
Cluster Pruning: Finding a Better Cluster Representative Object
by Dimension Reduction

Amy Wagaman ∗

Abstract
Cluster analysis is a significant research area with many applications. While new clustering
methods and cluster validation have been a focus of substantial research work, extracting
a good representative cluster object appears to have received less attention. In this article,
we propose a method to prune clusters obtained from any non-fuzzy clustering method,
eliminating unusual cluster members in order to obtain a better representative object from
the cluster. The method uses dimension reduction to identify the unusual cluster objects
which are then removed. We demonstrate the method via simulations and with applications.
One application is extracting protein potential native structures after clustering frames
from a molecular dynamics simulation. In this application, averaging frames in a cluster to
produce a representative frame could result in a nonsensical protein structure, so extracting
a representative frame is important.

Key Words: clustering, dimension reduction, multidimensional scaling, representative
object

1. Introduction

The statistical community has invested significant research time in the area of clus-
tering, dividing a set of objects into groups based on object similarities. A variety
of algorithms for performing clustering exist, divided into several types: hierarchi-
cal, partitioning, density-based, model-based, and graph-based (1). Researchers in
many fields use clustering methods. Clustering algorithms may be fuzzy (allowing
objects to be assigned to multiple clusters based on computed probabilities) or non-
fuzzy, and may be able to determine that some observations are outliers (5) (8) .
Researchers have tackled many aspects of the clustering problem, developing new
clustering methods, extending methods to deal with large data sets (especially data
sets of images) (8) (18), examining ways to determine the number of clusters to
search for, and determining ways to validate cluster solutions (13) (14). In many
applications, especially when looking at clusters of (visual) graphs or images, clus-
ter “representatives” are chosen from each cluster to enable visualizations of the
solutions that quickly display the differences between the clusters. There has been
some work on finding good representatives using different methods. In this work,
we propose a new method to “prune” an existing non-fuzzy clustering solution using
dimension reduction methods to remove outliers before extracting a representative
object from the cluster. Briefly, we consider relevant literature, focusing our litera-
ture review on applications where representative objects are selected from clusters
or applications where some objects are removed from the clustering solution.

There are many ways that the term “representative object” arises in the clus-
tering literature. For example, for large data sets, data prototypes that are “repre-
sentative objects” of the data set may be selected from a large set of observations
and used to cluster the data. However, these points are not selected in advance
to represent a particular cluster found via a clustering solution, which is what we

∗Department of Mathematics, Amherst College, P.O. Box 5000, Amherst, MA 01002

JSM 2013 - Section on Statistical Learning and Data Mining

625



mean by “representative object”. An application where clustering is performed in
order to select objects to preserve the information in the original data set is pro-
vided in (6). In that application, DBSCAN (8) is used to find a clustering solution
for a large data set. Then, representative objects are selected from each cluster in
proportion to the cluster’s size to create a subset of the original data set that can
be used for further calculations. To find other examples of objects being used to
represent a cluster from a clustering solution, one can easily look at literature on
image analysis. When clustering a set of images, it is natural to want a representa-
tive image for each cluster. For a simple example, if you returned from a vacation
and wanted to put together a scrapbook, you would want to use a representative
set of images. Clustering to find groups of similar images and then extracting one
from each cluster to use as a representative image makes sense. Several researchers
have produced work in this area of image analysis, and have come up with several
ways of obtaining (or constructing) cluster representatives (4) (27).

The classic representative objects for clusters that are considered for comparison
with new methods are the centroid and medoid object. The centroid is the average
of all observations for a cluster, and as a result, it does not have to be an actual
data point. The medoid object is the data point that has the smallest average
distance to every other data point within its cluster. For examples where new cluster
representatives are proposed, the reader may refer to (3) (4) (7) (16) (27). Only
one of these applications addresses the question of outliers and their impact on the
representative objects examined (7). It is interesting to note that in that application
dealing with outliers, the authors work with a true data set of 1024 images, where
100 images are to be selected as representatives, and add outlier images (up to
the number of true images). So, at the maximal number of data points, over 2000
images (half true and half outlier), they are still selecting one representative for
every 20 images. In our motivating application of selecting representative frames
from a protein molecular dynamics simulation, we have thousands of data points
and wish to select very few representative objects.

The apparent disconnect between proposing representative objects and not con-
sidering the issue of outliers occurs despite the fact that cluster analysis and out-
lier detection are closely related problems (22) (23). Statisticians have undertaken
work to remove or “trim” outliers and to develop methods to do this even as a part
of exploratory analysis or as part of a clustering solution. For example, Garcia-
Escudero and co-authors (11) propose some trimming methods in exploratory data
analysis based on a trimmed k-means framework (5). However, the restrictions of
being based on a k-means approach could cause issues with non-spherical clusters.
Extensions of these techniques led to development of other models, including the
spurious-outlier model for clustering analysis (10) where a proportion of outliers are
assumed to be present. This model was further developed by Garcia-Escudero and
co-authors in (12) to deal with more heterogeneous clusters. In these applications,
however, the problem of selecting a representative object is not addressed.

We want to consider methods that can “prune” unusual objects from clusters
from an existing non-fuzzy clustering solution whether or not that technique removes
outliers itself. In our examples we use classic clustering methods which do not treat
with the outlier problem. We tackle the problem by considering that clusters should
be groups of similar objects, and use dimension reduction methods to examine where
the clusters are tightly packed and where they are not, setting criteria related to
the density of cluster objects in the projected space that objects must meet to be
retained in the cluster. The idea of using projection methods to examine clustering

JSM 2013 - Section on Statistical Learning and Data Mining

626



solutions is not new, but using it in this particular way is novel. For example,
Pena and Prieto (19) examine applications of univariate projection methods to find
clustering solutions. We use projection methods to examine a clustering solution
and find objects that should be removed before a representative object is extracted.
We examine the success of our method both in terms of detecting and removing
outliers and the impact their subsequent removal has on attaining good classical
cluster representatives. Thinking in a DBSCAN-style framework, we project the
clusters down to a low-dimensional space, and then attempt to remove points that
are not “core” points (8). While this may seem counter to DBSCAN’s approach
(which relies on the concept of directly density reachable points to retain border
points), recall that we are interested in extracting cluster representatives, and hence,
we are making an assumption that border points will not be the best representatives,
so it is appropriate to remove them as well as traditional outliers. Future extensions
of the method may attempt to adapt the DBSCAN approach, but we want to analyze
this approach first.

In this article, we propose a method to “prune” clusters obtained from any non-
fuzzy clustering method, eliminating outliers and slightly unusual cluster members
in order to obtain a better classical representative object from the cluster. We
propose our new method in Section 2. Then we introduce simulations and results
in Section 3. Finally, we conclude with some discussion and future work in Section
4.

2. Proposed Method for Cluster Pruning

The main idea we use in pruning and trying to improve the selection of classical
representative objects is that a projection of the cluster into lower-dimensional space
that is distance-preserving should put objects in the cluster very near the other
objects in the cluster because the cluster is designed to be a collection of similar
objects. The projections are obtained via dimension reduction methods, and then
projected points are examined to see if they meet a density-based criteria that we set
in the projected space. The dimension reduction method we use is multidimensional
scaling (MDS). MDS is solved by minimizing an optimization problem with a stress
criterion (2). Many other dimension reduction methods could be used to obtain
the projections. For example, nonlinear MDS may be used, which only preserves
ranking not distance values, or methods such as the ISOMAP (26) or local linear
embedding (LLE) (24). However, MDS has fewer tuning parameters than most of
these methods (one just has to choose the dimension d of the projection), and seems
to work well for our purposes. Other manifold projection algorithms may produce
similar results.

Our algorithm has two inputs and several tuning parameters that can be ad-
justed. The inputs come from an existing clustering analysis. A cluster allocation
vector (the assignment of observations to clusters from a clustering algorithm) as
well as the data or distance matrix (pairwise distances) is needed. For our algorithm,
the distance matrix does not have to match what was used for the clustering, but it
should reflect how the points should be compared for pruning (perhaps some covari-
ates are left out). For tuning parameters, either two or three values are needed. For
each application of the algorithm, the dimension d is needed for the MDS projection
to low-dimensional space. The other two possible tuning parameters deal with the
pruning process itself. We call these tuning parameters trim and NN. Trim (trim
factor) is either a multiplication factor (for projections to dimensions greater than

JSM 2013 - Section on Statistical Learning and Data Mining

627



1) or the percentage of points you want to remove (for dimension equal to 1). NN
is the number of neighbors that need to occur in the neighborhood of points in
the low-dimensional space for the point to be retained in the cluster (only used for
dimensions greater than 1). The clusters are pruned using the inputs and supplied
tuning parameter values.

The algorithm loops through all clusters from the cluster allocation vector, one
at a time. For each cluster, the distance matrix for the subset of observations in the
cluster is extracted and the points projected using MDS onto the dimension spec-
ified. For projections to 1D, the trim factor is used to prune an even percentage
of points from each end of the projection (this can be modified to be uneven, de-
pending on the distribution of coordinates). For example, by default, in 1D, a trim
factor of 10 would prune the top 5 percent of the observations with high coordinate
values and bottom 5 percent with low coordinate values based on their coordinates
in the projected space. For projections to 2D or higher, the distance matrix for the
subset of observations in the cluster is computed, the points projected down, and
the standard deviation (denoted SD)of all the pairwise distances for points within
the cluster is computed. The trim factor is multiplied by SD, and an “epsilon” ball
with radius equal to the trim factor times the SD is placed around each point in
the low-D space, defining a neighborhood around each point. Points must have NN
neighbors within their neighborhoods or they are pruned out of the cluster. The
algorithm returns the subset of the original cluster that was retained after pruning,
so that analysis may continue. Alternatively, the indices of the observations that
were pruned can be obtained. In this way, outliers in the individual clusters can
be identified. We explored projections to d = 1, 2, and 3, but higher values are
possible. Many other variants on the algorithm are possible and are discussed in
future work below.

3. Simulations and Results

In order to demonstrate the improvement in obtaining representative cluster centers,
we performed simulations comparing the cluster representative objects obtained
from several clustering methods to the representative objects obtained after applying
our pruning algorithm from generated cluster data. In this section, we describe the
simulations and our results. Three main sets of simulations were used to study the
performance of the pruning algorithm. The results discussed here are the results of
only one set of simulations. (Details on the other simulation sets will be available in
a future publication). The simulations were comprehensive, and designed to study
the effectiveness of the algorithm at removing outliers and aiding in the extraction of
classical representative objects, as well as the impact of choice of tuning parameters
(dimension, NN, and trim settings), and even the sensitivity of the algorithm to:
choice of number of clusters to find compared to the truth, number of variables
(noisy and nonnoisy), size of clusters, separation of clusters, and most importantly,
fraction of outliers present. We also share a short toy example with visuals to see
how the pruning algorithm works.

3.1 Clustering Algorithms Used in Simulations

In order to demonstrate our cluster pruning algorithm, we need to provide (as
inputs) solutions from clustering algorithms. In our simulations, we used three dif-
ferent clustering algorithms which each have pros and cons. These algorithms are

JSM 2013 - Section on Statistical Learning and Data Mining

628



traditional K-means, PAM (robust K-means using medoids), and affinity propa-
gation (AP). All algorithms were implemented in R with necessary packages (25).
For affinity propagation, the function apclusterK was used to obtain the number k
clusters specified for that simulation.

One of the oldest and most traditional clustering methods, K-means is well
studied and easily implemented in any statistics package. K-means seeks to split
the data points into k clusters (k must be specified in advance) such that the sum of
the squared distances of the points to their assigned cluster centers is minimal. The
algorithm is iterative, and starting cluster centers must be supplied or randomly
determined. Using several random starts is suggested. For additional insights into
the K-means algorithm, see (15). PAM is a more robust version of K-means, where
the data points are used to provide the starting cluster centers. In K-means, the
starting cluster centers do not have to be existing data points. PAM tries to find
representative objects (existing data points) in the cluster, and then assigns points
to the nearest representative object to create clusters. For more details on the
PAM algorithm, see (17). Finally, affinity propagation is a relatively new technique
that obtains clusters by considering the clustering problem as a graph partitioning
problem. The method is iterative and does not require that a number of clusters
be specified to be found. Instead, a starting tuning parameter is supplied based on
the dissimilarities of the data points. Variants of the algorithm exist that allow a
specified number of clusters to be found by searching through values of the starting
tuning parameter. For more information on affinity propagation, see (9).

3.2 Data Generation for Simulations

In order to generate appropriately clustered data for simulations, we used the clus-
terGeneration R package (20) (21). This R package was written to generate random
clusters, and the genRandomClust function is able to create clusters of many sizes
and shapes, and has a parameter that governs the level of cluster separation. The
genRandomClust function has a variety of inputs useful for testing new procedures
allowing the user to specify the number of clusters, separation index for clusters,
number of noisy and non-noisy variables, fraction of outliers, and providing several
ways to specify cluster sizes. For cluster size, we chose to supply an interval of
values from which each cluster size was randomly drawn. Generated data sets have
the true cluster labels available. Outliers are added but are not assigned to a cluster
by the generation code.

For our toy example, we set sepValInput (which governs the cluster separation)
at 0.1, making the clusters more separated than in the other simulations reported
here. The fraction of outliers was set at 20 percent. As a toy example for visualiza-
tion, we only had two noisy and two nonnoisy variables, and we view the clusters
from the nonnoisy variable space for illustration. Four clusters were generated, and
cluster sizes ranged from 50 to 200 objects.

For the main simulation set described here, our data generation settings were as
follows. We set sepValInput (which governs the cluster separation) at 0.01 or -0.1.
The negative value results in clusters that are less separated than when sepValInput
is set at 0.01. We refer to the .01 setting as medium separation and -0.1 setting as
minor separation for easier reference (though those adjectives are subjective). The
fraction of outliers was set at either 10 or 20 percent. Five clusters were requested
with sizes ranging from a minimum of 100 to maximum of 300 objects (cluster size
was randomly drawn from that interval). For number of variables, two settings were

JSM 2013 - Section on Statistical Learning and Data Mining

629



used - 4 nonnoisy and 2 noisy variables or 5 nonnoisy and 8 noisy variables.
For each data set generated, the three different clustering algorithms (K-means,

PAM, and affinity propagation) were applied to obtain cluster solutions. In addition,
in different runs of the simulation, we told the algorithms to find four, five, or six
clusters (remember that the data was generated with five clusters), and thus, only
one-third of the runs were trying to find the correct number of clusters. For each
clustering solution, the clusters found were compared to the true clusters. The
centroids and medoids of the clusters were compared due to our focus on improving
cluster representative objects. For each cluster, the cluster centroid and medoid
distances from the true cluster centroids and medoids were computed, and the found
clusters were matched with the true cluster that their centers were closest to. The
number of the matching cluster and distance between the true and found centroid or
medoid were reported. Note that even if the algorithms found five clusters, this does
not mean all true clusters would be captured. For the toy example, the algorithms
were told to search for six clusters, where four is the correct number of clusters.

3.3 Pruning Settings

For this set of simulations, we examined the following pruning algorithm choices.
For the dimension of the MDS projection, we tested values of 1, 2, and 3. For the
trim factor, we used 10 and 20 percent for the one-dimensional projections, and .5
and 1 as the multipliers to determine the size of the neighborhoods around each
point in the projected space for dimensions two and three. These are referred to
as trim levels 1 and 2 respectively in the results below. We fixed NN at 3, based
on previous simulation work. Ten data sets were analyzed at each combination of
simulation settings. In the simulations not reported here, the fraction of outliers
was pushed to 30 percent, number of clusters to 15, number of variables past 20
(with more than half noisy) with 100 data sets at each combination of settings.
In addition, we assessed the impact of choice of NN on the results. For the toy
example, we used a dimension of two, NN=3, and trim=.5 for pruning.

3.4 Toy Example

Our toy example with only 4 clusters and 4 variables (2 noisy and 2 nonnoisy)
serves to demonstrate how well the pruning algorithms can remove outliers. Figure
1 shows the true cluster labels, K-means solution, and K-means pruned solution in
the nonnoisy variable space. The PAM and AP solutions are not shown but are
very similar. In the Figure, you can see the true clusters are somewhat separated
in the nonnoisy variable space. Outliers appear as black circles in the true cluster
plot. In the K-means solution, due to asking for six clusters, and the presence of
noisy variables, the true clusters are not exactly picked up (most are split in two, at
least). Additionally one cluster is identified (red triangles pointing up) that actually
consists of points that are mostly outliers. In the K-means pruned solution, we see
the outlier cluster has basically been removed, and other outliers cleaned up largely
as well. Some real data points have also been removed (an inevitable tradeoff). The
solution is clearly improved, but applying pruning does not rectify the issue with
true clusters being split though that is not the purpose of this methodology. In the
toy example, there were 87 outliers total added to four clusters (sizes 80, 109, 143,
and 103, respectively) with combined size of 435 real points. In the K-means pruned
solution, 77 percent of outliers were removed, while only 7.4 percent of real data
points were removed. In the PAM pruned solution, 73.6 percent of outliers were

JSM 2013 - Section on Statistical Learning and Data Mining

630



removed, while 9.4 percent of real data points were removed. Finally, in the affinity
propagation pruned solution, 78.2 percent of outliers were removed, and only 6.4
percent of real data points were removed.

Figure 1: Toy Example with Four Clusters showing True Cluster Allocations, K-
means Solution, and K-means Pruned Solution in the 2D nonnoisy variable space.
Outliers are shown as black circles in the true allocation. Pruned points are shown
as black circles in the pruned solution.

3.5 Simulation Results

Next, we turn to our results for the main simulations described above. Tables 1
and 2 display the average fraction of outliers versus true points removed over all 72
simulations for their respective cluster separation values. It is clear that the pruning
method performs about equally well even with different levels of cluster separation,
and removed over 50 percent of outliers on average while not removing many data
points attributed to clusters.

Table 1: Outlier and True Point Removal Rates in the Medium Separation Setting.
These are the average fractions of points removed over all simulations at the medium
separation setting.

Clustering Method Avg. Outliers Removed Avg. True Points Removed

K-means .5938 .0703
PAM .6252 .0729
AP .6239 .0721

We next consider results when broken down by dimension and fraction of outliers
added. Results are similar for both the medium and minor separation cases, so we
show results for the harder case of minor separation here. From Tables 3 and 4
we can see that projecting to three dimensions had the best results for removing
outliers, but also resulted in the most real data loss. Similarly, when projecting to
two dimensions, fewer outliers and fewer real points were removed. When looking
at the results broken down by fraction of outliers, we see a similar tradeoff. We can

JSM 2013 - Section on Statistical Learning and Data Mining

631



Table 2: Outlier and True Point Removal Rates in the Minor Separation Setting.
These are the average fractions of points removed over all simulations at the minor
separation setting.

Clustering Method Avg. Outliers Removed Avg. True Points Removed

K-means .5953 .0707
PAM .6277 .0718
AP .6261 .0715

remove a higher fraction of outliers if we are willing to remove a higher fraction of
real data points.

Table 3: Outlier and True Point Removal Rates in the Minor Separation Setting By
Dimension. These are the average fractions of points removed over all simulations
with that dimension in the minor separation setting.

Avg. Outliers Removed Avg. True Points Removed
Method Dim=1 Dim=2 Dim=3 Dim=1 Dim=2 Dim=3

K-means .5553 .4869 .7444 .0912 .0173 .1039
PAM .5573 .5207 .8059 .0908 .0187 .1060
AP .5592 .5178 .8022 .0903 .0195 .1050

Table 4: Outlier and True Point Removal Rates in the Minor Separation Setting
By Fraction of Outliers Added. These are the average fractions of points removed
over all simulations with that fraction of outliers (FO=1 is 10 percent, FO=2 is 20
percent) in the minor separation setting.

Avg. Outliers Removed Avg. True Points Removed
Method FO=1 FO=2 FO=1 FO=2

K-means .6195 .5712 .0863 .0552
PAM .6791 .5765 .0880 .0557
AP .6770 .5754 .0882 .0550

Finally, we look at results in terms of how far the centroids and medoids moved
closer to the true centroids and medoids in Tables 5 and 6 for the minor separation
setting for K-means, broken down by dimension, number of neighbors required to
keep a point (NN), trim setting and fraction of outliers.

For both centroids and medoids, we see that pruning is improving the K-means
solution resulting in representative objects that are closer to the true values. For
centroids, the PAM and affinity propagation results are similar to those observed
for K-means. There is substantial improvement with pruning as the pruned cen-
troids move towards the true centroids compared to the unpruned centroids. For
the medoids, there are fewer improvements for PAM and affinity propagation com-
pared to K-means because there is often no shift in the medoid from the pruned
to unpruned version. This is somewhat intuitive. Pruning removes unusual points,

JSM 2013 - Section on Statistical Learning and Data Mining

632



Table 5: Improvements in Centroids on Average in the Minor Separation Setting
for K-means. Distance to true centroid is computed before and after pruning and
compared (Unpruned distance minus pruned distance). Positive improvements in-
dicate that the pruned centroid was closer to the truth than the unpruned centroid.
Average values of improvement are shown with standard deviations in parentheses.

Dimension=1 Dimension=2 Dimension=3
Trim/FO NN=4 NN=5 NN=6 NN=4 NN=5 NN=6 NN=4 NN=5 NN=6

Trim=1 .71 1.00 1.27 1.28 1.61 2.00 1.56 2.13 2.63
FO=1 (.21) (.33) (.28) (.44) (.41) (.44) (.59) (.56) (.59)

Trim=2 .94 1.24 1.56 .61 .95 1.29 1.26 1.73 2.10
FO=1 (.23) (.30) (.37) (.26) (.34) (.29) (.26) (.37) (.42)

Trim=1 1.18 1.60 1.66 1.86 2.34 3.14 2.72 3.97 4.46
FO=2 (.19) (.34) (.36) (.62) (.45) (.60) (.44) (.91) (.97)

Trim=2 1.63 1.97 2.37 .51 1.05 1.36 1.67 2.69 3.06
FO=2 (.37) (.28) (.50) (.22) (.28) (.45) (.44) (.48) (.72)

Table 6: Improvements in Medoids on Average in the Minor Separation Setting
for K-means. Distance to true medoid is computed before and after pruning and
compared (Unpruned distance minus pruned distance). Positive improvements in-
dicate that the pruned medoid was closer to the truth than the unpruned medoid.
Average values of improvement are shown with standard deviations in parentheses.

Dimension=1 Dimension=2 Dimension=3
Trim/FO NN=4 NN=5 NN=6 NN=4 NN=5 NN=6 NN=4 NN=5 NN=6

Trim=1 6.66 5.56 5.70 7.09 6.61 6.25 6.07 6.52 4.83
FO=1 (6.17) (5.02) (4.87) (5.37) (3.46) (5.83) (4.95) (3.96) (4.57)

Trim=2 6.72 6.84 4.06 6.73 5.91 5.50 5.14 5.72 4.38
FO=1 (5.65) (4.83) (3.99) (3.79) (4.17) (4.54) (5.00) (4.91) (3.52)

Trim=1 5.49 4.78 4.73 5.15 4.18 6.37 5.87 5.73 4.57
FO=2 (4.62) (3.10) (4.69) (3.89) (3.63) (5.32) (5.38) (5.61) (7.70)

Trim=2 5.53 7.42 5.27 5.91 5.20 6.27 5.59 8.09 4.32
FO=2 (4.91) (6.53) (5.45) (4.97) (3.59) (5.00) (4.16) (3.20) (6.01)

and just as in the univariate case, removing outliers will affect the mean more than
the median. PAM and affinity propagation both choose “median” type data points
as their representative objects and as a result, not much shifting occurs in the
medoids due to pruning. However, we do observe that large fractions of the unusual
points are being removed, no matter what clustering method is employed. Overall
these results suggest that the pruning method is beneficial for removing outliers
and improving the “classical” representative objects of the centroid and medoid of
clusters.

JSM 2013 - Section on Statistical Learning and Data Mining

633



4. Discussion and Future Work

In conclusion, we have proposed a new methodology that “prunes” clusters from
a clustering solution, removing outlying points and improving the classical cluster
representative objects of centroids and medoids. The methodology proved effective
at removing over 50 percent of outlying points in simulations and improved cen-
troids more than medoids for all clustering methods in the simulations. Medoid
improvements occurred but were not as pronounced as the centroid improvements
except for the K-means clustering method. Further work investigating uses of the
method and adaptations is necessary.

As an application, we consider the motivation for the method. The pruning
method was developed for use in clustering protein structures resulting from molec-
ular dynamics simulations aimed at uncovering native protein structures. These
simulations result in thousands of structures, from which a few candidate struc-
tures for the native state (folded state) of the protein must be selected. In this
setting, pruning was able to remove unusual structures from consideration, how-
ever, the scientists developed another methodology to examine structures with a
graph-based approach. As part of this approach, unusual frames did not contribute
many edges to the graphs, and so were dealt with in that way rather than be-
ing removed explicitly. The pruning method was applied to a few test cases, but
no definitive improvement for solving the protein structure problem was seen, when
coupled with the other approach. However, extensions and adaptations of the prun-
ing procedure may still be useful in that application and in other applications where
outlier removal is desired.

Many extensions and adaptations of the procedure are possible and may help in
different situations. First, the tuning parameters do not need to be held constant
for all clusters. The performance of the procedure should be examined when prun-
ing settings are adapted based on cluster sizes. Additionally, the projection does
not need to be performed with MDS. Depending on the underlying structure of the
clusters, it may be more useful to prune points that are outliers when the projection
is completed using ISOMAP (26) or other nonlinear dimensionality reduction meth-
ods. Simulations should be undertaken to examine the performance of the method
when points are on selected manifolds under different projection mechanisms. As
a last adaptation of the procedure, the criteria for “pruning” a point is based on
a crude estimate of density in the projected space. Many other choices for setting
that criteria exist and could be explored.

In terms of combining the pruning algorithm with clustering methods, our sim-
ulations only coupled the technique with non-fuzzy clustering methods that do not
treat with the outlier problem themselves. It would be interesting to see how the
algorithm works when coupled with density-based clustering algorithms like DB-
SCAN and clustering algorithms designed for the spurious outlier model that have
built-in mechanisms for dealing with outliers.

Finally, we only examined the performance of the method in improving repre-
sentative objects for the classical cases of centroids and medoids. Our literature
review revealed that there are other ways to select representative objects that are
useful in different situations. The pruning algorithm may help in the selection of
some of these representative objects but not for others (as was the case for centroid
vs. medoid). An investigation here may prove useful but we anticipate the results
may be heavily application specific.

Acknowledgements: Collaboration with Laufer Center for Quantitative Biology

JSM 2013 - Section on Statistical Learning and Data Mining

634



at Stonybrook University

References

[1] B. Andreopoulos, A. An, X. Wang, and M. Schroeder, A roadmap of
clustering algorithms: Finding a match for a biomedical application, Briefings
in Bioinformatics, 10 (2009), pp. 297–314.

[2] I. Borg and P. Groenen, Modern Multidimensional Scaling: Theory and
Applications, Springer, New York, 2005.

[3] S. Brecheisen, H. Kriegel, P. Krger, and M. Pfeifle, Visually mining
through cluster hierarchies, in Proc. SIAM Int. Conf. on Data Mining, SIAM,
2004, pp. 400–412.

[4] W. Chu and C. Lin, Automatic selection of representative photo and smart
thumbnailing using near-duplicate detection, in Proceedings of the 16th ACM
International Conference on Multimedia, ACM, 2008, pp. 829–832.

[5] J. Cuesta-Albertos, A. Gordaliza, and C. Matran, Trimmed k-means:
An attempt to robustify quantizers, The Annals of Statistics, 25 (1997), pp. 553–
576.

[6] M. Daszykowski, B. Walczak, and D. Massart, Representative subset
selection, Analytica Chimica Acta, 468 (2002), pp. 91–103.

[7] E. Elhamifar, G. Sapiro, and R. Vidal, See all by looking at a few: Sparse
modeling for finding representative objects, in Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference, IEEE, 2012, pp. 1600–1607.

[8] M. Ester, H. Kriegel, J. Sander, and X. Xu, A density-based algorithm
for discovering clusters in large spatial databases with noise, KDD, (1996).

[9] B. Frey and D. Dueck, Clustering by passing messages between data points,
Science, 315 (2007), pp. 972–976.

[10] M. Gallegos and G. Ritter, A robust method for cluster analysis, The
Annals of Statistics, 33 (2005), pp. 347–380.

[11] L. Garcia-Escudero, A. Gordaliza, and C. Matran, Trimming tools in
exploratory data analysis, Journal of Computational and Graphical Statistics,
12 (2003), pp. 434–449.

[12] L. Garcia-Escudero, A. Gordaliza, C. Matran, and A. Mayo-Iscar,
A general trimming approach to robust cluster analysis, The Annals of Statis-
tics, 36 (2008), pp. 1324–1345.

[13] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, Cluster validity meth-
ods: part i., ACM Sigmod Record, 31 (2002), pp. 40–45.

[14] , Clustering validity checking methods: part ii, ACM Sigmod Record, 31
(2002), pp. 19–27.

[15] J. Hartigan and M. Wong, A k-means clustering algorithm, Applied Statis-
tics, 28 (1979), pp. 100–108.

JSM 2013 - Section on Statistical Learning and Data Mining

635



[16] J. Helfman and J. Hollan, Image representations for accessing and orga-
nizing web information, in Proceedings of the SPIE International Society for
Optical Engineering Internet Imaging II Conference, 2001, pp. 91–101.

[17] L. Kaufman and P. Rousseeuw, Finding Groups in Data: An Introduction
to Cluster Analysis, John Wiley and Sons, Inc., 1990.

[18] R. Ng and J. Han, Clarans: A method for clustering objects for spatial data
mining, Knowledge and Data Engineering, IEEE Transactions on, 14 (2002),
pp. 1003–1016.

[19] D. Pena and F. Prieto, Cluster identification using projections, Journal of
the American Statistical Association, 96 (2001), pp. 1433–1445.

[20] W.-L. Qiu and H. Joe, Generation of random clusters with specified degree
of separation, Journal of Classification, 23 (2006), pp. 315–334.

[21] , Separation index and partial membership for clustering, Computational
Statistics and Data Analysis, 50 (2006), pp. 585–603.

[22] D. Rocke and D. Woodruff, Identification of outliers in multivariate data,
Journal of the American Statistical Association, 86 (1996), pp. 1047–1061.

[23] , A synthesis of outlier detection and cluster identification. Preprint, 1999.

[24] S. Roweis and L. Saul, Nonlinear dimensionality reduction by local linear
embedding, Science, 290 (2000), pp. 2323–2326.

[25] R. D. C. Team, R: A language and environment for statistical computing, R
Foundation for Statistical Computing, 2009.

[26] J. Tenenbaum, V. de Silva, and J. Langford, A global geometric frame-
work for nonlinear dimensionality reduction, Science, 290 (2000), pp. 2319–
2323.

[27] A. Varde, E. Rundensteiner, C. Ruiz, D. Brown, M. Maniruzza-
man, and R. S. Jr., Effectiveness of domain-specific cluster representatives
for graphical plots, SIGMOD IQIS, (2006), pp. 24–29.

JSM 2013 - Section on Statistical Learning and Data Mining

636


