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Abstract 

A new Wald’s type chi-squared invariant goodness-of-fit test for binormality is 

introduced. The test is based on a linear transformation of a two-dimensional sample 

from a population that diagonalizes the sample covariance matrix, and a modification of 

Moore and Stubblebine  technique for construction chi-squared type tests  proposed in 

1981. More precise formulation of the well known Moore’s 1977 theorem given by 

Voinov in 2013 permitted to get this new result. A comparison of simulated power of the 

test with respect to numerous alternatives is presented. The simulated  power of the 

proposed modified McCulloch's test with respect to nine different alternatives is 

comparable with the power of the well-known Anderson-Darling, Cramer-von Mises,  

Henze and Zirkler , Doornik and Hansen,  and, modified by Royston in 1992,  the 

Shapiro-Wilk's  W tests. The overall conclusion of this research is that all seven tests 

considered can be used in practice. 
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Introduction 
 

The assumption of multivariate normality (MVN), in particular of binormality, is of great 

importance for applied multivariate statistics, e.g., for analysis of variance, discriminant 

analysis, canonical correlation and factor analysis, analysis of regression residuals and 

residuals in time-series models, etc. To check that assumption the most powerful tests 

should be used, because tests with low power cannot discriminate for sure between the 

null hypothesis of binormality and supposed alternatives. Several examples of such a 

situation in the univariate case can be mentioned  (see, e.g., Voinov et al. [1], Sec. 3.10.1, 

and Sec. 3.9). Henze [2, p.468] stated that those tests of MVN, and binormality  must be 

invariant  with respect to affine transformations of sample data, and consistent. 

Consistency means that the probability to fall into rejection region under alternative 

should tend to 1 if sample size n . 
 

Two nice surveys of the state of art are known: Henze [2], and Mecklin and Mundfrom 

[3]. Those surveys list tenth of publications devoted to testing of MVN , and binormality 

as a particular case. It is almost impossible to find out and cite all existing papers on tests 

of binormality.  We would like to mention here the papers  of Szkutnik [4], Versluis [5], 

Bogdan [6],  Székely and Rizzo [7], Sürücü [8], Doornik and Hansen [9], Villasenor Alva 

and Estrada [10], and Hanusz and Tarasińska [11].     
 

In this article we introduce new invariant and consistent chi-squared goodness-of-fit tests 

for binormality. Section 1 is devoted to the theoretical background of the proposal. 

Closed form expressions for the tests proposed are derived in Section 2. In Section 3 a  
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Monte-Carlo study of power comparison of different tests is presented. A conclusion and 

recommendations are given in Section 4. 

 

1.  Theoretical background 

 

The theory of modified chi-squared statistics for tests of fit ( Moore and Spruill [12], and 

Moore [13])  can be briefly described as follows. Let 1,..., nX X  be independent 

identically distributed (iid) univariate random variables, and we intend to test the 

composite null hypothesis 0H  that the distribution function of iX  belongs to a 

parametric family ( , )F x   of continuous distribution functions, where

1( ,..., )T s

s R     ,   being an open set. Chi-squared tests of fit for 0H  are 

based on the observed frequencies 
( )n

jN , the number of 1,..., nX X  that fall into intervals 

jI  such that 
i j I I  for ,i j  and

1

1 ,  , 1,...,r R i j r   I I .  Since 

probabilities ( ) ( , )
i

ip dF x I   depend on unknown parameter , the parameter 

should be estimated from data by any n -consistent estimator 1( ,..., )n n nX X  . 

Denote 
( ) ( )n

nV   the r-vector of standardized frequencies with components 

( ) 1/ 2[ ( )]/[ ( )] ,  1,..., .n

i i n i nN np np i r    Moore and Spruill [12] showed that the vector 

( ) ( )n

nV   asymptotically follows a multivariate normal distribution ( , )rN 0  , where 0  is 

a zero r-vector of means, and   is a nonsingular covariance matrix. The covariance 

matrix   essentially depends on the way of the parameter   estimation. Wald’s idea 

was as follows. Let a random vector X  possess the ( , )rN    distribution and   is 

nonsingular of rank r, then the quadratic form 
1( ) ( )T  X X    will be distributed 

in the limit as chi-squared with r degrees of freedom (d.f.),
2

r .  Nikulin [14] was first 

who used this idea and MLE ˆn  of   for testing univariate normality when the matrix   

is singular of rank 1r  .  Moore [13] generalized Wald’s approach and developed the 

method of the construction of chi-squared tests of fit valid for any n -consistent 

estimator n . The Moore’s method is simple. One has to find the limit covariance matrix 

  of the vector 
( ) ( )n

nV   of standardized frequencies for a particular n -consistent 

estimator n , derive any generalized matrix inverse
 , and, for testing 0H , use the 

statistic 
1( ) ( ) ( )(n)T n

n n n n nY  ( )
V V   , where 

n

  is an estimate of
 . Voinov [15], 

Theorem 2,  noted that the statistic ( )n nY   will follow the chi-squared limit distribution 

if and only if the limit covariance matrix    of  the r-vector 
( ) ( )n

nV   of standardized 

frequencies does not depend on unknown parameters, and, hence, the statistic to be used 

is 

                                    
1( ) ( ) ( )(n)T n

n n n nY  ( )
V V   .                                                  (1) 

Let 1,..., nX X  be independent identically distributed two-dimensional normal random 

vectors with the following joint probability density function 
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       
1 1/2 11

| 2 | exp ,
2

T
f 

   
    

 
x x x       

where  is a two-dimensional vector of means and   is a non-singular 2 2  covariance 

matrix.  Let a given vector of unknown parameters be  1 2 11 12 22, , , , .
T

      Given

0 10 rc c c     , the r grouping cells can be defined as (Moore and 

Stubblebine [16]) 

      2 1

1
ˆ  in R :  ,  ,

T

in n i iE c c i = 1,...,r

    X X X S X X  

where  and X S  are maximum likelihood estimators of  and    correspondingly. The 

estimated probability to fall into each cell is  

 
 ˆ

ˆ ˆ( ) .

in n

in n n

E

p f d  x | x



   

If ic  is the /i r point of the central chi-squared distribution with 2 degrees of freedom,  

then the cells are equiprobable under the estimated parameter value, ˆ
n , and 

 ˆ 1/ ,  .in np r i = 1,...,r  Denote ˆ( )n nV   a vector of standardized cell frequencies 

with the components     ( )ˆ / / / ,   ,n

in n iV N n r n r i = 1,...,r   where 
( )n

iN  is the 

number of random vectors  1,..., nX X  falling in  ˆin nE  .  The 5 5  Fisher information 

matrix  J   for one observation can be presented  as (Moore and Stubblebine [16]) 

 

1

1

   

,

     





 
 

  
 
 

0

J

0 Q



  

where Q  is the 3 3  covariance matrix of  11 12 22, ,
T

s s sr , a vector of the entries of 

nS . The elements of Q can be written as (Press [17]) 

  2 ,   ij ij ii jjs i, j = 1,2,  i j,    Var  

 , ,  ij kl ik jl il jks s  i, j,k,l = 1,2,  i j, k l,      Cov  

where  ,   , 1,2,ij i j  are elements of   . In our case the matrix Q will be  

     

     
     

2 2

11 11 12 11 22 11 11 12 12

2

12 11 12 12 22 11 12 11 22 12 12 22

2 2

22 11 22 12 22 12 12 22 22

, , 2 2 2

, , 2 2 .

, , 2 2 2

s s s s s

s s s s s

s s s s s

   

      

   

  
  

   
   
   

Var Cov Cov

Q = Cov Var Cov

Cov Cov Var

  (2)   

Following Moore and Stubblebine [16] for a specified 0  define  

 
 0

0 ( )

i

i

E

p f d  x | x


  , where 

      2 1

0 1 0 in R :  ,  .
T

i i iE c c i = 1,...,r

    X X X     

Define 3r  matrix  0,B = B   with its elements being 
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 

 0

0

,1
  ,  1,..., ,  1,2,3.

,

i

ij

ji

p
B i r j

p 


  



 

 
 

From Lemma 1 of Moore and Stubblebine [16] it follows that for any 0  and  ic   

 

 

0

0

0

0

,
0,   ,  2,

,
,   , 2,

i

j

i jk

i

jk

p
1 i r 1 j

p
d 1 i r  1 j k







    




     







 

 
 

where  
jk  are the elements of 

1  and  

 1 /2 /2

1

1
,  1,..., .

4
i ic c

i i id c e c e i r 

    

As per Moore and Stubblebine [16] the Wald’s type statistic based on the MLEs can be 

presented as                              

                                  
2 ( ) ( )ˆ ˆ ˆ( ) ( ) ( )n T n

n n n n nY  V V   ,                                                    (3) 

where 
n  is the estimate of the limiting covariance matrix 

1T T = I qq BJ B  of  

standardized frequencies ˆ( )nn
V  , q  being the r-vector with its entries as 1/ r . The 

statistic (3) can be presented as (Moore and Spruill [12, p. 610]) 

                               
2 ( ) -1 T 1 ( )

n n n
ˆ ˆ ˆ( ) ( )( ) ( )n T n

n n n nY  V I B J B V   ,                                  (4) 

where nB  and nJ  are MLEs of matrices B  and J  respectively. 

The Fisher's information matrix for one observation is 

1

1

  

   





 
   
 

0
J

 0 Q


, and 

-1
    

   

 
  
 

0
J

 0 Q


, where Q is defined by formula (2). The matrix B  can be blocked as 

   0 B  , where 

22 12 11

1 1 1

22 12 11

2 2 2

22 12 11

         

        

.................................................................

      
r r r

r r r
d d d

r r r
d d d

r r r
d d d

  

  

  

  

  

  








 
 
 
 
 
 
 
 
 
 

B
, 

,  , 1,2,ij i j   being elements of  , and 
2

122211   . Evidently that
T

T

 
  
 

 0
B

B
.  
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After simple matrix algebra one gets 
1 T T BJ B BQB , where  

              

2

1 1 2 1

22 2 2 4
1 2 2 211 22 11 12 22 12

2

2

1 2

       

       [4 3 ]

    

r

T r

M M r

d d d d d

d d d d dr

d d d d d

     



 
 

   
  

 
 
 

BQB ,                   (5) 

and the statistic (4) becomes  

                       
2 1ˆ ˆ ˆ( ) ( )( ( ).T T

n n n n r n n n n nY V I - B Q B ) V                                                 (6) 

In our notations the limit covariance matrix 
1T T = I qq BJ B  of the standardized 

frequencies ˆ( )nn
V   can be written down as 

T T = I qq BQB . Because of (5) the 

matrix 
1T T = I qq BJ B  depends on unknown parameters 11 12 22, ,   , and, in 

accordance with the Theorem 2 of Voinov  [15], the limit distribution of the statistic 
2 ˆ( )n nY   cannot be chi-squared and will depend on unknown parameters.  From (5) we 

see that the  limit covariance matrix 
T T = I qq BQB  will not depend on unknown 

parameters if 12 0  , i.e., if   is a diagonal matrix.   

 

2. New tests suggested 

 

Let us construct a chi-squared Wald's type goodness of fit test for the two-dimensional 

normal distribution  if   is a diagonal matrix. In the two-dimensional case  for 

11

22

   0

 0    





 
  
 

  the Fisher's information matrix 

1

1

  
( )

    





 
  
 

0
J

0 Q



 for one 

observation is  

11

22

2

11

2

22

  1/     0             0               0   

    0     1/           0               0   

    0          0       1/(2 )        0 

    0          0            0         1/(2 )    









 
 
 
 
 
 
 

J , and 

2

11

2

22

2      0   

  0      2





 
   
 

Q . 

                

1 11 1 22

2 11 2 22

11 22

/    /

/    /  
,  and

/   /M M

d d

d d

d d

 

 

 

 
 
 
 
 
 

B =

2

11 11 222

2

11 22 22

   1/      1/( )

1/( )      1/  

T

ir d
  

  

 
   

 
B B .   (7) 

The matrix 
1 T D Q B B  is: 

2 2

2

11 11 22

2 2

2

11 22 22

1 2
  

2

1 2
   

2

i i

i i

r d r d

r d r d

  

  

 
 

 

 
  
 

 

 
D .  It is easy to show that 
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2 2

11 2

11 22
1

2 2 2

222

11 22

(1 2 )
     r

4 2

1 4 (1 2 )
   r       

2

i

i

i i

i

r d
d

r d r d
d


 


 



 
 
 
  
 
 




 


D .                  (8) 

Now  

                                

1 11 1 22

2 11 2 221

2

11 22

  

  2

1 4

  

i

r r

d d

d dr

r d

d d

 

 

 



 
 
 
 
 
 


BD , hence, 

2

1 1 2 1

1

2

2

1 2

          
4

1 4
        

r

T

i

r r r

d d d d d
r

r d
d d d d d



 
 

  


 
 


BD B . 

Denoting 

( ) /
,  1,...,

/

n

i
i

N n r
V i r

n r


  , from the above it follows that 

   
2

1 2ˆ ˆ( ) ( ) 4 / 1 4T T

n n i i ir V d r d   V BD B V  , and the closed form of the NRR 

statistic (4) becomes 

                                                 
 

2

2 2

2

4
ˆ( )

1 4

i i

n n i

i

r V d
Y V

r d
 







 .                                   (9) 

In this case the limiting covariance matrix 
1T T = I qq BJ B  of the standardized 

frequencies does not depend on parameters, and the NRR statistic follows in the limit the 

chi-squared distribution with r - 1 d.f. 

 

McCulloch [18] proposed a very useful decomposition of 
2 ˆ( )n nY   , namely 

2 2 2ˆ ˆ ˆ( ) ( ) ( ),n n n n n nY U S    where Dzhaparidze-Nikulin (DN) statistic 
2 ˆ( )n nU 

(Dzhaparidze and Nikulin [19]) is 

          
2 1ˆ ˆ ˆ( ) ( )[ ( ) ] ( ),T T T

n n n n n n n n n nU  V I B B B B V                            (10) 

and 

     
2 2 2 1 1ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) [( ) ( ) ] ( ).T T T T

n n n n n n n n n n n n n n n n nS Y U      V B J B B B B B V      (11) 

McCulloch [18, Theorem 4.2] showed that if the rank of B is s , then 
2 2ˆ ˆ( ) and ( )n n n nU S  are asymptotically independent and distributed in the limit as 

2

1r s  

and 
2

s respectively. 

 

Since the first two
 
columns of the matrix nB in our  case are columns of zeros and the 

rest are linearly dependent, the matrix nB has rank 1. From the above it follows that 

1( )T

n n


B B does not exist, but, using the well known facts from the theory of multivariate 

normal distribution (see, e.g., Moore [13, p.132]), we may replace 
1 1( )T

n n n

 A B B by 

( )T

n n n

 A B B , where 
n


A  is any generalized matrix inverse of A . So, for testing 
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binormality with cells ˆ( )in nE  we may use: the NRR statistic defined by (9), the DN 

statistic 

                    
2 ˆ ˆ ˆ( ) ( )[ ( ) ] ( ),T T T

n n n n n n n n n nU  V I B B B B V                               (12) 

where I is the r r identity matrix, and 

                        
2 1ˆ ˆ ˆ( ) ( ) [( ) ( ) ] ( )T T T T

n n n n n n n n n n n n nS    V B J B B B B B V                (13) 

that will have asymptotically 
2 2 2

1 2 1,  ,  and r r   
distributions correspondingly. 

Using formula (7) for  
T

B B  , it is easily verified that 

2

11

2

     01
( )

 0       0 

T

ir d


 

  
 

B B  is a 

generalized matrix inverse for
T

B B . From (12) and (13) after simple matrix algebra one 

gets the following closed form expressions for  
2 ˆ( )n nU   and

2 ˆ( )n nS  : 

                                          
 

2

2 2

2
ˆ( ) ,

i i

n n i

i

V d
U V

d
 





                                             (14) 

and   

                                              
 

 

2

2

2 2

ˆ( )
1 4

i i

n n

i i

V d
S

r d d





 

 .                                       (15) 

The above approach suggests the following evident procedure for developing tests for 

binormality for any nonsingular covariance matrix
11 12

21 22

 

 

 

 

 
  
 

 . Let 1,..., nX X  be a 

set of two-dimensional random vectors, and S is a corresponding sample covariance 

matrix. Let 1e , and 2e be orthogonal normalized eigen-vectors of a sample covariance 

matrix S, then the Karhunen-Loév transform  1 2 ,  1,...,
T

i i i n Y Xe e , will give a set 

1,..., nY Y  of two-dimensional random vectors with the diagonal sample covariance 

matrix.  Hence, tests in (9), (14), and (15) of this Section with frequencies 
( ) ,  1,..., ,n

iN i n  defined by the number of 1,..., nY Y  that fall into intervals 

      2 1

1
ˆ  in R :  ,  ,

T

in n i y iE c c i = 1,...,r

    Y Y Y S Y Y  where yS  is the 

sample covariance matrix of 1,..., nY Y ,  can be used.  

 

3. A simulation study of proposed tests 

 

A simulation study was conducted to compare the power of the Doornik and Hansen 

(DH) [9], Henze and Zirkler (HZ) [20],  Royston (R92) [21],  Nikulin-Rao-Robson 

(NRR) test (9),  McCulloch's (McCull)  test (15), Anderson-Darling (AD), and Cramer 

von Mises (CM) tests . To simulate DH, HZ, and R92 tests the R-scripts given us by 

Matias Saliban-Barrera were used. AD and CM tests were simulated using corresponding 

formulas of Henze [2, p.483]. 

 

We do not consider the Dzhaparidze-Nikulin  (DN) and Chernoff-Lehmann (ChLeh) tests 

of Moore and Stubblebine [16, p. 718],  because of their low power (see Figure 1).  
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To construct graphs in Fig. 1 and Tables 2-5 we used simulated critical values of level 

0.05   that are given in Table 1. 

 

Table 1: Simulated critical values for the right-tailed rejection region of size 0.05  . 

Simulated relative standard errors were defined as errors of the mean of 20 runs by N = 

1,000 each. For all results below that error is not more than 1%. 

 

r n McCull NRR ChLeh  

3 250 3.882 6.018   

5 250 3.830 9.490 8.033  

10 250 3.730 16.890 15.635  

15 250 3.650 23.640 22.344  

20 250 3.620 30.100 28.924  

25 250 3.600 36.400 35.190  

30 250 3.560 42.550 41.350  

40 250 3.530  54.550 53.140  

3 100 3.868 5.959   

5 100 3.780 9.400   

10 100 3.550 16.750   

15 100 3.430 23.510   

20 100 3.330 30.020   

3 50 3.887 6.133   

5 50 3.690 9.350   

10 50 3.300 16.640   

3 25 4.000 6.100   

5 25 3.570 9.240   

 
  

  

  

n HZ DH R92 AD CM 

250 1.058 9.594 5.948 1.314 0.221 

100 0.957 9.560 5.868 1.293 0.221 

50 0.859 9.513 6.018 1.323 0.224 

25 0.737 9.411 4.968 1.298 0.223 
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a)       b) 

 
c)                      d) 

 
Figure 1: a) Power w.r.t. two-dimensional logistic with independent standard logistic 

components (n = 250). b) Power w.r.t. two-dimensional Student t(10 d.f.) with 

independent components (n = 250). c)  Power w.r.t. two-dimensional Student t(10 d.f.) 

with dependent components for n = 250 (formula (5) of Farrell et al. [22] was used). d) ) 

Power w.r.t. two-dimensional Khinchine distribution for n = 250. 

 
From Fig. 1 one sees that the power of McCull test almost does not depend on the 

number of equiprobable grouping intervals and that power of DN ( U ^ 2 ) and ChLeh  

tests is noticeably less than that of NRR ( Y ^ 2 ) and McCull (S^ 2 ) tests.  The same 

lack of power for the DN and Chernoff-Lehmann tests was observed in the univariate 

case (see Voinov et al. [23]).  Because of this in the sequel we shall not consider the 

ChLeh and DN tests. Because of weak dependence of the power of McCull test on the 

number of grouping intervals, the powers of NRR and McCull tests in Tables 2-5 were 

simulated for r = 5 that seems to be optimal. We considered 9 alternatives. Namely: 

Pearson Type II (m = 10, and m = 0 (uniform)), two-dimensional Student t (10 and 5 

d.f.), two-dimensional Khinchine distribution, and 4 different mixtures of normal 

distributions.   

 

Table 2: Simulated powers of tests with respect to alternatives considered for n = 25, N = 

20,000 replications. In the sequel  3  denotes the mean vector (3,3)T
,  B denotes 

1 on diagonal and 0.9 off diagonal, I is the identity 2 2  matrix. 
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Alternative HZ AD CM R92 McCull NRR DH 

Pearson Type II (m=10) 0.045 0.059 0.066 0.067 0.056 0.055 0.028 

Pearson Type II (m=0) 0.223 0.637 0.592 0.223 0.418 0.143 0.038 

Multivariate t (10 d.f.) 0.122 0.325 0.313 0.188 0.071 0.090 0.154 

Multivariate t (5 d.f.) 0.203 0.520 0.520 0.303 0.168 0.206 0.326 

Khinchine 0.111 0.087 0.068 0.082 0.058 0.065 0.038 

0.5N(0,I)+0.5N(3,I) 0.311 0.274 0.294 0.309 0.173 0.055 0.027 

0.79N(0,I)+0.21N(3,I) 0.570 0.080 0.075 0.556 0.060 0.057 0.076 

0.5N(0,B)+0.5N(0,I) 0.189 0.110 0.089 0.087 0.066 0.072 0.068 

0.9N(0,B)+0.1N(0,I) 0.221 0.127 0.117 0.065 0.100 0.147 0.128 

Average 0.22 0.25 0.24 0.21 0.13 0.10 0.10 

 
Table 3:. Simulated powers of tests with respect to specified alternatives for n = 50, N = 

20,000 

 

Alternative HZ AD CM R92 McCull NRR DH 

Pearson Type II (m=10) 0.029 0.065 0.073 0.036 0.06 0.067 0.022 

Pearson Type II (m=0) 0.581 0.952 0.960 0.490 0.824 0.407 0.192 

Multivariate t  (10 d.f.) 0.160 0.317 0.312 0.211 0.135 0.173 0.263 

Multivariate t  (5 d.f.) 0.457 0.507 0.496 0.503 0.417 0.478 0.568 

Khinchine 0.153 0.149 0.128 0.049 0.092 0.100 0.042 

0.5N(0,I)+0.5N(3,I) 0.805 0.585 0.587 0.535 0.369 0.072 0.020 

0.79N(0,I)+0.21N(3,I) 0.929 0.094 0.089 0.813 0.068 0.069 0.116 

0.5N(0,B)+0.5N(0,I) 0.335 0.219 0.195 0.056 0.131 0.134 0.090 

0.9N(0,B)+0.1N(0,I) 0.326 0.257 0.251 0.044 0.243 0.327 0.266 

Average 0.42 0.35 0.34 0.30 0.26 0.20 0.18 

 
Table 4: Simulated powers of tests with respect to specified alternatives for n = 100, N = 

20,000 

 

Alternative HZ AD CM R92 McCull NRR DH 

Pearson Type II (m=10) 0.058 0.090 0.100 0.036 0.073 0.087 0.016 

Pearson Type II (m=0) 0.977 1.000 1.000 0.979 0.997 0.843 0.837 

Multivariate t (10 d.f.) 0.215 0.327 0.319 0.331 0.254 0.320 0.410 
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Multivariate t (5 d.f.) 0.690 0.819 0.815 0.755 0.734 0.772 0.816 

Khinchine 0.262 0.291 0.256 0.052 0.167 0.158 0.049 

0.5N(0,I)+0.5N(3,I) 0.998 0.924 0.911 0.932 0.728 0.109 0.025 

0.79N(0,I)+0.21N(3,I) 0.999 0.119 0.113 0.992 0.083 0.069 0.243 

0.5N(0,B)+0.5N(0,I) 0.634 0.448 0.418 0.055 0.269 0.246 0.106 

0.9N(0,B)+0.1N(0,I) 0.495 0.494 0.481 0.047 0.465 0.577 0.466 

Average 0.59 0.50 0.49 0.46 0.42 0.35 0.33 

 
Table 5: Simulated powers of tests with respect to specified alternatives for n = 250, N = 

20,000 

 

Alternative HZ AD CM R92 McCull NRR DH 

Pearson Type II (m=10) 0.072 0.151 0.164 0.050 0.118 0.164 0.030 

Pearson Type II (m=0) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Multivariate t (10 d.f.) 0.408 0.671 0.676 0.597 0.580 0.660 0.701 

Multivariate t (5 d.f.) 0.962 0.995 0.995 0.977 0.986 0.987 0.988 

Khinchine 0.614 0.61 0.580 0.050 0.398 0.355 0.048 

0.5N(0,I)+0.5N(3,I) 1.000 1.000 1.000 1.000 0.995 0.219 0.075 

0.79N(0,I)+0.21N(3,I) 1.000 0.154 0.157 1.000 0.105 0.068 0.678 

0.5N(0,B)+0.5N(0,I) 0.980 0.848 0.833 0.055 0.670 0.562 0.148 

0.9N(0,B)+0.1N(0,I) 0.805 0.856 0.854 0.045 0.844 0.914 0.789 

Average 0.76 0.70 0.70 0.53 0.63 0.55 0.50 

 
It is not easy to compare different tests w.r.t. different alternatives. The simplest way is to 

compare average (w.r.t. 9 alternatives selected) power of all 7 tests under consideration. 

The results of our simulations  are presented in Figure 2. 
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Figure 2: Average powers of HZ, AD, CM, R92, McCull, NRR, and DH tests as 

functions of the sample size. 

 

From this Figure one sees that, evidently, HZ, AD, and CM tests seem to be the best. At 

the same time it can be concluded that all tests have a right to be used in practice. We see 

also that much depends on an alternative. From Tables 2 and 3, e.g., we see that AD, CM, 

and McCull tests are the best w.r.t. Pearson Type II (m = 0) alternative, and that HZ test 

is preferable w.r.t. Khinchine alternative  and mixtures of normal distributions for small 

samples of size n = 25 and n = 50. From Table 5 we see that HZ, R92, AD, CM, and 

McCull tests are perfect w.r.t. the mixture of normal distributions 0.5N(0,I)+0.5N(3,I) if  

n = 250.  

 

Remark 

It is of interest to compare simulated powers of AD, CM, HZ, and McCull tests with 

those for 2 2 2 1,2 2,  ,  ,  ,  and Z C R b W  tests of Sürücü [8], Table 1, p.1325 for n = 50 

(Table 6). 

 

Table6: Simulated powers of tests with respect to specified alternatives for n = 50, N = 

20,000 

 

Alternative 2Z  2C  2R  1,2b  
2W  AD CM HZ McCull 

St. t (2 d.f.) 0.74 0.97 0.99 0.94 0.96 0.98 0.98 0.97 0.96 

St. t (6 d.f.) 0.30 0.45 0.58 0.53 0.49 0.39 0.38 0.34 0.31 

Uniform 0.07 0.97 0.41 0 0.07 0.95 0.96 0.58 0.83 

Average 0.37 0.80 0.66 0.49 0.51 0.77 0.77 0.63 0.70 

 

From this Table we see that as Sürücü [8, p.1324] wrote "as an omnibus goodness-of-fit 

test the 2C  test is clearly most powerful overall". This is clear indeed, but we have to 

note that AD, CM, and McCull tests are quite comparable with the 2C  test of Sürücü [8]. 
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4. Conclusion and recommendations 

 

To conclude the research we have to note that no one of seven tests considered can be a 

panacea when testing for two-dimensional normality.  Any of them can be used in 

practice. But, before selecting a proper test, it is highly desirable to have some 

imagination about possible alternative. 
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