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Abstract 
Testing equality of several means is a common task for consulting statisticians.  The 

usual assumptions for Fisher’s F test require k independent random samples from k 

normal distributions with equal variances.  In this work, I study the sampling distribution 

of the likelihood ratio statistic, denoted λ, within the context of unequal variances. My 

searches for a more general test are in response to the elevated alpha of the F test, in the 

presence of unequal variances.   This work is valuable because the empirical alphas for 

the F test and the -2log (λ) are often higher than the intended α = 0.05, in the presence of 

unequal variance, especially for small samples. I present a framework for a robust test 

which relies on the sampling distribution of λ and not the transformed λ.  Hence, we do 

not have to depend on the chi-square distribution for an approximation. 

 

The focus of the study is as follows:  First, generate the critical values for the robust test 

(5
th
 percentile of the likelihood ratio statistic, denoted P05) when sampling from 4 normal 

distributions/populations.  The P05 was generated under a variety of variance patterns.   

The hope is that for a fixed value of n (replications per treatment level), with equal 

means, the unequal variance will not greatly affect the empirical rejection rates. 

 

Simulation results revealed for a fixed n (such as n = 3) the empirical alpha for the F test 

began very close to 0.05 (when all four variances were equal) and increased up to 0.0622 

(when all four variances were not equal).  As n increases to 15, the empirical alpha for 

first variance pattern (four variances were equal) was around 0.05 and hovered in 

between 0.056 – 0.058 for other variance patterns (all four variances were not equal).  

The similar trend was exhibited for the -2 log (λ); however the alphas start much higher 

for this test.  For example, the alpha for n=3 with equal variance was 0.189. 

Finally, simulations revealed for each value of n, the P05 values are very stable under the 

effect of different variance patterns.  For example, P05 hovers around 0.0022 when n = 3, 

regardless of variance pattern; for n = 5 the P05 value hovers around 0.0056; for n = 7 the 

value hovers around 0.0086.  So indeed the 5
th
 percentile values are stable (within a fixed 

value of n) over the variance patterns we studied.  It remains to be seen if these P05 

values serve as effective critical values for a test of equal means.  This question will be 

studied in subsequent research. 

 

Key Words: Fisher’s F test, chi-square approximation, Likelihood Ratio Test, α 

 

 

1. Introduction 

 
Testing equality of means is a very common task encountered by researchers and 

statistical consultants.  To test equal means using Fisher’s F test, the analysis of variance 
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requires the usual assumptions of k independent random samples from k normal 

distributions with equal variances (Kuehl, 2000).   

 

In this work I studied the sampling distribution of the likelihood ratio test statistic, λ, in 

testing equality of four means.  From these sampling distribution results, I will develop a 

test based on the 5
th
 percentile of λ’s, which does not depend on the Chi-Square 

approximation.  In years past, when this approximation was first developed (Wilks, 

1938), statisticians had to depend on an approximation, because cheap and high speed 

personal computers were not easily available at that time.  They would make their 

decision regarding the rejection of Ho based on a conveniently available Chi-Square 

table. 

 

In addition to the aforementioned sampling distribution, I studied the rejection rates for 

the conventional F test and the -2log (λ) in testing equality of means.  Many studies have 

examined the robust properties of the F test under minor to moderate violations of 

assumptions (Box, 1954, Horsnell, 1953), and I wanted to observe these effects in the 

exact context of my sample sizes and parameter settings.  

 

In summary, my main goal is to derive the likelihood ratio test, and study the distribution 

of the λ statistic without using the chi-square approximation. From this sampling 

distribution, we can obtain critical values for a robust test (5
th
 percentile), and tabulate an 

array of these values to be used by consultants. Using SAS simulations, a table of the 5
th
 

percentiles was generated under the effect of different variance patterns.   

 

If the fifth percentile (PO5) is stable over different variance patterns (for fixed n, fixed 

number of populations and equal means), consulting statisticians may be able to test 

equality of means, for small n, without a concern about how variances differ.  

 

2. Review of Literature 

 

2.1 Likelihood Ratio Test 
The notion of using the magnitude of the ratio of two probability density 

functions as the basis of a best test or of a uniformly most powerful test can be 

modified and made intuitively appealing, to provide a method of constructing a 

test of a composite hypothesis against an alternative composite hypothesis or of 

constructing a test of a simple hypothesis against an alternative composite 

hypothesis, when a uniformly most powerful test does not exist. This method 

leads to tests called likelihood ratio tests. (Hogg and Craig, 1995, P. 413) 

The likelihood ratio test (in the context of my study) is based on the assumption of 

normally distributed random errors and four independent random samples.  The ratio of 

likelihood function (when Ho is true) to the likelihood function (when Ha is true) is 

called the likelihood ratio and is defined by  (x1, x2, …, xn) =  
 ( ̂)

 ( ̂)
.The values of    

ranges from 0 to 1. A small value of  leads to rejection of Ho. Intuitively, if the 

numerator is small in relation to the denominator, this indicates that the data being tested 

is not likely to originate from conditions existing if the null hypothesis is true.  

 

2.2 An Application of the of Likelihood Ratio Test (LRT) 
Allison et al. (1999) tested the robustness of the Likelihood Ratio Test in a variance 

component Quantitative-trait Loci-Mapping procedure. They investigated the robustness 
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of the LRT for a variance component quantitative trait locus detection procedure to 

violations of normality. A FORTAN program was written to simulate data for the various 

conditions to be tested where they considered various type I error rates and distributions.   

 

Authors argued that some types of non-normality produced type I error rates in excess of 

the normality whereas others did not; and that the degree of type I error –rate inflation 

appeared to be directly related to the residual sibling correlation. In the normal data, the 

type I error rates were found consistent with the nominal alpha levels. In some mixture 

data the empirical type I error rates were consistent with the nominal alpha levels 

whereas in others the type I error rates was slightly exceeded the nominal alpha levels. 

The excess error probability was found higher for small samples as compared with the 

larger sample size. In the chi-square distribution, the empirical type I error rates were 

exceed the nominal alpha levels by a degree that is directly related to the degree of 

correlation among the sibling phenotypes. Result for the symmetric but kurtotic Laplace 

distributions were found similar to those for chi square distributions. They observed that, 

for mixture distributions, increased sample size considerably decreased the size of the test 

whereas the highly kurtotic distributions showed virtually no improvement with increased 

sample size. 

   (
  ̂ 

   
)

     

 (
  ̂ 

   
)

     

 

 

2.3 The generalized Likelihood Ratio test for the Behrens-Fisher problem 
 A solution is suggested for the Behrens-Fisher problem of testing the equality of 

the means from two normal populations where variances are unknown and not 

assumed equal, by considering an adaption of the generalized likelihood ratio 

test. The test developed and called the adjusted likelihood ratio test has size close 

to the nominal significance level and compares favorably with regard to size and 

power to the Welch-Aspin test. An asymptotic result showed the connection 

between the generalized likelihood ratio test and the most commonly used test 

statistic for the Behrens-Fisher problem. (Cox & Jaber, 1990, P. 63) 

 

They defined and established the relationship between Likelihood ratio test (LRT) and 

the Behrens-Fisher distribution. Behrens-Fisher distribution was defined by the following 

quantity: 

    
(      )  (  ̅̅ ̅̅     ̅̅ ̅̅ )

(
   

  
   

   

  
)
    

Where, µi, ȳi, S
2

i and ni (i = 1, 2) are population means, sample means, sample variance 

and sample size respectively. Similarly, they defined the generalized likelihood ratio test 

for two populations as:  

 Ʌ = 

   (          )
  

   (          )
  

  

When σ
2
1 = σ

2
2 the LRT is simply the two sample t-test but when σ

2
1 ≠ σ

2
2, the LRT is 

given by:  

They demonstrated that, the asymptotic distribution of λ is obviously Chi-square 

distribution with one degree of freedom (λ = V
2
). The LRT was very conservative and 

allowed the size to be much smaller than α for certain values of C. The adjusted 

likelihood ratio test was in contrast to the method of Bozdogan and Ramirez who adapted 

the generalized likelihood ratio test by adjusting the degrees of freedom in the 

approximate chi-square distribution of λ. They estimated size at various values of C for 
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all the tests, the estimate being the proportion of number of times that the null hypothesis 

of equal population means was rejected.  

 

Authors showed that the size of Cochran’s test and McCullough-Banerjee’s test was 

always much less than the nominal significance level, the later always had slightly less 

size than the formal. LRT, Welch, Dixon and Massey, and Welch and Aspin tests lied 

within the sampling confidence limits of α.  It was demonstrated that LRT and the 

Welch-Aspin test were comparable and performed well regarding control of size. It was 

found that the Cochran test and McCullough-Banerjee test always had size less than the 

nominal significance level, while the Dixon & Massey test nearly always had size greater 

than the sizes of all the other tests. These three tests had the largest deviations from the 

nominal significance level. The Welch test performed better than these three tests but not 

as well as LRT and the Welch-Aspin test. LRT and the Welch-Aspin test had comparable 

power, although in most cases the power of LRT was just slightly higher than that of the 

Welch-Aspin test.  

 

A comparison of the Bozdogan and Ramirez method for using the LRT for the Behrens-

Fisher problem was made with LRT. It was found that the adjusted likelihood ratio test 

described in this research controlled the size better than that of Bozdogan and Ramirez 

(BR). It was also found that the size of BR was always slightly greater than that of LRT. 

Simulation studies of the power showed BR to have power equal to LRT or marginally 

greater. This showed that LRT and BR were very similar to behavior but LRT keeping 

better to nominal significance level.  

 

In brief, the authors recommended the Welch-Aspin test in terms of size and power to test 

equal means. The proposed generalized likelihood ratio test was shown to be comparable 

to the Welch-Aspin test and in most instances will be slightly more powerful. 

 

2.4 A Robust Likelihood Ratio Test: Testing Equal Means in the Presence of 

Unequal Variance 
Yan (2009) studied the sampling distribution of the likelihood ratio statistic, denoted by 

λ, within the context of unequal variances. Again, simulations were built upon 

independent random sampling from four normal distributions (with unequal variance).  

The variance patterns in this study were 1,1,1, σ4
2
  , where  σ4

2
 = 1,2,4,6,8,10,15, and 30 .  

Empirical alpha values for the F test, and the Chi-square approximation were studied, and 

the P05 values were generated. 

 

Simulation results revealed for a fixed n (such as n = 3) the empirical alpha for the F test 

began very close to 0.05 and increased as the variance for population four was increased 

to 30.  For example (n=3) the alpha progressed from 0.051 to 0.143.   As n increased to 

25, the final alpha hovered around 0.10.  The same increasing trend was exhibited for the 

-2 log (λ); however the alphas started much higher for this test.  For example, the alpha 

for equal variance and n = 3 was 0.188. 

 

Yan also used these P05 values as critical values for test of equal means in a subsequent 

set of simulations.  The new test seemed to maintain the prescribed alpha (0.05) in 

response to different variance patterns (changes in variance four).  However it should be 

noted that the success of these simulations rested upon a circular logic; the variance 

patterns used in developing the table of critical values were the same pattern used to 

generate the data.  The utility of the new test should be evaluated with data generated 
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from a set of more general variance patterns.    

 

Yan’s work is the direct precursor for my current work. In another words, my current 

work is the extension and continuation of Yan’s work. The parameter settings on my 

study are much difference than the Yan’s work which is presented on methods section. 

 

3. Methods 

 

3.1 Simulation details 

To study the sampling distribution of   and the empirical rejection rates of F and -2 log 

(λ), simulations were performed using Proc IML (SAS: Interactive Matrix Language, 

2004). Alpha was set at 0.05 and there were 20,000 trials for each sample size-parameter 

combination. Each trial was composed of four independent random samples from four 

normal distributions with parameter combinations as outlined below. Within each 

simulation, the rejection rate of the F test (reject Ho: yes or no) and the rejection rate for -

2 log (λ) was counted.  Also the λ values were stored for the calculation of P05 and 

production of graphs. Univariate procedure using SAS (9.2) was used to calculate the 5
th
 

percentile (P05) of λ. 

 

3.2 Parameter settings 
Random samples were drawn from four normal distributions with equal means but the 

variances were unequal.  Sample sizes ranged from 3 to 15(increments of 2, 3 and 5). 

Emphasis was given on examining small sample sizes. Population means were all set 

equal to zero. For each sample size studied, there were seven different variance patterns. 

Only the first variance pattern meets the assumptions required for Fisher’s F test.  So, for 

each sample size, there were 7 combinations of these four variances which are shown in 

table 1. 

 

 

Table 1: Variance Patterns 

 

1 2 3 4 5 6 7

σ1
2

1 1 0.25 0.5 2 2.5 4

σ2
2

1 2 0.50 1.0 4 5 8

σ3
2

1 3 0.75 1.5 6 7.5 12

σ4
2

1 4 1.00 2.0 8 10 15

Variance Codes
Parameters

 
 

Sample sizes: 3, 5, 7, 10, 15 

 
3.3 Derivation of Likelihood ratio test (LRT) 

In the context of my study, I sampled from four populations which all were normally 

distributed and I wanted to test the following hypotheses:  

 

Ho: µ1 = µ2 = µ3 = µ4, variances are unspecified.  

Ha: µi were not equal, variances are unspecified. 
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3.4 Maximum Likelihood Estimator (MLE) under Ho 

Under Ho, we had five equations and five unknowns. We have the following four 

populations with equal means (µ) and differing variances (θ
i
). We took n random samples 

from each of the populations such that: 

  x1, x2,… ,xn was a random sample from a population,  where X ~N(µ, θ
1
 ),  

y1, y2,…,yn was a random sample from a population, where  Y ~N(µ, θ
2
 ), 

z1, z2,…,zn  was a random sample from a population, where  Z ~N(µ, θ
3
 ), 

w1, w2,…,wn was a random sample from a population, where  W ~N(µ, θ
4
 ).  

 

Under null hypothesis, Ho true implies that the four population means are equal and this 

lets us use µ instead of µi..Then the likelihood function is the joint pdf of four populations 

as a function of µ and θ
i 
, which can be shown as follows: 

L(µ, θ1
, θ

2
, θ

3
, θ

4
)= 



n

i 1

f(x
i
| µ,θ1)



n

i 1

f(y
i
| µ,θ2)



n

i 1

f(z
i
| µ,θ3)



n
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| µ,θ4)      = 
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Maximizing the log transformed likelihood function is generally easier. 

 Log L (µ, θ1
, θ

2
, θ

3
, θ

4
) = - 2n log (2) -
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Taking the partial derivative with respect to the mean and setting the equation to zero, 

gives us: 
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The maximum likelihood estimator (MLE) of µ is:  
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By the similar procedure, we get estimators of the other parameters: 
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3.5 Maximum Likelihood Estimator (MLE) under Ha 

Under Ha, we had eight equations and eight unknowns. The likelihood function is:                                       

L(µ1, µ2, µ3, µ4, θ1, θ2, θ3, θ4 )= 
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Taking partial derivatives with respect to individual parameters and setting the equations 

equal to zero gives: 
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Similarly, I derived other ML estimators as follows:  
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3.6 Likelihood ratio test statistic 

 

The ratio of likelihood under Ho true and Ha true is denoted by lambda. 
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Where ia ̂ , i=1, 2, 3, 4 was variance estimator when Ha was true, and i̂0 , i=1, 2, 3, 4 

was variance estimator when Ho was true. 
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(Note: Some step by step algebraic computations are omitted in this derivation). 

 

4. Results 

 

Table 2 contains the empirical alphas for the F test and the -2 log ().  It also contains the 

robust test (P05) values for the sampling distribution of the likelihood ratio statistic. This 

table summarizes the rejection rates (the alpha values) for 20,000 trials generated from a 

certain sample size and variance combination. Note that the P05 values are stable over a 

spectrum of variance patterns. 

 

The results from table 2 are summarized in figures 1, 2 and 3 below.  Figure 1 contains 

the empirical alpha values for the F test as a function of sample size and variance pattern.   

Figure 2 contains the empirical alpha values for the -2 log () results (as a function of 

sample size and variance pattern) and figure 3 contains the P05 for the likelihood ratio 

test statistic, as a function of sample size and variance patterns.  

 

 
Figure 1: Empirical alpha, F test, 20,000 trials per simulation, three simulations 

per sample size and variance combination 
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Figure 2: Empirical Alpha, -2 log (λ), 20,000 trials per simulation, three 

simulations per sample size and variance combination 
  

 

 
 

Figure 3: Empirical Alpha, 5 
th

 Percentile, PO5, 20,000 trials per simulation, 

three simulations per sample size and variance combination 
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Table 2: Empirical Alpha (Simulated rejection rates) for F test, Chi-Square test, and PO5 

Mean value of 3 replications of 20,000 trials (n = 3, 5, 7, 10)  

  

Variance n Alpha, F Alpha, -2 log(λ) Alpha, PO5

1,1,1,1 3 0.050083 0.188883 0.002511

1,2,3,4 3 0.061183 0.194743 0.00225

0.25,0.50,0.75,1.00 3 0.058933 0.1929 0.00216

0.5,1.0,1.5,2.0 3 0.059367 0.192667 0.002195

2,4,6,8 3 0.062155 0.191433 0.00218

2.5,5.0,7.5,10.0 3 0.059933 0.191917 0.002172

4,8,12,15 3 0.05765 0.193283 0.002225

1,1,1,1 5 0.0505 0.118283 0.00579

1,2,3,4 5 0.059967 0.118633 0.005714

0.25,0.50,0.75,1.00 5 0.058983 0.118267 0.005571

0.5,1.0,1.5,2.0 5 0.058833 0.1183 0.005763

2,4,6,8 5 0.059933 0.120233 0.005601

2.5,5.0,7.5,10.0 5 0.057817 0.117333 0.005762

4,8,12,15 5 0.058567 0.118767 0.005729

1,1,1,1 7 0.049333 0.093983 0.008546

1,2,3,4 7 0.057533 0.095217 0.008414

0.25,0.50,0.75,1.00 7 0.058717 0.09555 0.008251

0.5,1.0,1.5,2.0 7 0.056867 0.0931 0.008685

2,4,6,8 7 0.0595 0.0953 0.008277

2.5,5.0,7.5,10.0 7 0.058783 0.097767 0.008257

4,8,12,15 7 0.056717 0.09355 0.008733

1,1,1,1 10 0.049533 0.076967 0.011725

1,2,3,4 10 0.0586 0.081817 0.010601

0.25,0.50,0.75,1.00 10 0.057667 0.077983 0.01107

0.5,1.0,1.5,2.0 10 0.058967 0.079833 0.010886

2,4,6,8 10 0.0578 0.08016 0.010989

2.5,5.0,7.5,10.0 10 0.05995 0.080333 0.010981

4,8,12,15 10 0.056567 0.079017 0.011082  
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Table 2 (Contd.): Empirical Alpha (Simulated rejection rates) for F test, Chi -

Square test, and PO5 Mean value of 3 replications of 20,000 trials (n = 15)                                                        
 

Variance n Alpha, F Alpha, -2 log(λ)

1,1,1,1 15 0.050083 0.068933

1,2,3,4 15 0.057717 0.069217

0.25,0.5,0.75,1 15 0.059517 0.069517

0.5,1,1.5,2 15 0.057533 0.069283

2,4,6,8 15 0.057467 0.069

2.5,5,7.5,10 15 0.057367 0.067233

4,8,12,15 15 0.0563 0.06755  
 

 

5. Discussions 

 
From my results, we can see that the simulated alpha for the F test is close to 0.05 for the 

equal variance case, but increases above α=0.05 (see figure 1) as the variances for all four 

populations were different (I have six such variance patterns). The estimated alpha for the 

six (unequal variance and sample size) combinations hovers around 0.056 – 0.062. 

Sample sizes essentially have no impact on the simulated alphas in this current work.  

 

The simulated alpha for the - 2 log (λ) test is far above 0.05 for any sample size and 

variance pattern we have studied, but as the sample size increases, the simulated alphas 

are getting closer to 0.05 (no matter if the variances are equal or unequal) (see figure 2). 

The different variance patterns have no impact on the simulated alphas within the fixed 

sample size. In another words, for n = j, the simulated alpha remains constant for any 

variance combination. 

 

Based on my research for a fixed value of n, the 5
th
 percentile of lambda (PO5) is 

relatively stable over differing variance patterns (figure 3).  It remains to be seen whether 

the critical values (P05) can serve as robust rejection regions for data originating from a 

variety of variance patterns. 

 

This work is a continuation and extension of the work done by Yan, X. (2009). In that 

study, the simulated alpha for the F test was close to 0.05 for the equal variance case, but 

increased above α=0.05 as the variance increased for population four. The simulated 

alpha for the -2 log (λ) test was far above 0.05 for small sample sizes, but as the sample 

size increases, the simulated alphas were somewhat closer to 0.05 (no matter if the 

variances were equal or unequal).  

 

It should be noted that a mistake was found in the maximization algorithm used by Yan 

which lowered the original P05 values for n = 3 and n = 5.  A corrected table of P05 

values is included below (table 3).  For example, the corrected P05 values for n = 3 hover 

around 0.0023 instead of the original 0.001.  Also the corrected values for the n = 5 case 

are larger than the originally reported values. 
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Table 3: Corrected PO5 values (mean of 3 replications of 20,000 trials) 

 

n =3 n =5

1,1,1,1 0.00241289 0.00582421

1,1,1,2 0.00244107 0.00605153

1,1,1,4 0.00229622 0.00603319

1,1,1,6 0.00217265 0.00602717

1,1,1,8 0.00219454 0.00548039

1,1,1,15 0.00214943 0.00579775

1,1,1,30 0.00209895 0.00581112

Simulated Alpha, PO5
Variance

 
 

 
It is worth comparing my P05 values to Yan’s values (n=3 or n = 5 for example) with the 

caveat that the two sets of generating variances were different in nature. Another 

comment arises from the visual comparison of the Falpha values of Yan versus my current 

study.  The pattern of three equal variances (with one increasing variance) seems to have 

a more detrimental effect on the F test than the variance patterns we used.  One 

explanation would be that the F tests (from Yan) were based on a pooled variance 

estimate from 3 ‘equal’ variances, and hence the larger variance contributed less to the 

pooled estimate (MSE).  As a result Yan’s MSEs was generally based on the smaller 

variance value, and hence she had more power in those F tests. 

 
6. Limitations 

 

My results focus on the case of four normal populations with equal means.  I have 

examined seven different variance patterns and five different sample sizes. I have not 

studied other variance patterns and more levels of treatment. I also studied only the 

balanced cases.     

 

7. Future Research 

 

Future research requires that other variance patterns can be evaluated to determine if the 

new test is robust to more general variance patterns.    In addition, a larger number of 

populations can be evaluated (larger than the four studied currently) and critical values 

for other alpha levels could be obtained. Further research could focus on some other 

design structures like incomplete block design, split plot design and some other treatment 

structures like factorial designs, empty cells (cell means model), etc. 
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