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REGRESSION WHEN THE PREDICTOR MAY BE CENSORED

David Oake$

Abstract

There is a voluminous literature on regression models whtggeresponse variable is subject to
right censoring. Situations where a predictor variableuljsct to right censoring have received
much less attention. However the increasing use of biomsrke predictors in clinical studies
has focussed attention on this area. Unlike in situationls eénsored response variables, simply
omitting observations with the censored predictors tylpicdoes not lead to bias in the estimation
of the regression coefficient. However there may be a sutistdoss of efficiency. We explore
some approaches to recovery of the available informatiomfthe censored observations using
both parametric and nonparametric methods and report fudtseof an illustrative simulation.
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1. Introduction

There is a voluminous literature on regression models wtiegeesponse variable is sub-
ject to right censoring. Situations where a predictor \@gas subject to right censoring
have received much less attention. One special case hastueled extensively, the limit
of detection problem which arises when there is a prespdcifigoer or lower limit on
values that can be recorded. However the increasing useoofdokers as predictors in
clinical studies - see, for example Brumback, Pepe and Al¢R2@06) and Cai et al. (2006)
motivates us to consider more general patterns of cengorshi

We study estimation of the regression coefficignn the simple univariate linear re-
gression model

}/Z' =a+ ﬁirz + €,

where thes; are independent and identically distributed with mean a2ewbfinite variance
o2. TheT; are subject to right censoring, so that we obserye= min(T;, c;) andd; =
1(T; < ¢;). Note thatY; is always observed, even wh&his censored.

We shall assume that the are independent and identically distributed with contsmou
distribution F'(t) = pr(T" < t). We will usually assume that the are also independent
and identically distributed from a distribution with susivfunction G(c¢) = pr(C' > ¢).
Typically both F and G will be unknown. We will investigate semiparametric and non
parametric approaches to analysis of this type of data.

2. Anillustrative example

An example leading to simple calculations is to tdkg&) = 1 — exp(—At) andG(c) =
exp(—uc). Under these assumptiod andé are independenpr(é = 1) = A/ (A + )
and X is exponential with parameter+ p. To be specific, we will take = 8 =0 =1
andu = 0.5, so that 1/3 of the observations @nwill be censored. If there had been no
censoring the asymptotic variance/dfvould have been

AV.(8) = lim nvar(f)

n—oo
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2
= lim

S O

If simply omit the censored observations, by what factoris increased? The answer
is not 1.5 as might be expected from the reduced sample si2§Z£3)). The censoring
selectively eliminates observations that are more infonaabouts, those with greater’.
As we noted and X are independent in this model and thieis exponentially distributed
with paramete\ + p). So

. . At o’
AV.(B.) = nh_{go A Y(x—3)%/n
Aty o

A var(X)
A+p)?

- o’ =278,

The numerical value here depends on the parameter valudsugethe phenomenon
of variance inflation beyond that due to the reduced sampteisiquite general.

3. First and Second Moment Properties

Write e(t) andwv(t) for the mean and variance of the conditional distributiotthefresidual
lifetime T' — ¢ givenT" > t. These are finite for allif £(T") < co andvar(T") < co. Then,

EY|z,0) = d(a+px)+(1—-00){a+BE(T|z,d =0)}
= a+pz+p(1—0d)e(x),

var(Y|z,8) = E{var(Y|T)|z,0} + var{E(Y|T)|x,0}
= o2+ var(a + BTz, 0)
= o2+ (1 —6)B%*var(T|z,6 = 0)
= o>+ (1-6)53%(z).

If e(t) andv(t) are known or can be estimated thércan be estimated by weighted
least squares df on E(T'| X, ¢) or an estimaté”(7'| X, ¢). This approach does not require
that the deviations; around the true regression line be normally distributed.

4. Exponential Distribution for T'

We now return to the situation wheléhas an exponential distribution with known param-
eter)\. By the lack of memory property,(z) = 1/X andv(z) = 1/)2, so

var(Y|z,d = 0) = 0% + 32/\%,
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free ofz. For then — d censored observations the predicioris replaced byz; + 1/
Adding the same value to evesydoes not affects or its precision, so these observations
provide an independent estimatgwith

-~ 0'2‘|‘ﬁ2//\2
) = S w

By the independence éfand X, n=' 3" .(x; — #.)? — u/(A + u)?, and

AV.(5) = () (¢ 52)@ )P

With our numerical values
AV.(B.) =27/2.

A third independent estimatgt; of 3 may be obtained by considering the difference
Y. — §u, between the mean gffor the censored and uncensored observations, since

B(Y|X,6 = 0)— E(Y|X,5 = 1) = g.

Setting/3; = ATe — Yu) gives
. A+ p B2\ (A + 1
2 2 2 2
AV.(Bg) = N0 <T) + A (0' + F) <T)
With our numerical values, R
AV.(6y) =15/2.

The optimal linear combinatioﬁlc of Bu, B¢, B4 weights each inversely as its variance
and is (essentially) just the weighted least squares etstiragy onz+(1—d)e(x). Writing
I = var(3)~! for the information from each estimator our numerical valgeve

Le=T1,+1.+1;=8/27+42/27+2/15 = 68/135 ~ 0.5,
and
L./I, =1.7.

so that appreciable recovery of information from the ceedabservations is possible.
Further recovery of information is possible from second reats. For the residual

variation of they; aroundE (y;|x;, 6;) is > whend = 1 ando? = 024 32/A% whens = 0.

Writing s2 ands? for the corresponding estimates gives a fourth estimatgrmely

Bv = )‘(Sg - 35)%

The variability of this estimate will depend on the disttibn of the errors;. With nor-
mally distributed errorgd—2)s2 /o2 will follow a chi-square distribution witld—2 degrees
of freedom, so that

ANV.(s2) = 204”7".

The distribution ofs? is more complicated as the errors here are the sums of a normal
epsilon; and a centered exponential variable with paramafgt. However a straightfor-
ward calculation involving the fourth moments of these tigiributions gives

2 4
9 4 23 Ié) A+ p
AV.(s;) = <20' + 4o )\2+8_)\4)(—,u >,

so that the asymptotic variance 8f can be calculated using the delta method.
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5. Fully Parametric Approach

Tsimikas et al., (2012) in one of the few papers on this topamsider the estimation of
G under a fully parametric model when thgare normally distributed and the distribution
of T takes various parametric forms. In particular they point iat whenT follows
an exponential distribution, the conditional distributiof 7" givenY = y andT > zis a
truncated normal distribution. The full log-likelihood (n, 3, A, o) can then be maximized
directly or by the EM algorithm, (Dempster, Laird and Rulify7). The latter requires the
only computation of the conditional expectatioR$I'|T" > =,Y = y) andE(T|T? > z),
which are expressible in terms of the normal c.d.f.

6. Fully Nonparametric Approach

We now consider weighted least squares estimation wherighrédtion of7" is unknown.
This approach requires only the usual second moment asgnsmn thee;, normality is
not required. We propose to estimdté-) by the usual Kaplan-Meier estimaté?(') and
use this to estimate + e(x) andv(z) by

> (i)

x+é(x) =

~

z;>x,0;=1 1- F(m)

o, p
)= Y W@ o
z;>x,0;=1 1—- F((L’)
It appears to be helpful to forcE(-) to be a proper distribution, by setting(z) = 1 for
x > max(zy,...,Tn).

Estimates ofx and 5 may now be obtained by iteratively weighted least squarég T
asymptotic distributions of these estimates remains towestigated. The general context
is that of a regression problem where measurement of thegboedariable is subject to
small but highly correlated errors. The limiting limitingebavior of the proces&(z) was
presented in Yang (1978).

Bantis (2013) presents an alternative approach that uieaesfor nonparametric esti-
mation of the distribution of .

7. An lllustrative Simulation

We performed a simple simulation under our selected modefuk00 repetitions with a
sample sample size of 1000. Values of the mean and standeetioe of the estimated
slope were as follows:

(i)Regression on all the ¢;......ccccocvvvvieniiiniiiiiennn. 1.022(0.0343)

(ii)Regression on the uncensored t;..........c.ccceoveenen. 1.004(0.0600)
(iii) Weighted Least Squares : True Weights.............. 1.007(0.0423)
( )

(iv)Weighted Least Squares : Estimated Weights..... 1.020(0.0516

In (iii) the true distributions and parameter values weredut calculate the conditional
expectations:(x) and the variances(z). In (iv) e(z) andv(x) were estimated nonpara-
metrically and a preliminary estimate ¢f was calculated from the observations with
uncensored.
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The numerical values of the standard deviations for (i) afid (iii) are consistent with
the calculated asymptotic variance calculations.

The results suggest that all methods yield consistent astsnof, that appreciable
recovery of information from observations with censoreddictors is possible when the
distribution F'(-) of these is known and that some information recovery is ptessven
whenF'(-) must be estimated nonparametrically.

8. Discussion

Gomez et al. (2003) present a joint estimation proceduredrtontext of interval censored
data which, in our notation, combines nonparametric esiimaf the distributionF'(¢) of

T, with a parametric model for the regressionofaround?. The investigators propose
an EM type of approach to maximize thant (semi-parametric) likelihood i and the
regression parameters. They did not specifically addressghcial case of right-censored
data.

Tsimikas et al. (2012) and Bantis (2013) discuss the extani logistic regression
and other generalized linear models (GLM’s). Iterativelgighted least squares estimators
are derived which reduce to the usual ones in the absencasbiieg. The computations
involve calculation of the conditional expectations sush a

E{g‘l(a +5T)’T > x},

e dg~(a + BT)
R s

whereg(+) is the link function for the GLM. Parametric models will réyreyield explicit
forms for these conditional expectations, but there agptmbe no special difficulty in
applying the nonparametric approach.

Situations with multiple predictors are more difficult todndss, for example with two
predictorsTy, Ts, both subject to censoring, the weighted least square®agiprequires
calculation of the conditional expectatioh8 7775 |T} > x1,Ts = to) and E(TYTH|Ty >
x1, Ty > x9) for (p,q) = (1,0),(2,0),(0,1),(0,2),(1,1). A fully non-parametric ap-
proach would require use of a bivariate survivor functiotineator, for example that of
Dabrowska (1978).
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