T
′′∗ 0.100 0.270 0.404 0.647

k = 35 T
′′∗ 0.103 0.280 0.436 0.687

k = 40 T
′′∗ 0.089 0.277 0.442 0.667

Table 3: Simulations under H1 (n1 = n2 = 3, µ = 0, δ = 1, B = MC = 1000)

α=0.10 α=0.20 α=0.30 α=0.50

k = 3 T
′′∗ 0.187 0.454 0.629 0.800

k = 20 T
′′∗ 0.324 0.779 0.902 0.977

k = 50 T
′′∗ 0.434 0.907 0.985 0.999
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This simple simulation study introduces the Finite Sample Consistency property of
permutation tests in an intuitive way, i.e. it can be proved that, for a given and fixed
number of subjects, when the number of variables increases and the noncentrality
parameter of the underlying population distribution increases with respect to each
added variable, then power of multivariate combination-based tests increases (for
details we refer to Pesarin and Salmaso, 2010 and Brombin and Salmaso, 2013).

5. Comparative simulation study

Let us assume that our samples are made of configurations of k = 8 landmarks
in m = 2 dimensions characterized by slightly different means. Suppose we are
dealing with male and female skull configurations of a particular animal created ad
hoc, representing the two independent samples (see Table 4). Since sample means
differ slightly from each other in 6 out of 16 coordinates (highlighted in bold in
Table 4), we have generated data using such a configuration in order to evaluate
the power of the competing tests.

Table 4: Hypothetical mean configurations

Domain # Lnd. name Male Female
x y x y

1 1 nasion 65.00 223.00 65.00 222.85
1 2 basion 54.00 −40.00 53.75 −40.00

2 3 staphylion 0.00 0.00 0.00 0.00
2 4 prosthion 0.00 35.00 0.00 34.50
2 5 nariale 19.00 121.00 18.90 121.00

3 6 bregma 70.00 203.00 70.00 203.00
3 7 lambda 110.00 112.00 109.95 112.00
3 8 opisthion 104.00 17.00 104.00 16.88

In all simulations we have B = 1000 CMC iterations and the number of Monte
Carlo runs MC = 1000. Throughout the simulation study, we have selected both
Liptak and Fisher combining functions. Focussing on the two-sample case, we have
carried out the simulation study in the same conditions of homogeneous, indepen-
dent, spherical variation at each landmark, as described in Rohlf (2000). In the
complete simulation study (Brombin, 2009) we have compared, in terms of statisti-
cal power, traditional approaches for the statistical analysis of shape, such as

• Hotelling’s T 2 test using approximate tangent space coordinates and Book-
stein shape coordinates,

• Goodall’s F test,

• EDMA-I (Lele and Richtsmeier, 1991) and EDMA-II tests (Lele and Cole,
1995; 1996),

• T 2 test using Rao and Suryawanshi shape variables, Rao-d (1996) and Rao-a
(1998) only for large sample sizes, e.g. n1 = n2 = 50.

As regards permutation tests, in particular we have considered (i) permutation
Hotelling’s T 2, (ii) permutation global tests with and without domains using Liptak
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and Fisher combining functions, (iii) permutation multi-aspect (MA) tests with and
without domains, considering location and scale aspects and using Liptak and Fisher
combining functions.

Let nj, j = 1, 2, be the sample sizes of the two samples and the landmark
coordinates be multivariate normally distributed. Three domains have been con-
sidered, i.e. baseline (nasion and basion), face (staphylion, prosthion and nariale),
and braincase (bregma, lambda and opisthion). We use G to denote the global test
obtained after combining all partial tests, and G d to denote the global test that
takes into account the information about domains (hence obtained after combining
partial tests on chosen domains). MA, if present, indicates that the a multi-aspect
procedure has been applied. T

′′∗ indicates the nonparametric permutation counter-
part of Hotelling’s T 2.

We wish to point out that in this simulation study we only show global p-values.
Hence, in this case, we do not need to cope with the multiplicity problem. For
the sake of space, we report only the results of NPC tests with small sample sizes
(n1 = n2 = 10, σ2 = 0.25). In Table 5, the better performing tests are highlighted
in bold. In particular, we show that the global nonparametric test using Fisher’s
combining function, in its standard, domain and MA versions, has better power in
almost all the situations.

Our simulation study emphasizes the good behaviour in terms of power and
the flexibility of the nonparametric permutation solution in shape analysis, since
it allows us to carry out a shape analysis even in the presence of small sample
sizes and a large number of shape variables. We wish to highlight that, under the
null hypothesis, the proportion of rejection of the tests is very close to the given
significance level (see Table 5).

Table 5: Attained α-level and power behaviour: n1 = n2 = 10, B=CMC=1000,
σ2 = 0.25

Attained α-level
α=0.01 α=0.05 α=0.10 α=0.20 α=0.30 α=0.50

T
′′
∗ 0.011 0.056 0.112 0.211 0.300 0.506

G (Liptak) 0.017 0.054 0.107 0.215 0.307 0.512
G d (Liptak) 0.014 0.055 0.115 0.213 0.304 0.512
G (Fisher) 0.014 0.058 0.120 0.208 0.307 0.506
G d (Fisher) 0.013 0.057 0.121 0.205 0.313 0.490
G (Liptak, MA) 0.016 0.051 0.109 0.217 0.311 0.516
G d (Liptak, MA) 0.013 0.046 0.116 0.218 0.310 0.514
G (Fisher, MA) 0.010 0.058 0.118 0.214 0.311 0.504
G d (Fisher, MA) 0.012 0.061 0.115 0.210 0.317 0.484

Power
α=0.01 α=0.05 α=0.10 α=0.20 α=0.30 α=0.50

T
′′
∗ 0.087 0.229 0.320 0.496 0.611 0.775

G (Liptak) 0.054 0.172 0.279 0.434 0.549 0.741
G d (Liptak) 0.048 0.165 0.265 0.419 0.526 0.724
G (Fisher) 0.079 0.214 0.326 0.480 0.615 0.769
G d (Fisher) 0.067 0.203 0.302 0.452 0.581 0.753
G (Liptak, MA) 0.056 0.175 0.275 0.440 0.549 0.748
G d (Liptak, MA) 0.052 0.170 0.265 0.419 0.527 0.723
G (Fisher, MA) 0.075 0.218 0.312 0.477 0.604 0.767
G d (Fisher, MA) 0.071 0.203 0.290 0.447 0.568 0.755
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6. Combination-based tests with correlated landmarks

In this framework we analyse the case of heterogeneous and dependent variation
at each landmark, and evaluate power and the attained α-level. The superimposi-
tion step has been included in the routine since GPA superimposition may modify
dependency structures among landmarks. In order to obtain a non singular covari-
ance matrix, we have performed an eigenvalue decomposition (ED) of the original
variance covariance matrix and transformed the original eigenvalues λ. We have
considered transformations such as λ1/3 and λ1/10, rescaled by their trace (see the
effect of transforming eigenvalues on the scatterplot in Figure 6).

Then we have recalculated the covariance matrix Σ∗, using the relation Σ∗ =
V Λ∗V ′, where Λ∗ is a diagonal matrix with the transformed eigenvalues, V is an
orthogonal matrix, containing the corresponding eigenvectors and V

′

means V trans-
posed.
Under the alternative, data have been generated using different means and the same
covariance matrix Σ∗. In Table 6 we display hypothetical mean configurations, rep-
resenting 3D male and female Macaca fascicularis monkey skulls (for details, see
Frost et al., 2003).

(a) (b)

(c)

Figure 2: Original eigenvalues λ (a), λ1/3 (b) and λ1/10 (c)

Let nj , j = 1, 2, denote the sample size in the two groups. In particular we
considered the settings: n1 = n2 = 5, n1 = n2 = 10, n1 = 5, n2 = 10. In the
simulation study we have evaluated power and attained α-level when the number of
3D landmarks k was, in turn, equal to 3,6,9,11. Three domains have been considered:
the first includes landmarks 1, 2 and 11; the second includes landmarks from 3 to
7; the third includes landmarks from 8 to 10.

We use T
′′∗ to denote Hotelling’s T 2 permutation counterpart, with G the com-

bination of all partial tests, and G d the combination using domains. For the sake
of space, we present simulation results only for the case in which the number of 3D
landmarks k is equal to 6, n1 = n2 = 10 and transformed λ is λ1/3(see Table 7).
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Table 6: Configurations

Landmark Male Female

# Lnd. name xM yM zM xF yF zF
1 Inion 17.7752 18.9981 6.9585 17.5252 18.9981 6.9585
2 Bregma 15.9101 16.3499 9.2159 15.9101 16.4499 9.2159
3 Glabella 13.6833 12.7086 7.6433 13.6833 12.7086 7.6433
4 Nasion 13.6799 12.6892 7.5628 13.8299 12.6892 7.5628
5 Rhinion 12.9273 11.2649 5.1792 12.9273 11.2149 5.1792
6 Nasospinale 12.6114 10.5523 3.6257 12.6114 10.5523 3.6257
7 Prosthion 12.4725 10.233 2.8531 12.4725 10.2330 2.8531
8 Opisthion 17.1882 17.8852 5.0014 17.1882 17.8852 5.1514
9 Basion 16.5070 16.7665 4.4799 16.5070 16.7165 4.4799
10 Staphylion 14.6975 13.8755 4.1783 14.6075 13.8755 4.1783
11 Incisivion 13.2442 11.4665 3.5466 13.2442 11.4665 3.5166

In all the simulations under H0, when using a global test with Fisher’s combin-
ing function, MA procedure and domain information, the Type I error rate was too
large, thus invalidating inferential conclusions. For example, in Table 7, focussing
on α = 0.05, GMA,F has a corresponding attained α = 0.112 and Gd,MA,F has a
corresponding attained α = 0.122. Readers are reminded that at the beginning we
decided to evaluate location (mean) and distributional (Anderson–Darling statistic)
aspects. Hence GPA superimposition may modify dependency structures, thus al-
tering the final distribution. Fisher’s combining function is more sensitive with MA
procedures than Tippett’s combining function. However, if we change the aspects,
e.g. if we consider mean µ and median Me or mean and second moments µ2, the
proportion of rejection of the tests GMA,F and Gd,MA,F now achieves the given sig-
nificance α-level. These results highlight that GPA affects the initial distribution
of the data, hence particular care is needed when a MA procedure is performed.

7.
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Table 7: Attained α-level and power behaviour: n1 = n2 = 10, λ1/3, k = 6, m = 3,
B = CMC = 1000

Attained α-level
Test 0.01 0.05 0.10 0.20 0.30 0.50

T
′′
∗ 0.012 0.056 0.102 0.204 0.295 0.493

GT 0.000 0.052 0.088 0.195 0.290 0.489
Gd,T 0.004 0.038 0.103 0.195 0.288 0.475
GF 0.011 0.055 0.099 0.197 0.292 0.504
Gd,F 0.011 0.050 0.098 0.196 0.293 0.496
GMA,T 0.008 0.031 0.065 0.136 0.206 0.350
Gd,MA,T 0.008 0.027 0.073 0.143 0.216 0.345
GMA,F 0.041 0.112 0.164 0.266 0.340 0.508
Gd,MA,F 0.043 0.122 0.185 0.305 0.402 0.550
G(µ,Me),F 0.012 0.055 0.099 0.190 0.288 0.466
Gd,(µ,Me),F 0.011 0.054 0.098 0.191 0.300 0.479
G(µ,µ2),F 0.010 0.048 0.109 0.195 0.286 0.509
Gd,(µ,µ2),F 0.009 0.043 0.096 0.192 0.287 0.485

Power
Test 0.01 0.05 0.10 0.20 0.30 0.50

T
′′
∗ 0.337 0.621 0.757 0.888 0.930 0.981

GT 0.000 0.538 0.709 0.855 0.923 0.978
Gd,T 0.123 0.478 0.683 0.828 0.902 0.971
GF 0.299 0.564 0.709 0.858 0.916 0.973
Gd,F 0.286 0.547 0.679 0.819 0.898 0.962
GMA,T 0.234 0.456 0.636 0.754 0.851 0.945
Gd,MA,T 0.255 0.401 0.600 0.755 0.824 0.923
G(µ,Me),F 0.284 0.571 0.711 0.853 0.918 0.969
Gd,(µ,Me),F 0.164 0.431 0.596 0.797 0.880 0.952
G(µ,µ2),F 0.224 0.467 0.612 0.740 0.833 0.922
Gd,(µ,µ2),F 0.137 0.369 0.495 0.663 0.782 0.903
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Conclusions

Due to their nonparametric nature, the suggested tests provide efficient solutions in
multivariate small-sample-size problems. We have seen how the power of permuta-
tion tests based on combination-based tests (Pesarin and Salmaso, 2010) increases
when the number of processed variables increases, provided that the noncentrality
parameter increases, even when the number of variables is larger than the permu-
tation sample space. These findings are very important, since they show that it is
possible to obtain powerful tests in a nonparametric framework by increasing the
number of informative variables while leaving the number of cases fixed. Through
the application to shape analysis, we have highlighted the power and the flexibil-
ity of the nonparametric permutation solution. For a comprehensive overview on
permutation tests in shape analysis we refer the reader to our forthcoming book
Brombin and Salmaso (2013).
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