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Abstract 

Data fusion consists of the process of integrating several datasets with some common 
variables, and other variables available only in partial datasets. The main problem of data 
fusion can be described as follows. From one source, having X0 and Y0 datasets (with N0 
observations by multiple x and y variables, n and m of those, respectively), and from 
another source, having X1 data (with N1 observations by the same n x-variables), we need 
to estimate the missing portion of the Y1 data (of size N1 by m variables) in order to 
combine all the data into one set. Several algorithms are considered in this work, 
including estimation of weights proportional to the distances from each i-th observation 
in the X1 “recipients” dataset to all observations in the X0 “donors” dataset. Or we can use 
a sample balancing technique with the maximum effective base performed by applying 
ridge-regression for the Gifi system of binaries obtained from the x-variables for the best 
fit of the “donors” X0 data to the margins defined by each respondent in the “recipients” 
X1 dataset. Then the weighted regressions of each y in the Y0 dataset by all variables in 
the X0 are constructed. For each i-th observation in the dataset X0, these regressions are 
used for predicting the y-variables in the Y1 “recipients” dataset. If X and Y are the same n 
variables from different sources, the dual partial least squares technique and a special 
regression model with dummies defining each of the three available sets are used for 
prediction of the Y1 data. 
 
Keywords:  data fusion, distances, weighting, dual canonical correlations and PLS, ridge-
regression, regression with dummies. 
 

I. Introduction 
 
     Data fusion consists of integrating multiple data sources, some with variables common 
in different sources, and other variables available only in partial datasets, to achieve a 
synergy in the information acquired from all the sources. Such problems appear in 
various fields of data analysis and information fusion, for instance, in sensor observations 
(Jilkov and Li, 2009; Tian and Bar-Shalom, 2009; Carvalho and Chang, 2012), and 
databases combined into an integrated data knowledge source in economics and other 
applied statistical fields (Hastie et al., 2001; Moriariti and Scheuren, 2001; Rassler, 2002, 
2004; Smarandache and Dezert, 2009). Various useful practical approaches have been 
recently suggested in marketing research (Kamakura and Wedel, 1997; Gilula et al., 
2006; Bosch, 2011a,b; Collins, 2012; Maier, 2012). 
     This current paper considers several algorithms for practical implementation of data 
fusion needed in marketing research. A typical main problem of data fusion can be 
described as follows: from one source, having X0 and Y0 datasets (with N0 observations by 
multiple x and y variables, n and m of those, respectively), and from another source, having 
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X1 data (with N1 observations by the same n x-variables), we need to estimate the missing 
portion of the Y1 data (of size N1 by m variables) for combining all the data into one set. 
Several algorithms are considered in this work. In one approach, the weights are taken 
proportionally to the distances from each i-th multivariate observation in the X1 
“recipients” dataset to each observation in the X0 “donors” dataset. The distances are 
estimated with the pooled covariance matrix for Mahalanobis distance, or with Euclidean 
or Manhattan distance. Another approach is based on sample balancing technique with 
the maximum effective base (Lipovetsky, 2007, 2010a) performed by applying a ridge-
regression model for the Gifi system (Gifi, 1990; Lipovetsky, 2012a) of binaries obtained 
from the x-variables for the best fit of the donors X0 data to the margins defined by each 
respondent in the recipients X1 dataset. With the obtained weights, the regressions of each 
y in the Y0 dataset by all xs in the X0 dataset are constructed, and predictions are made by 
each i-th observation in the X1 “recipients” dataset for all y-variable for the Y1 data 
segment. This procedure is repeated for each i-th observation in the X1 dataset, filling all 
the missing positions in the Y1 “recipients” dataset. 
 
 

i x1 x2 … xn y1 y2 … ym 
1 

 
donors dataset is given 

in matrix 
 

X0 

 

donors dataset 
is given 

in matrix 
 

Y0 

 

2 
… 

N0 
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target 
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matrix 

Y1 

 

2 
… 

N1 
 
 
     In some cases, all data sets X0, Y0, and X1 contain the same n variables from different 
sources, for instance, X0 and Y0 might correspond to panel data elicited via phone and 
internet interviewing in a previous year, respectively, while X1 is the data elicited by 
phone in the current year, and the objective is to predict the Y1 data from the internet 
under the new conditions. In such a case, the dual robust canonical correlation analysis 
(CCA), also called dual partial least squares (PLS), can be applied. The regular CCA 
considers two sets of x and y variables (n1 and n2 of those, respectively) with the same 
number of observations N from the same respondents. In contrast to this, the dual PLS 
technique is applicable when there are two groups of data with a different number of 
observations from different respondents obtained for the same set of variables, which is a 
special instance for a data fusion type problem. The dual PLS eigenproblem technique and 
predictions by the robust CCA are described in detail in (Tishler and Lipovetsky, 2000; 
Lipovetsky, 2012b). The current work considers another approach in which all three 
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available datasets are stacked in rows, and two dummy variables are added to identify the 
period of observations (zero for X0 and Y0, and one for X1), and the source of the data (zero 
for phone X0 and X1, and one for the internet Y0). Then we construct a regression model of 
each of the stacked variables by all others with the two additional binary variables. With 
these regressions, using X1 data and the 1 values for the dummy variables, we can predict 
the Y1 online values. This procedure is repeated for each of the n variables subsequently, 
getting all the Y1 “recipient” variables predicted. It is easy to add the mixed-effects of 
each predictor with the dummy variables, increasing the precision of data fit. 
 

II. Weighted by Distances Multivariate Regression 
 
     Suppose there are three data sets: from one source, we have got X0 and Y0 data sets (let 
us call them “Donors”) with the N0 responses (from the same respondents) by n variables 

00
2

0
1 ,...,, nxxx , and by m variables 00

2
0
1 ,...,, myyy ; and from another source, we have X1 

data set (called “Recipients”) with the N1 responses by the same n variables 
11

2
1
1 ,...,, nxxx . The problem of data fusion consists in estimation of the data in a set Y1 

(called “Target”) with the N1 observations, like in X1, by the same m variables as in Y0. 
     Consider at first the following simple algorithm. Find the distances from one i-th row 
(multivariate point of observation) in X1 to each of the rows in X0, to define which of 
“donors” 0

jX  points lay in the vicinity of the i-th “recipient” 1
iX  point. For this task, we 

stack the sets X0 and X1 in rows, and find the total covariance matrix B, and its inverted 
matrix B-1. Then using Mahalanobis distance in a general case of different scales of the 
variables we find distance dij from each i-th point in 1

iX  data to all points of 0
jX  data: 

            )()( 011012
jijiij XXBXXd −′−= −

,                                              (1) 

where 1
iX  and 0

jX  are n-dimensional vectors of i-th recepient and j-th donor data sets. 
Weights of the distance from the i-th point to each of j-th points are defined by the 
proportions: 

                       ∑
=

−−=
0

1

202 /
N

k
ikijij dNdw    .                                                   (2) 

If a distance equals zero the weight equals one. It is also convenient to use weights taken 
proportional to the )exp( 2

ijd− , or to )1/(1 2
ijd+ . With the weights defined for each 

current value of i, using the donors data, we construct the weighted regression models of 
each of the variables 00

2
0
1 ,...,, myyy  by all the predictors 00

2
0
1 ,...,, nxxx . The coefficients 

of all these m models can be found by the matrix solution: 

             
0)(010)(0)( )())(( YWXXWXA iii ′′= −

 ,                                   (3) 
where W(i) is a diagonal matrix of the weights, and an identity column for having the 
intercepts can be added into design matrix X0. The matrix A(i) contains in its columns the 
coefficients of regressions of each y0 by all x0 variables. 
Taking an i-th row of the 1

iX  and multiplying it by matrix (3) we find m predicted  1
iY  

values for the target data: 

         0)(010)(01)(11 )())(( YWXXWXXAXY ii
i

i
ii ′′== − .                     (4) 
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Repeating the procedure (1)-(4) for each current row i=1, 2, 3., …, N1, we produce all the 
predicted values for the matrix Y1 of N1 by m order. 
     When all the variables are measured in the same scale, instead of Mahalanobis we can 
use the Euclidean distance (putting B=I identity matrix in (1)). It is also possible to split 
each variable into the Gifi system of binary variables. For instance, a variable measured 
on a 1 to 5 Likert scale is represented in five binary variables corresponding to each of 
the five levels. Then we can use Manhattan distance in the procedure described above. 
 

III. Sample Balancing in Ridge Regression 
 
     Instead of weighting by distances (2), some works suggest to define weights by the 
equalizing  

                                                      twX =′)( 0
,                                                        (5)  

where t is a vector of n-th order equal to an i-th row in the “recipients” matrix X1. Also, 
the maximum of the effective sample size is required, so the weights w should minimize a 
measure like the variance   
                                      min)()( →−′− ωω wCw                                         (6) 
 of their deviation from a design vector ω  of N0 order, where C is a diagonal cost matrix 
of the same order. Then the conditional objective for the vector minimization is:  

                     min])[()()( 0 →−′−−′− twXwCw λωω                       (7) 
where λ is the n-th order vector of the Lagrange terms. Minimizing (5) by w yields the 
solution λω 01 XCw −+= , so multiplying it by the matrix X0 and using the restrictions 

twX =′)( 0  yields the solution (Bosch, 2011a,b): 

( )ω)(])[(])[( 0101001101001 ′′−+′= −−−−−− XXCXXCItXCXXCw .     (8) 
where I is the identity matrix of N0 order. The cost matrix is generally needed for 
tweaking some negative values in the weights to make them zero or positive, but mostly 
it is taken as a uniform matrix, so IC =−1 . The vector of design weights is usually taken 
as a uniform vector, e=ω , of N0 order, so the expression (8) reduces to the following: 

                ( )eXtXXXew )(])[( 01000 ′−′+= −
,                                             (9) 

and the weights are distributed around 1.  
     The main problem with solutions (8)-(9) is that being constructed with the 
requirement of the exact fulfillment of multiple restrictions (5) it can easily produce 
negative weights, which requires additional adjustments by changing the elements in C 
through a heuristic attempts. Instead of requiring exact restrictions’ fulfillment (5) in the 
objective (7), it makes sense to minimize the deviations from those restrictions, subject to 
only one condition of the effective base. It means that in place of objective (7) we can 
consider an alternative problem as follows:  

           min)]()[()(
20 →−′−+−′ ωω wCwqtwX ,                             (10) 

with only one Lagrange multiplier q. Taking the derivative of this least squares objective 
and putting it to zero yields the solution: 

              ( ) ( )ωqCtXqCXXw ++′=
− 0100 )( .                                             (11) 

With the uniform matrix C=I and vector e=ω , the problem (11) reduces to: 
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                ( ) ( )qetXqIXXw ++′=
− 0100 )( ,                                                  (12) 

which is a generalized ridge-regression solution (Lipovetsky, 2010b). Increasing the 
positive value of the profiling parameter q always guarantees reaching the non-negative 
weights. 
     The techniques of ridge-regression for finding positive weights while simultaneously 
keeping the maximum possible effective sample base are given in detail in (Lipovetsky, 
2007, 2010a). Using the Chi-squared criterion in place of the least squares (10) leads to a 
solution which generalizes (11) to the following expression: 

               ( ) ( )ωqCtDXqCXDXw ++′= −−− 101010 )( ,                               (13) 
where the diagonal matrix ( )xdiagD ~= , and x~  is defined as the total eXx )(~ 0 ′= . 
With the uniform matrix C=I and vector e=ω , the problem (13) corresponds in other 
notation to the expression obtained in (Lipovetsky, 2007, the formulae (14)-(19) within). 
As it is shown in that work, the expression (13) can be further simplified to a form similar 
to (9) where the weights are distributed around 1: 

           ( ) ( )010000 )()( XtXqdiagXXXew −+′+=
−

.                                (14) 
     Instead of the variables in X0 and X1 data sets, it is possible to split each variable into 
the Gifi system of binary variables. Using the Gifi system, we apply the sample balancing 
procedure to find weights for the best fit of the “donors” X0 data to the margins defined 
by each respondent in the “recipients” X1 data. Sample balancing with the maximum 
effective base performed by the ridge-regression estimation produces weights with which 
the same procedure (3)-(4) described in Section II is applied for predicting Y1. 
 

IV. Dual PLS analysis 
 
     If the “donors” data X0 and Y0 are obtained from the same respondents, instead of 
weighted regressions of each y-variable by all x-variables, as it is described above, we 
can consider canonical correlation analysis (CCA) for finding the multivariate regressions 
of all y by all x variables simultaneously. However, the data for X0 and Y0 can be obtained 

from different sources and contain a different number of observations, 
0

XN  and 
0

YN . If 
both X and Y data consist of the same variables (measured from different sources, data 
bases, or in a different moment in time, etc.) it is possible to consider the problem of data 
fusion in another approach, namely, via the dual robust canonical correlation analysis 
(CCA), which can also be called the dual partial least squares (PLS) technique. In a 
regular CCA, we have the same number of observations elicited from the same respondents 
by two datasets with different sets of variables. We can consider an alternative situation – 
when there are two groups of data with a different number of observations from different 
respondents obtained for the same set of variables. This we will call the dual CCA, or dual 
PLS, and it can be reduced to a special eigenproblem of the product of correlation matrices 
of the two data sets. This technique can be further generalized to multiple data sets in an 
eigenproblem of block-matrices, and it also corresponds to the dual PLS (for more detail on 
this approach, see in Lipovetsky, 2012b). Let us consider it briefly. 
     Suppose there are two matrices X and Y of the orders N1×n and N2×n, respectively. Here 
N1 and N2 are the number of observations in the first and second groups, and n is the number 
of the same variables in both datasets. It is also assumed that all the variables are 
standardized within each data set. The loadings a and b of the order n for each data set 
aggregated with the scores (weights) are: 
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   ηξ  Yb   ,Xa ′=′= .                                                          (15) 
The straightforward CCA approach is usually inapplicable for the dual problem in (15), 
because in most cases the number of variables n is significantly less than the number of 
observations N1 or N2. This makes it impossible to invert the matrices like XX ′  and YY ′  of 
the order N1 and N2, respectively, while both are of rank n. But the robust CCA (also known 
as the PLS) approach can be used for the dual problem in (15) because it does not require 
matrix inversion.  
     With the covariance ba′  of loadings in (15), consider a conditional objective: 

                        ( ) ( ) max1
2

1
2

→−′−′′′ ηημξξληξ   - -YX .                                      (16) 

Maximizing (16) by the vectors of scores yields a system of equations: 
                             0,0 =−′=−′ μηξλξη XYYX .                                                 (17) 
Multiplying ξ ′  and η′  by the first and second equation in (17), respectively, and using the 
normalizing conditions from (16), yields equality in the Lagrange terms ηξμλ YX ′′== . 
Then with (15), the system (17) can be represented as follows: 
                                 ληλξ == YaXb , .                                                                (18) 
These relations connect the loadings of one group with the scores of the other. Multiplying 
the transposed matrices X and Y by the first and second equation (18), respectively, yields 
the system: 
                            ηλξλ YYaYXXbX ′=′′=′ , .                                                     (19) 
The product of the transposed matrix by the initial matrix of the standardized data equals the 
matrix R of correlations, so using notations (15) let us represents system (19) as: 
                             baRabR yyxx λλ == , .                                                            (20) 
Substituting vector a from the first into the second equation in (20), and similarly with 
vector b, yields the eigenproblems: 

                 ( ) ( ) b=bRR   a=aRR 2
xxyy

2
yyxx λλ , .                                           (21) 

The eigenvectors a and b present solutions for the dual PLS problem (15). With the a and b 
vectors, the scores ξ  and η can be found using the relations from (18) by projecting 
observations onto the vectors of loadings. Both equations in (20) can be presented as one 
eigenproblem with the block-matrices: 

                                  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
b
a

b
a

R
R

yy

xx λ
0

0
 .                                                              (22) 

Multiplying the matrix in (22) by this equation itself yields the same solutions as in (21). 
Having the solution of eigenproblems (21) or (22), it is possible to predict matrix Y data by 
the X data in the technique described in (Tishler and Lipovetsky, 2000). 
 

V. Multiple Regressions with Dummy Indices 
 
     For the case where we have the same n variables in all data sets used in fusion, let us 
describe a convenient regression model with dummy variables identifying each of the data 
sets. For an illustration, the X data sets correspond to phone, and the Y data sets correspond 
to online results gathered in a previous and a current periods of time (marked by zero and 
one upper indices) on the same n variables from a panel study. In this approach, all the 
available data sets can have a different numbers of observations, and we stack X0, Y0, and X1 
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together in rows, creating 
100

XYX NNN ++  rows of the total data set. We also add a 
column for a dummy binary variable u={0,1} for identification of X versus Y (phone 
versus online) data, respectively, and a column v={0,1} for identification of the time 
moment in X0 and Y0 versus X1 cases, respectively. The stacked data we can present in the 
following block-matrix: 

                       
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

111

000

000

)1()0()(

)0()1()(

)0()0()(

,
1

,
0

,
0

XXX

YYY

XXX

NNnN

NNnN

NNnN

X

Y

X

Z
,                              (23) 

where the indices near each block show the order of the matrices and vectors. Let us 
denote the variables in the columns of the stacked matrices as z1, z2, …, zn, and the last 
two columns of the binary variables we denote u and v, as before. 
     For standardized variables, a linear regression model of each variable zj by all the 
other z-variables and u and v variables is as follows: 

vauazazazazaaz njnjnjnjjjjjjjjj 2,1,11,11,110 ...... ++++−− ++++++++= ,   (24) 
where the first index denotes coefficients related to each j-th dependent variable (j=1, 
2,…, n).  A convenient way to produce simultaneously all the needed models (24) can be 
based on the inverted correlation matrix 1−R constructed from the data in the combined 
matrix (23). This matrix can be presented as following: 
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R .  (25) 

 
The diagonal elements of this inverted correlation matrix (called variance inflation 
factors) equal the reciprocal values of the residual sums of squares in the regressions of 
each variable by all the rest of them, where 2

.jR  are coefficients of multiple determination 
in the models of each variable by all the others. The non-diagonal elements in a j-th row 
of 1−R , taken with the opposite signs and divided by the diagonal element in the same j-
th row, coincide with the coefficients (24) of the regression of j-th variable by all the 
others (Kendall and Stuart, 1973). So with one matrix inversion we obtain all the 
coefficients of the needed n regression models (24) (and the last two rows of coefficients 
in (25) are not needed because they correspond to the models of the binary dummy 
variables by the other predictors). When the models (24) are constructed, we can predict 
the target values Y1 taking the inputs from the “recipients” data X1 as z-variable values in 
model (24) and u=v=1 for the dummy variables identifying the Y1 data set. This 
procedure is repeated for each zj model subsequently, so we get all n variables in Y1 
predicted. 
      The models (24) can be easily extended by adding mixed-effects for each predictor 
with the u and v dummy variables, which improves the quality of the data fit by using 
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three times more parameters of regression and is acceptable for large base sizes. Also, 
instead of linear models we can use logit and other regressions to accommodate for some 
special requirements of the predicted variables, for instance, their positive values. And 
the weighted regressions can be easily constructed as well. 
 

VI. Numerical results 
 
     For checking the described methods, the X0 and Y0 data sets of 250 observations with 
30 and 51 variables, respectively, and the X1 data set of 766 observations by 30 variables 
were used to estimate the Y1

predicted data of the size 766 by 51. The variables were 
measured on 1 to 5 Likert scales. In this test, the actual data set Y1

actual was available, so 
the results were compared with it. The standard deviations (std) for the difference 
(Y1

predicted - Y1
actual)i were estimated for  each of the 766 observations. The weights for 

regressions were obtained in (1)-(2) estimation by Mahalanobis, Euclidean, and 
Manhattan (if for binary Gifi presentation of the variables) distances, and by the sample 
balance “Sambal” procedure (10)-(14). The descriptive statistics on these standard 
deviations (std) are given in Table 1. The mean values of the std are smallest for 
Manhattan and Sambal estimations (by the data presented as Gifi system). Example of 
such a distribution is shown in Figure 1. 

 
Table 1. Summary statistics for std of prediction compared with actual data. 

 
          Mahalanobis Euclidean Manhattan Sambal 

Min          0.298     0.318     0.292   0.264 
1st Qu.     0.712     0.720     0.707   0.709 
Mean       0.834     0.839     0.826   0.829 
Median    0.821     0.826     0.816   0.819 
3rd Qu.   0.943     0.943     0.932   0.935 
Max        1.452     1.502     1.464   1.400 
Std Dev.  0.177     0.176     0.177   0.180 

 
 

Figure 1. STD distribution for the difference (Y1
predicted - Y1

actual)i by 51 variables, 
estimated for  each of the 766 observations. 
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Another measure is the exactness of the prediction. By rounding the predicted values we 
consider a cross-table of the original and predicted values and estimate the percent of the 
coinciding values (the total on diagonal of such a table) to the total of 51 predicted 
values, for each of the 766 observation points. The descriptive statistics on this hit-rate 
are given in Table 2. We see that predictions are similar by all methods, and the highest 
hit-rate is achieved with the Sambal estimations. Example of such a distribution is shown 
in Figure 2. 
 

Table 2. Summary statistics for percent of exact predictions with actual data. 
 

Mahalanobis Euclidean Manhattan Sambal 
Min      3.921     1.960    1.960    1.960 

1st Qu.   33.333   33.333  33.333  33.333 
Mean     42.627   42.796  42.530  42.814 
Median  43.137   43.137  43.137  43.137 
3rd Qu.  52.941   52.941  52.941  52.941 
Max       88.235   90.196  92.156  92.156 
Std Dev.15.040   15.201  15.631  15.854 

 
 

Figure 2. Hit rate of the correct predictions Y1
predicted coinciding with Y1

actual by 51 
variables, estimated for  each of the 766 observations. 
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     The second data set used for checking the methods is the data on pixels, 1060 
observations, 366 variables. The “donor” data sets X0 and Y0 are of 142 observations with 
49 and 317 variables, respectively, and the X1 data set has 918 observations by 49 
variables. They were used to find the Y1

predicted data of size 918 by 317. The variables are 
measured in continuous numerical scales in the range from 0 to 255 units. In this case, 
logit models were used giving positive prediction values. The results on std for the 
deviations of the predicted from control data are presented in Table 3.  
The sample balance with maximum effective base technique produces the best results – 
the smallest means. In contrast to the methods of weight estimation by distances (2), the 
Sambal technique works 10 times faster (for instance, in this example, it takes 10 minutes 
versus about 2 hours for each of the distances weighting estimations). 
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Table 3. Summary statistics for std of prediction compared with actual Pixels data. 
 

          Mahalanobis Euclidean    Manhattan  Sambal 
Min        22.983      22.983      14.909    8.820 
1st Qu.    36.442      36.442      30.900   25.308 
Mean      44.262      44.262      39.037   35.347 
Median   43.366      43.366      37.767   33.750 
3rd Qu.  50.102      50.102      44.836   42.037 
Max       94.124      94.124      91.832   93.690 
Std Dev.10.870      10.870      11.378   13.384 

 
 
     For a numerical example in the approach (15)-(22) we can refer to (Lipovetsky, 2012). 
For the case of the same n variables in each of the data sets let us describe the regression 
models with dummy variables identifying each of the stacked sets (23)-(24). In this example, 
using data from a real research project on bank customer activity, 17 variables were 
considered, so each model (24) contains 19 parameters. The X data sets corresponded to 
phone, and Y data sets to online interviews from a panel study; X0 and X1 data sets have 128 
and 1114 observations, respectively, and Y0 has 1028 observations. The problem consists in 
evaluating the data for Y1 and their comparison with the data in X1. Multiple regression 
models (24) were constructed and prediction for the data set identified by the dummy 
variables u=v=1 performed. A comparison of the mean values for the variables in X1 and 
in Y1 is presented in Table 4. By the t-statistics and p-values it is easy to identify which 
variables of the phone and online studies could differ. 
 

Table 4. Comparison of Phone versus Online data. 
 

Means by 
Phone data 

Means 
Predicted Online t-statistics p-value 

z1 0.21 0.22 0.57 0.57 
z2 0.13 0.15 1.17 0.24 
z3 0.39 0.44 1.95 0.05 
z4 0.61 0.56 2.12 0.03 
z5 0.77 0.72 3.04 0.00 
z6 0.11 0.13 1.54 0.12 
z7 0.07 0.09 1.55 0.12 
z8 0.01 0.02 0.53 0.59 
z9 0.86 0.85 0.73 0.47 
z10 0.09 0.10 0.79 0.43 
z11 0.03 0.04 0.68 0.50 
z12 0.00 0.00 0.45 0.65 
z13 0.01 0.01 0.68 0.50 
z14 0.35 0.41 2.69 0.01 
z15 0.65 0.59 3.00 0.00 
z16 0.35 0.27 4.37 0.00 
z17 0.65 0.73 3.59 0.00 
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VII. Summary 
 
     Several algorithms for practical solutions to the problem of data fusion are presented 
(see also Lipovetsky, 2013). Weighting of the “donor” data due to the distances to each 
multivariate observation in the “recipient” data, and using weighted regression of one 
data set by another with the following prediction of the needed target variables are 
considered. The tried distances include Mahalanobis, Euclidean, and also Manhattan 
metrics for the binary presentation of the variables in the Gifi system. Another approach 
is based on a sample balancing procedure for finding weights of the “donor” data by their 
correspondence to the margins defined by the available “recipient” observations. The 
sample balancing procedure produces better results in prediction and works many times 
faster than the simple distances’ weighting. For the case of the same variables obtained 
from different sources, the dual robust canonical correlations, or partial least squares 
analysis is described, together with the suggested technique of stacking all the datasets 
and using dummy variables for their identification. Such models present a convenient 
way of accounting for additional requirements in prediction; for instance, it is possible to 
use not linear, but logistic regressions for obtaining positive values. Numerical 
applications show that the considered approaches are simple, reliable, and can be applied 
in any available software. These techniques facilitate practical performance of data fusion 
and enrich a set of possible tools for various needs of data integration.   
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