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ABSTRACT
Receiver Operating Characteristic (ROC) curves are often used to evaluate the prognostic
performance of a biomarker which might be used to supplement or replace standard clini-
cal examinations. In a previous study, a non-parametric ROC approach was introduced to
compare two biomarkers with repeated measurements. An asymptotically normal statis-
tic, which contains the subject-specific weights, was developed to estimate the areas under
the ROC curve of biomarkers. Although two weighting schemes were suggested to be
optimal when the within-subject correlation is 1 or 0 by the previous study, the univer-
sal optimal weight was not determined. We modify this asymptotical statistic to compare
AUCs between two correlated groups and propose a solution to weight optimization in non-
parametric AUCs comparison to improve the efficiency of the estimator. It is demonstrated
how the Lagrange multiplier can be used as a strategy for finding the weights which min-
imize the variance function subject to constraints. We show substantial gains of efficiency
by using the novel weighting scheme when the correlation within subject is high, the cor-
relation between groups is high, and/or the disease incidence is small, which is the case
for many longitudinal matched case control studies. An illustrative example is presented to
apply the proposed methodology to a thyroid function dataset. Simulation results suggest
that the optimal weight performs well with a sample size as small as 50 per group.
KEY WORDS:Receiver Operating Characteristic (ROC); biomarker evaluation; repeated
measurements; weight optimization; the Lagrange multiplier; correlated groups; asymptotic
relative efficiency (ARE).

1 Introduction

In many clinical trials, the correlated-groups designs are preferred by researchers due to
increased statistical power. There are two ways of introducing the correlation among par-
ticipants in correlated-groups designs: (1) by having a single group of participants exposed
to all of the conditions (repeated measures designs); and(2) by matching participants on
some important variable(s)(matched-subjects designs). In a matched-subjects design study
that has the biomarker with the repeated measurements, it may be of clinical interest to com-
pare the diagnostic/prognostic performance of the biomarker between correlated groups to

JSM 2013 - ENAR

637



determine if the diagnostic/prognostic accuracy in one of the groups is superior. Under
these circumstances, the statistics for comparing the biomarkers need to deal with not only
within-subject but also between-group correlations.
For evaluating a repeated biomarker in a single group, Emir et al. (1998) proposed a non-
parametric estimate of sensitivity and specificity. In 2000, Emir et al. further extended the
earlier research and derived the estimation of AUC under the ROC curve for a repeated
biomarker. An asymptotic normal statistic was developed to test area under the ROC curve
of a repeated biomarker in a single group and the bootstrap method was used to obtain
the variance of this estimate. The approach allows for estimating AUC in the presence
of within-subject (repeated) correlation. It involves estimating subject-specific sensitivities
and specificities and taking weighted averages of these estimates over all subjects.
The nonparametric estimate of AUC proposed by Emir et al. (2000) involves assigning
a weight to each subject. Two weighting schemes were suggested: (1) assigning equal
weights to all biomarker measurements, and (2) assigning equal weights to all subjects.
It was suggested that weighting scheme 1 would be optimal when the correlation within
subject is 1 and that weighting scheme 2 would be optimal when the correlation within
subject is 0. However, the universal optimal weights were not determined. More recently, a
novel solution to the weight optimization problem was introduced by Wu et al. (2011), who
proposed the Lagrange Multiplier Method to find the optimal weights, which minimize the
variance of AUC estimate for a single repeated biomarker or comparing AUCs from two
biomarkers in a single group. The optimal weights for AUC comparison proposed by Wu et
al. (2011) dealt with the difference of paired biomarkers from the same subject. To compare
AUCs of a repeated biomarker between two correlated groups, we may apply Wu et al.’s
method (2011) to each group and obtain two sets of weights, one for each group. However,
these weights would not be optimal because the method cannot take the between-group cor-
relation into consideration as the disease progression may be different, and the number of
biomarker measurements may be different between groups. A generalization of interest for
us is to find the universal optimal weights for comparing AUCs of a repeated biomarker be-
tween two correlated groups. The goals of this article are to modify the asymptotic statistics
by Emir et al. (2000) to compare AUCs between two correlated groups and obtain the vari-
ance of this estimate; to determine the optimal weight sets which can minimize the variance
of this estimate; to demonstrate the asymptotic relative efficiency of the optimal weighting
scheme; and to show how the between-group correlation, the within-subject correlation,
and the incidence rate of disease impact the efficiency.

2 Non-parametric comparison of two correlated AUCs

2.1 Notations

Suppose that we have a random sample of n subjects who were exposed to some existing
conditions (the exposed group). Each subject in the exposed group was mathced to a subject
who was not exposed to the conditions, based on some confounding variables, such as
age or gender. The n subjects resulting from the matching form the non-exposed group.
All subjects are being followed for the outcome of disease progression. A biomarker was
repeatly measured over time until the end of study or the disease progression. Let Xijl be
the continuous random variable whose observations are the biomarker values obtained from
the ith group (i = 1 if exposed group and i = 2 if non-exposed group), for the jth subject
(j = 1, 2, · · · , n), at the lth non-progression visit (l = 1, 2, · · · ,mij), where mij is the
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number of non-progression visits for subject j in group i. Let Yij be the continuous random
variable associated with values for the same biomarker from the jth subject in the ith group
at the progression visit. Also let δij = 1 if subject j in the ith group became a progressor
and = 0 otherwise. Define Di =

∑n
j=1 δij as the total number of progressors in the ith

group. Let Fi and Gi be the distribution functions of Xijl and Yij , respectively. Further,
let θi represent area under the respective ROC curves of biomarker in the ith group. In this
article, we discuss test for the null hypothesis of H0 : θ1 − θ2 = 0 versus the alternative
hypothesis H1 : θ1 − θ2 6= 0.

2.2 Non-parametric estimate of area under the ROC

Assume that the biomarker will be considered to be positive if the value of Xijl or Yij
exceeds a predetermined thredhold c. Non-parametric estimate of area under the ROC curve
for the biomarker can be obtained using standard method based on the empirical cumulative
distribution functions (CDFs) corresponding to Fi and Gi. Area under the ROC curve of
a repeated biomarker for the ith group is θi =

∫∞
−∞ Fi(c)dGi(c). The corresponding area

estimate, θ̂i, is given by

θ̂i =

∫ ∞
−∞

F̂i(c)dĜi(c), (2.1)

where

F̂i(c) =
n∑
j=1

wij

{
1

mij

mij∑
l=1

I(xijl ≤ c)

}
,

Ĝi(c) =
1

Di

n∑
j=1

δijI(yij ≤ c),

and (wi1, · · · , win) is a set of weights assigned to subjects in the ith group, satisfying
wij > 0, j = 1, · · · , n and

∑n
j=1wij = 1.

Let ∆ = θ1 − θ2 be the true AUC difference between two correlated groups. The non-
parametric estimate of ∆ is ∆̂ = θ̂1 − θ̂2, given by

∆̂ =

∫ ∞
−∞

F̂1(c)dĜ1(c)−
∫ ∞
−∞

F̂2(c)dĜ2(c). (2.2)

In next section, we will consider the optimal weights to minimize the variance of ∆̂.

3 The optimal weighting scheme

The estimate of ∆̂ involves a set of weights in each group. We can use two simple weight-
ing schemes that were provided in Emir et al. (2000): (1) assigning equal weights to all
biomarker observations in each group, i.e., wij = mij/

∑n
j′=1mij′ , when the within-

subject correlation is low; or (2) assigning equal weights to all subjects in each group,
i.e., wij = 1/n when the within-subject correlation is high. Alternatively, we may use the
Lagrange Multiplier Method to derive the optimal weights which can minimize the variance
of ∆̂.
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To derive the optimal weights, we utilize the following fact

∆̂−∆ =

n∑
j=1

(ε1j + ξ1j − ε2j − ξ2j) + o(n−1/2), (3.1)

where

εij =
δij
Di

∫ ∞
−∞

Fi(c)d {I(yij ≤ c)−Gi(c)} ,

ξij =
wij
mij

mij∑
l=1

∫ ∞
−∞
{I(xijl ≤ c)− Fi(c)} dGi(c).

The proof of (3.1) above can be found in Appendix of publication by Emir et. al (2000).
Defining the transformations

Uijl = Gi(xijl), Vij = Fi(yij), (3.2)

we can express the variances of θ̂1 and θ̂2, and the covariance between θ̂1 and θ̂2 in terms
of Uijl and Vij . They are

V ar
n∑
j=1

(ε1j + ξ1j) = σ2u1

n∑
j=1

∑
l 6=l′ corr(U1jl, U1jl′)

m2
1j

w2
1j

−2σu1σv1
D1

n∑
j=1

w1jδ1j
m1j

m1j∑
l=1

corr(U1jl, V1j) +
σ2v1
D1

,

V ar
n∑
j=1

(ε2j + ξ2j) = σ2u2

n∑
j=1

∑
l 6=l′ corr(U2jl, U2jl′)

m2
2j

w2
2j

−2σu2σv2
D2

n∑
j=1

w2jδ2j
m2j

m2j∑
l=1

corr(U2jl, V2j) +
σ2v2
D2

,

Cov(

n∑
j=1

(ε1j + ξ1j),

n∑
j=1

(ε2j + ξ2j)) = σu1σu2

n∑
j=1

n∑
j=1

w1jw2jcorr(U1jl, U2jl)

m1jm2j

+
σu2σv1
D1

n∑
j=1

w2jδ1j
m2j

m2j∑
l=1

corr(U2jl, V1j)

+
σu1σv2
D2

n∑
j=1

w1jδ2j
m1j

m1j∑
l=1

corr(U1jl, V2j)

+
σv1σv2

∑n
j=1 δ1j

∑n
j=1 δ2jcorr(V1j , V2j)

D1D2
,

where σ2u1 = V ar(U1jl), σ
2
v1 = V ar(V1j), σ

2
u2 = V ar(U2jl), and σ2v2 = V ar(V2j).
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Thus, the variance of ∆̂ given mij can be expressed as

V ar(∆̂|mij) = Var
n∑
j=1

(ε1j − ε2j + ξ1j − ξ2j)

= V ar
n∑
j=1

(ε1j + ξ1j) + V ar
n∑
j=1

(ε2j + ξ2j)− 2Cov(
n∑
j=1

(ε1j + ξ1j),
n∑
j=1

(ε2j + ξ2j))

=
n∑
j=1

a1jw
2
1j − 2

n∑
j=1

b1jw1j +
n∑
j=1

a2jw
2
2j − 2

n∑
j=1

b2jw2j − 2
n∑
j=1

cjw1jw2j + d,(3.3)

where

a1j =

∑m1j

l,l′=1 σ
u1u1
ll′

m2
1j

,

a2j =

∑m2j

l,l′=1 σ
u2u2
ll′

m2
2j

,

b1j =
δ1j
∑m1j

l=1 σ
u1v1
l

D1m1j
−
δ2j
∑m1j

l=1 σ
u1v2
l

D2m1j
,

b2j =
δ2j
∑m2j

l=1 σ
u2v2
l

D2m2j
−
δ1j
∑m2j

l=1 σ
u2v1
l

D1m2j
,

cj =

∑m1j

k

∑m2j

l σu1u2kl

m1jm2j
,

d =
σv1v1

D1
+
σv2v2

D2
− 2

σv1v2

D1D2
,

with σuiuill′ = Cov(Uijl, Uijl′), σuivil = Cov(Uijl, Vij) and σvivi = Cov(Vij , Vij).
The method of Lagrange Multiplier provides a strategy for finding the maxima or minima
of a function subject to constraints. By applying the Lagrange Multiplier Method in this
case, the optimal weights can be obtained to minimize the variance function (3.3) with
constraints w1j > 0, w2j > 0, (j = 1, · · · , n),

∑n
j=1w1j = 1 and

∑n
j=1w2j = 1. The

Lagrange function is defined as

L(w11, · · · , w1n;w21, · · · , w2n;λ;µ) = V ar(∆̂|mij) +λ(1−
n∑
j=1

w1j) +µ(1−
n∑
j=1

w2j),

where λ and µ are the two Lagrange multipliers.
The partial derivatives of the Lagrange function with respect to w1j and w2j are{

dL(w11,··· ,w1n;w21,··· ,w2n;λ;µ)
dw1j

= 2a1jw1j − 2b1j − 2cjw2j − λ = 0;
dL(w11,··· ,w1n;w21,··· ,w2n;λ;µ)

dw2j
= 2a2jw2j − 2b2j − 2cjw1j − µ = 0.

(3.4)

Let

Hj =

(
a1j −cj
−cj a2j

)
, w̃j =

(
w1j

w2j

)
, b̃j =

(
b1j

b2j

)
,

and

χ̃ =

(
λ

µ

)
,
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the system equations (3.4) can be expressed in a matrix format. That is

2Hjw̃j − χ̃− 2b̃j = 0.

We obtain:
w̃j =

1

2
H−1j (χ̃+ 2b̃j). (3.5)

Let

Ĩ =

(
1

1

)
,

the constraint equations can be written in the matrix format. That is

n∑
j=1

w̃j =

n∑
j=1

1

2
H−1j (χ̃+ 2b̃j) = Ĩ ,

we can solve for χ̃, which is given by

χ̃ = 2(
n∑
j=1

H−1j )−1

Ĩ −
 n∑
j=1

H−1j b̃j

 . (3.6)

Next, plugging (3.6) into (3.5), we obtain the optimal weights as

w̃j = H−1j

 n∑
j=1

H−1j

−1 Ĩ −
 n∑
j=1

H−1j

−1 n∑
j=1

H−1j b̃j

+ b̃j

 . (3.7)

The optimal weights involve the unknown parameters, which can be consistently estimated
from estimated transformed data (Ûijl, V̂ij)

Ûijl = Ĝi(xijl), V̂ij = F̂i(yij),

The estimates of unknown parameters calculated from the estimated transformed data are
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given as

σ̂u1u1ll′ =

∑n
j=1 δ1jlδ1jl′(Û1jl − Ū1l)(Û1jl′ − Ū1l′)∑n

j=1 δ1jlδ1jl′
,

σ̂u2u2ll′ =

∑n
j=1 δ2jlδ2jl′(Û2jl − Ū2l)(Û2jl′ − Ū2l′)∑n

j=1 δ2jlδ2jl′
,

σ̂u1u2kl =

∑n
j=1 δ1jkδ2jl(Û1jk − Ū1k)(Û2jl − Ū2l)∑n

j=1 δ1jkδ2jl
,

σ̂u1v1l =

∑n
j=1 δ1jlδ1j(Û1jl − Ū1l)(V̂1j − V̄1)∑n

j=1 δ1jlδ1j
,

σ̂u1v2l =

∑n
j=1 δ1jlδ2j(Û1jl − Ū1l)(V̂2j − V̄2)∑n

j=1 δ1jlδ2j
,

σ̂u2v2l =

∑n
j=1 δ2jlδ2j(Û2jl − Ū2l)(V̂2j − V̄2)∑n

j=1 δ2jlδ2j
,

σ̂u2v1l =

∑n
j=1 δ2jlδ1j(Û2jl − Ū2l)(V̂1j − V̄1)∑n

j=1 δ2jlδ1j
,

σ̂v1v1 =

∑n
j=1 δ1j(V̂1j − V̄1)(V̂1j − V̄1)∑n

j=1 δ1j
,

σ̂v2v2 =

∑n
j=1 δ2j(V̂2j − V̄2)(V̂2j − V̄2)∑n

j=1 δ2j
,

σ̂v1v2 =

∑n
j=1 δ1jδ2j(V̂1j − V̄1)(V̂2j − V̄2)∑n

j=1 δ1jδ2j
,

where δijl = 1 if the jth subject in the ith group has the lth non-progression visit and =0
otherwise; δij = 1 if the jth subject in the ith group has the disease progression visit and
=0 otherwise; Ūijl =

∑n
j=1 δijlÛijl/

∑n
j=1 δijl and V̄ij =

∑n
j=1 δij V̂ij/

∑n
j=1 δij and so

on. The estimated optimal weights are then obtained by plugging those estimates into (3.7).
Since Ĝi(xijl) includes wij , we may iteratively estimate wij and Gi(.) until it converges,
or, to allow for a closed-form solution, we may replace ŵij in Ĝi(xijl) with any simple
weight such as wij = mij/

∑n
j′=1mij′ or wij = 1/n.

Now consider three special cases: (1) there is no within-subject correlation between any
two time points, ρu1u1 = ρu1v1 = 0 and ρu2u2 = ρu2v2 = 0. In this case, the optimal
weight becomes wij = mij/

∑n
j′=1mij′ , which means that the simple weighting scheme

1 suggested by Emir et al. (2000) is optimal; (2) there is perfect within-subject correlation
between any two time points, ρu1u1 = ρu1v1 = 1 and ρu2u2 = ρu2v2 = 1. In this case, the
optimal weight becomes wij = 1/Di for subject j in group i who became a progressor at
some time point, and wij = 0 for subject j in group i who remained a non-progressor until
the end of study, which means that the simple weighting scheme 2 suggested by Emir et al.
(2000) is not optimal unless Di = n, that is, all subjects in both groups became progressors
at some time point during the study period; (3) there is no between-group correlation at any
time point, ρu1u2 = ρu1v2 = ρu2v1 = 0. In this case, the weights by Wu et al. (2011)
are not optimal unless the number of visits and disease incidence rates are the same in two
groups.
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4 Asymptotic variance and the relative efficiency

Let τ1 = limn→∞D1/n, and τ2 = limn→∞D2/n, so τ1 and τ2 are the disease incidence
rates in group 1 and 2 respectively. Let ∆̂1 be the estimator of ∆ using simple weighting
scheme w1j = m1j/

∑n
j′=1m1j′ and w2j = m2j/

∑n
j′=1m2j′ ; and ∆̂2 be the estimator of

∆ using simple weighting scheme w1j = 1/n and w2j = 1/n. To compare our optimal
estimator with ∆̂1 and ∆̂2, we consider the asymptotic variances of ∆̂1 and ∆̂2.

Emir et al. (2000) proved that ∆̂/

√
V ar(∆̂) is approximately normal with N(0, 1). We

can show that
√
n(∆̂1 −∆) is approximately normal with N(0, σ21)

σ21 =
E
∑m1j

l,l′=1 σ
u1u1
ll′

(Em1)2
− 2

E
∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl

(Em1)(Em2)
+
E
∑m2j

l,l′=1 σ
u2u2
ll′

(Em2)2
(4.1)

−2
E
∑m1j

l=1 σ
u1v1
l

Em1
+ 2

E
∑m1j

l=1 σ
u1v2
l

Em1
− 2

E
∑m2j

l=1 σ
u2v2
l

Em2
+ 2

E
∑m2j

l=1 σ
u2v1
l

Em2

+τ−11 σv1v1 + τ−12 σv2v2 ,

where mi = 1
n

∑n
j=1mij and E is the expected value taken with respect to the random

variable of mij .
Similarly, we can also show that

√
n(∆̂2 −∆) is approximately normal with N(0, σ22)

σ22 = E

∑m1j

l,l′=1 σ
u1u1
ll′

m2
1

− 2E

∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl

m1m2
+ E

∑m2j

l,l′=1 σ
u2u2
ll′

m2
2

(4.2)

−2E

∑m1j

l=1 σ
u1v1
l

m1
+ 2E

∑m1j

l=1 σ
u1v2
l

m1
− 2E

∑m2j

l=1 σ
u2v2
l

m2
+ 2E

∑m2j

l=1 σ
u2v1
l

m2

+τ−11 σv1v1 + τ−12 σv2v2 .

Let ∆̂op be the estimate of ∆ obtained by using the estimated optimal weights. We can
show that

√
n(∆̂op −∆) is approximately normal with mean 0 and variance

σ2op =
(
Ĩt − φ̃t

)
Σ−1

(
Ĩ − φ̃

)
− υ + τ−11 σv1v1 + τ−12 σv2v2 , (4.3)

where

φ̃ =

(
e1

e2

)
,
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e1 = lim
n→∞

n∑
j=1

a2jb1j + b2jcj
a1ja2j − cjcj

= τ1
−1E

m1

(∑m1j

l=1 σ
u1v1
l −

∑m1j

l=1 σ
u1v2
l

)∑m2j

l,l′=1 σ
u2u2
ll′∑m1j

l,l′=1 σ
u1u1
ll′

∑m2j

l,l′=1 σ
u2u2
ll′ −

(∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl

)2
+τ2

−1E
m1

(∑m2j

l=1 σ
u2v2
l −

∑m2j

l=1 σ
u2v1
l

)∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl∑m1j

l,l′=1 σ
u1u1
ll′

∑m2j

l,l′=1 σ
u2u2
ll′ −

(∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl

)2 ,
e2 = lim

n→∞

1

n

n∑
j=1

a1jb2j + b1jcj
a1ja2j − cjcj

= τ2
−1E

m2

(∑m2j

l=1 σ
u2v2
l −

∑m2j

l=1 σ
u2v1
l

)∑m1j

l,l′=1 σ
u1u1
ll′∑m1j

l,l′=1 σ
u1u1
ll′

∑m2j

l,l′=1 σ
u2u2
ll′ −

(∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl

)2
+τ1

−1E
m2

(∑m1j

l=1 σ
u1v1
l −

∑m1j

l=1 σ
u1v2
l

)∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl∑m1j

l,l′=1 σ
u1u1
ll′

∑m2j

l,l′=1 σ
u2u2
ll′ −

(∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl

)2 ,

Σ =

(
σ11 σ12

σ21 σ22

)
,

σ11 = lim
n→∞

1

n

n∑
j=1

a2j
a1ja2j − cjcj

= E
m1

2
∑m2j

l,l′=1 σ
u2u2
ll′∑m1j

l,l′=1 σ
u1u1
ll′

∑m2j

l,l′=1 σ
u2u2
ll′ −

(∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl

)2 ,
σ12 = σ21 = lim

n→∞

1

n

n∑
j=1

cj
a1ja2j − cjcj

= E
m1m2

∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl∑m1j

l,l′=1 σ
u1u1
ll′

∑m2j

l,l′=1 σ
u2u2
ll′ −

(∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl

)2 ,
σ22 = lim

n→∞

1

n

n∑
j=1

a1j
a1ja2j − cjcj

,

= E
m2

2
∑m1j

l,l′=1 σ
u1u1
ll′∑m1j

l,l′=1 σ
u1u1
ll′

∑m2j

l,l′=1 σ
u2u2
ll′ −

(∑m1j

k=1

∑m2j

l=1 σ
u1u2
kl

)2 ,
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and

υ = lim
n→∞

n
n∑
j=1

a2jb
2
1j + 2b1jb2jcj + a1jb

2
2j
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)2 .

Let ARE1 = σ2op/σ
2
1 be the asymptotic relative efficiency for comparing ∆̂1 with ∆̂op,

and ARE2 = σ2op/σ
2
2 be the asymptotic relative efficiency for comparing ∆̂2 with ∆̂op. To

demonstrate how the within-subject correlation, the between-group correlation, and the in-
cidence of disease affect ARE1 and ARE2, we consider a special case where variances of
Uijl and Vij are homogeneous across visits and groups, within-subject non-progression and
non-progression correlation coefficients are homogeneous across groups, within-subject
progression and non-progression correlation coefficients are homogeneous across groups,
and between-group correlation coefficients are homogeneous across visits. Specifically,

V ar(Uijl) = V ar(Vij) = σ2,

Corr(Uijl, Uijl′) = Corr(Uijl, Vij) = ρw,

Corr(Uijl, Ui′jl) = Corr(Uijl, Vi′j) = ρb, i 6= i′.

We graph ARE1 and ARE2 against ρw for three different values of ρb, ρb = 0.3, 0.5, 0.7
and three different sets of (τ1, τ2), (τ1, τ2) = (0.5, 0.5), (0.3, 0.3), (0.1, 0.1). The uni-
form distribution of m1, P (m1 = k) = 1/6, k = 1, · · · , 6, and the distribution of m2,
P (m2 = k) = 1/3, 1/3, 1/3, 0, 0, 0, were used to calculate the expectations involved in
ARE1 and ARE2. Figure 1 shows that the efficiency gain of our optimal estimator in-
creases dramatically as ρw increases and (τ1, τ2) decreases, and increases as ρb increases.
The loss of efficiency by using the two simple weighting schemes instead of our optimal
weights can be severe when the within-subject correlation is large and the incidence of
disease is small.

5 Simulation results

Simulations were conducted to examine the finite sample properties of the proposed weight-
ing scheme relative to the simple weight scheme 1 and the simple weight scheme 2 sug-
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gested by Emir et al. (2000) with small sample size. In the absence of disease progression,
the subjects will have the biomarker observed every month for a total of at most six monthly
visits per subject. For each pair of subjects, we generate an independent multivariate normal
random vector Xi = (X11, X12, · · · , X16, X21, X22, · · · , X26), of size 12 × n with mean
vector 0 and variance-covariance matrix Σ = (σll′)12×12 with

σll′ =


1 if l = l′

γ if l, l′ = 1, ..., 6 or l, l′ = 7, ..., 12
λ if l = 1, ..., 6; l′ = 7, ..., 12 or l = 7, ..., 12; l′ = 1, ..., 6.

Note that (X11, X12, · · · , X16) are the observed biomarker values for the subjects in the ex-
posed group and (X21, X22, · · · , X26) for the matched subjects in the non-exposed group,
and that γ and λ are the parameters which introduce correlations within-subject and between-
group respectively. The values of λ and γ were chosen so that the variance-covariance
matrix Σ is positive definite.
We generate disease onset times for the subjects using an exponential distribution such that
the expected disease rates at six months in two groups are ψ1 and ψ2. If a simulated disease
onset time is greater than six months, we define the subject to be a non-progressor at all six
visits and use all six values of Xi for the biomarker. If the disease onset time occurs before
six months, we assume that the disease progession is detected clinically at the next visit. For
example, if a disease onset in the exposed group occurs between the third and fourth visit,
the simulated biomarker values for the first three visits are (x11, x12, x13). We assume the
expected value of the biomarker is increased by 1 at the time of disease onset, so we define
the biomarker value at this fourth visit to be Y1 = x14 +1. With this set-up for both groups,
the true AUC is equal to 0.75 in both groups and the true AUC difference of the biomarker
between groups is ∆ = 0. In our simulation, we set the disease rates to be either equal
or unequal between groups using (ψ1, ψ2) = (0.5, 0.4), (0.4, 0.4), (0.2, 0.4). The disease
rates were chosen to show how the change of disease rate in any group would impact the
efficency. The correlations were either low, moderate or high, using γ = 0.3, 0.5, 0.7, 0.9
and λ = 0.0, 0.3, 0.5, 0.7. The sample size of 50 and the sample size of 100 per group were
considered for each combination of(λ, γ, ψ1, ψ2).
A total of 2000 simulations were replicated. The efficiency of the estimators was esti-
mated using the mean square error (MSE), which was computed using the variance of the
parameter estimates and the estimated bias. Table 2 (n=50) summarizes the results using
the relative efficiency. The results are consistent between both sample sizes. These simula-
tions show that the estimator using optimal weights outperforms both ∆̂1 and ∆̂2 especially
when the within-group correlation is large, which is consistent with the conclusion from the
asymptotic comparisons. As well, the performance is increasing as the between-group cor-
relation increases and the disease incidence rate decreases. Additionally, we also compared
the optimal weights to the weights using Wu et al.’s method (2011). The results (RE3)
indicate up to 20% of efficiency gain when the between-group correlation is being taken
account in the optimal weights.

6 Application on the thyroidism study data

The association between thyroid disorders and risk of breast cancer has long been a subject
of debate. SunCoast CCOP Research Base at the University of South Florida is conducting
a matched-subject design trial to study thyroid function and breast cancer: A pilot study
to estimate the prevalence of thyroid dysfunction in women diagnosed with breast cancer
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Table 1: Results for Comparing Accuracy of TPOAb in Predicting Thyroid Function.
Optimal Weight Simple Weight 1 Simple Weight 2

Estimate -0.014 -0.031 -0.030
Variance 0.0016 0.0025 0.0023

Relative efficiency 1 0.64 0.70

and the magnitude of change in thyroid function post-chemotherapy. Two hundred and fifty
breast cancer patients between ages of 25 and 75, diagnosed with primary, operable, stage
I-III B breast cancer with planned chemotherapy regimen Adriamycin/Cytoxan (AC) plus
a taxane were the trial candidates. Two hundred and fifty healthy voluteers, from the same
general demographic area, without prior history of cancer and within 5 years of the patient’s
age (+/- 5 years) were matched for each cancer patient. All subjects were followed for two
years or until disease onset. All biomarkers were collected at baseline, yearly, and at the
end of study. Free T4 and TSH have been identified as reliable and the most effective tool
for diagnosing thyroid function. They are used to define the status of hypothyroidism as
the gold standard. The antibody TPO is a useful biomarker for establishing the presence
of thyroid autoimmunity as the cause of hypothyroidism. Previous studies have shown that
the higher the TPOAb concentration, the more rapid the development of hypothyroidism.
If the women with breast cancer are at higher risk of having thyroid disorders or changes in
antibody level that might result in worsened hypothyroidism, it is important to understand
the mechanism of these changes. The characterization of prediction accuracy is essential to
the success of future prevention trials for thyroidism disorder among the women with breast
cancer. Of particular interests, clinicians hypothesized that the breast cancer may alter the
performance of TPO antibody titers in predicting thyroidism disorder.
The study is ongoing. The use of this data is for illustration of statistical methods only.
It does NOT represent the final outcome reporting of the ongoing study. In this illustrative
example, only 213 pairs of subjects who completed the study as 05/01/2012 and had at least
one measurement were included. Hypothyroidism is defined using arbitrary thresholds,
with TSH greater than 2.2 mIU/L and Free T4 less than 1.76 pmol/L. The incidence rate
of hypothyriodism was only 12% in the brease cancer group and approximate 9% in health
control group during the study period.
The raw values of TPOAb titers were treated as the original data of (x1jl, y1j) for the breast
cancer group and (x2jl, y2j) for the heathy control group. The optimal weights were ob-
tained by following these procedures: First, obtain the estimates of Fi and Gi using simple
weight 1; second, generate the transformed data (ûijl, v̂ij); next, obtain the estimates of
σuiui , σuivi and σvivi from the transformed data; finally, plug these estimated variance-
covariance parameters into (3.7) to get the estimated optimal weights. The estimated opti-
mal weights were then plugged into equation (2.1) to calculate the point estimate of the two
AUCs difference and plugged into (3.3) to calculate the variance of ∆̂op. Table 1 summa-
rizes both the point estimates and their variance estimates using all three weight schemes.
The optimal weight scheme outperformed the other two simple weight schemes with a sub-
stantial gain of efficiency because the disease incidence rates were low in both groups and
the within-subject correlation was moderate to high in this study.
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7 Concluding remarks

In previous studies, the Cox proportional hazard regression model with a time-dependent
covariant was traditionally utilized for evaluating the biomarker with repeated measure-
ments (Cox, 1972; Kalbfleisch, 1980). However, when the samples are correlated, the Cox
proportional hazard model cannot be used. There has been an increased use of the ROC
curve to examine the prognostic performance of some continuous biomarkers with repeated
measurements. A non-parametric ROC approach, due to Emir et al. (2000) was introduced
to estimate area under the ROC curve of a repeated biomarker. We modified Emir et al.’s
approach (2000) to compare the prediction accuracy of a biomarker between two correlated
groups. When the study subjects are limited and cost is high, the efficiency of the statistical
methods is a crucial consideration when designing clinical studies. We extended Wu et al.’s
idea (2011) to provide a solution to weight optimization which minimize the variance of
AUCs comparison estimate. Our simulation results show substantial gains of efficiency by
using an optimal weighting scheme when the correlation within subject is high, the correla-
tion between groups is high, and/or the disease incidence rate is low. The proposed optimal
weighting scheme is generally preferred to the two weighting schemes suggested by Emir
et al. (2000). Thus, it is recommended.
This research has several limitations. First, the optimal weights could be out of boundary
when the sample size is too small. Secondly, the homogenous variance-covariance struc-
ture was used in the simulation studies. In the future study, we may consider other more
complicated structure. The methodology presented in this paper focused on comparing the
predictive accuracies of a repeated biomarker between two correlated groups in the one to
one matched-subject design study. This methodology may be adapted to compare AUCs in
matched-subject design studies when there are more than one matches per subject. As well,
the methodology can be applied to other correlated-group design study, such as cross-over
design study. Futhermore, the extension of the proposed methodology can be used to ac-
commodate the clustered data, such as there are recurrent outcome events. Future research
of these, based on the weighting optimization methods described here, may produce better
solutions, particularly where the efficiecy is concerned.
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Figure 1: The Effect of Within-subject Correlation Coefficient(rhow), Between-group

Correlation Coefficient(rhob), and the Incidence Rate of Disease(tau) on the Asymptotic

Relative Efficiencies, ARE1 (Solid Line) and ARE2 (Broken Line).
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Table 2: Simulation Results for AUCs Comparison (n=50)
n ψ1 ψ2 λ γ RE1 RE2 RE3

50 0.5 0.4 0.0 0.3 0.92 0.95 0.99
50 0.5 0.4 0.0 0.5 0.89 0.90 0.99
50 0.5 0.4 0.0 0.7 0.85 0.88 0.97
50 0.5 0.4 0.0 0.9 0.76 0.79 0.97
50 0.5 0.4 0.3 0.3 0.90 0.91 0.96
50 0.5 0.4 0.3 0.5 0.88 0.89 0.97
50 0.5 0.4 0.3 0.7 0.83 0.85 0.97
50 0.5 0.4 0.3 0.9 0.77 0.80 0.97
50 0.5 0.4 0.5 0.3 0.84 0.85 0.87
50 0.5 0.4 0.5 0.5 0.86 0.87 0.93
50 0.5 0.4 0.5 0.7 0.84 0.86 0.98
50 0.5 0.4 0.5 0.9 0.78 0.80 0.97
50 0.5 0.4 0.7 0.3 0.82 0.83 0.88
50 0.5 0.4 0.7 0.5 0.81 0.82 0.90
50 0.5 0.4 0.7 0.7 0.80 0.82 0.89
50 0.5 0.4 0.7 0.9 0.79 0.81 0.96
50 0.4 0.4 0.0 0.3 0.90 0.92 0.99
50 0.4 0.4 0.0 0.5 0.84 0.86 0.98
50 0.4 0.4 0.0 0.7 0.80 0.85 0.98
50 0.4 0.4 0.0 0.9 0.72 0.73 0.97
50 0.4 0.4 0.3 0.3 0.88 0.89 0.94
50 0.4 0.4 0.3 0.5 0.86 0.87 0.95
50 0.4 0.4 0.3 0.7 0.78 0.80 0.97
50 0.4 0.4 0.3 0.9 0.71 0.72 0.97
50 0.4 0.4 0.5 0.3 0.79 0.80 0.86
50 0.4 0.4 0.5 0.5 0.79 0.81 0.90
50 0.4 0.4 0.5 0.7 0.80 0.82 0.93
50 0.4 0.4 0.5 0.9 0.73 0.75 0.96
50 0.4 0.4 0.7 0.3 0.75 0.76 0.82
50 0.4 0.4 0.7 0.5 0.77 0.78 0.87
50 0.4 0.4 0.7 0.7 0.78 0.79 0.91
50 0.4 0.4 0.7 0.9 0.72 0.74 0.94
50 0.2 0.4 0.0 0.3 0.79 0.80 0.97
50 0.2 0.4 0.0 0.5 0.72 0.77 0.93
50 0.2 0.4 0.0 0.7 0.61 0.64 0.92
50 0.2 0.4 0.0 0.9 0.49 0.51 0.92
50 0.2 0.4 0.3 0.3 0.78 0.79 0.88
50 0.2 0.4 0.3 0.5 0.72 0.74 0.92
50 0.2 0.4 0.3 0.7 0.54 0.55 0.91
50 0.2 0.4 0.3 0.9 0.47 0.48 0.89
50 0.2 0.4 0.5 0.3 0.63 0.63 0.74
50 0.2 0.4 0.5 0.5 0.67 0.68 0.83
50 0.2 0.4 0.5 0.7 0.56 0.58 0.84
50 0.2 0.4 0.5 0.9 0.51 0.52 0.90
50 0.2 0.4 0.7 0.3 0.59 0.59 0.68
50 0.2 0.4 0.7 0.5 0.62 0.64 0.75
50 0.2 0.4 0.7 0.7 0.61 0.63 0.84
50 0.2 0.4 0.7 0.9 0.43 0.44 0.82
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