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Abstract
There is a voluminous literature on regression models wherethe response variable is subject to

right censoring. Situations where a predictor variable is subject to right censoring have received
much less attention. However the increasing use of biomarkers as predictors in clinical studies
has focussed attention on this area. Unlike in situations with censored response variables, simply
omitting observations with the censored predictors typically does not lead to bias in the estimation
of the regression coefficient. However there may be a substantial loss of efficiency. We explore
some approaches to recovery of the available information from the censored observations using
both parametric and nonparametric methods and report the results of an illustrative simulation.
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1. Introduction

There is a voluminous literature on regression models wherethe response variable is sub-
ject to right censoring. Situations where a predictor variable is subject to right censoring
have received much less attention. One special case has beenstudied extensively, the limit
of detection problem which arises when there is a prespecified upper or lower limit on
values that can be recorded. However the increasing use of biomarkers as predictors in
clinical studies - see, for example Brumback, Pepe and Alonzo (2006) and Cai et al. (2006)
motivates us to consider more general patterns of censorship.

We study estimation of the regression coefficientβ in the simple univariate linear re-
gression model

Yi = α + βTi + ǫi,

where theǫi are independent and identically distributed with mean zeroand finite variance
σ2. TheTi are subject to right censoring, so that we observexi = min(Ti, ci) andδi =
1(Ti ≤ ci). Note thatYi is always observed, even whenTi is censored.

We shall assume that theTi are independent and identically distributed with continous
distributionF (t) = pr(T ≤ t). We will usually assume that theci are also independent
and identically distributed from a distribution with surivor functionG(c) = pr(C > c).
Typically bothF andG will be unknown. We will investigate semiparametric and non-
parametric approaches to analysis of this type of data.

2. An illustrative example

An example leading to simple calculations is to takeF (t) = 1 − exp(−λt) andG(c) =
exp(−µc). Under these assumptionsX andδ are independent,pr(δ = 1) = λ/(λ + µ)
andX is exponential with parameterλ + µ. To be specific, we will takeλ = β = σ = 1
andµ = 0.5, so that 1/3 of the observations onT will be censored. If there had been no
censoring the asymptotic variance ofβ̂ would have been

A.V.(β̂) = lim
n→∞

n var(β̂)
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= lim
n→∞

σ2

∑

(ti − t̄)2/n

=
σ2

var(T )

=
σ2

λ2
= 1 .

If simply omit the censored observations, by what factor is this increased? The answer
is not 1.5 as might be expected from the reduced sample size (=1/(2/3)). The censoring
selectively eliminates observations that are more informative aboutβ, those with greaterT .
As we notedδ andX are independent in this model and theX is exponentially distributed
with parameter(λ + µ). So

A.V.(β̂u) = lim
n→∞

λ + µ

λ

σ2

∑

(xi − x̄i)2/n

=
λ + µ

λ

σ2

var(X)

=
(λ + µ)3

λ
σ2 = 27/8 .

The numerical value here depends on the parameter values used, but the phenomenon
of variance inflation beyond that due to the reduced sample size is quite general.

3. First and Second Moment Properties

Write e(t) andv(t) for the mean and variance of the conditional distribution oftheresidual
lifetime T − t givenT > t. These are finite for allt if E(T ) < ∞ andvar(T ) < ∞. Then,

E(Y |x, δ) = δ(α + βx) + (1 − δ){α + βE(T |x, δ = 0)}

= α + βx + β(1 − δ)e(x),

var(Y |x, δ) = E{var(Y |T )|x, δ} + var{E(Y |T )|x, δ}

= σ2 + var(α + βT |x, δ)

= σ2 + (1 − δ)β2var(T |x, δ = 0)

= σ2 + (1 − δ)β2v(x).

If e(t) andv(t) are known or can be estimated thenβ can be estimated by weighted
least squares ofY onE(T |X, δ) or an estimatêE(T |X, δ). This approach does not require
that the deviationsǫi around the true regression line be normally distributed.

4. Exponential Distribution for T

We now return to the situation whereT has an exponential distribution with known param-
eterλ. By the lack of memory property,e(x) = 1/λ andv(x) = 1/λ2, so

var(Y |x, δ = 0) = σ2 + β2/λ2,
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free of x. For then − d censored observations the predictorxi is replaced byxi + 1/λ.
Adding the same value to everyx does not affect̂β or its precision, so these observations
provide an independent estimateβ̂c with

var(β̂c) =
σ2 + β2/λ2

∑

c(xi − x̄c)2
.

By the independence ofδ andX, n−1
∑

c(xi − x̄c)
2 → µ/(λ + µ)3, and

A.V.(β̂c) =

(

λ + µ

µ

)(

σ2 +
β2

λ2

)

(λ + µ)2.

With our numerical values
A.V.(β̂c) = 27/2 .

A third independent estimator̂βd of β may be obtained by considering the difference
ȳc − ȳu between the mean ofy for the censored and uncensored observations, since

E(Y |X, δ = 0) − E(Y |X, δ = 1) =
β

λ
.

Settingβ̂d = λ(ȳc − ȳu) gives

A.V.(β̂d) = λ2σ2

(

λ + µ

λ

)

+ λ2

(

σ2 +
β2

λ2

)(

λ + µ

µ

)

.

With our numerical values,
A.V.(β̂d) = 15/2 .

The optimal linear combination̂βlc of βu, βc, βd weights each inversely as its variance
and is (essentially) just the weighted least squares estimator of y onx+(1−δ)e(x). Writing
I. = var(β̂.)

−1 for the information from each estimator our numerical values give

Ilc = Iu + Ic + Id = 8/27 + 2/27 + 2/15 = 68/135 ≈ 0.5,

and
Ilc/Iu = 1.7 .

so that appreciable recovery of information from the censored observations is possible.
Further recovery of information is possible from second moments. For the residual

variation of theyi aroundE(yi|xi, δi) is σ2 whenδ = 1 andσ2
c = σ2 +β2/λ2 whenδ = 0.

Writing s2
u ands2

c for the corresponding estimates gives a fourth estimate ofβ namely

β̂v = λ(s2

c − s2

u)
1

2 .

The variability of this estimate will depend on the distribution of the errorsǫi. With nor-
mally distributed errors(d−2)s2

u/σ2 will follow a chi-square distribution withd−2 degrees
of freedom, so that

A.V.(s2

u) = 2σ4 λ + µ

λ
.

The distribution ofs2
c is more complicated as the errors here are the sums of a normal

epsiloni and a centered exponential variable with parameterλ/β. However a straightfor-
ward calculation involving the fourth moments of these two distributions gives

A.V.(s2

u) =

(

2σ4 + 4σ2
β2

λ2
+ 8

β4

λ4

)(

λ + µ

µ

)

,

so that the asymptotic variance ofβ̂v can be calculated using the delta method.
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5. Fully Parametric Approach

Tsimikas et al., (2012) in one of the few papers on this topic,consider the estimation of
β under a fully parametric model when theǫi are normally distributed and the distribution
of T takes various parametric forms. In particular they point out that whenT follows
an exponential distribution, the conditional distribution of T givenY = y andT > x is a
truncated normal distribution. The full log-likelihood in(α, β, λ, σ) can then be maximized
directly or by the EM algorithm, (Dempster, Laird and Rubin,1977). The latter requires the
only computation of the conditional expectationsE(T |T > x, Y = y) andE(T |T 2 > x),
which are expressible in terms of the normal c.d.f.

6. Fully Nonparametric Approach

We now consider weighted least squares estimation when the distribution ofT is unknown.
This approach requires only the usual second moment assumptions on theǫi, normality is
not required. We propose to estimateF (·) by the usual Kaplan-Meier estimator̂F (·) and
use this to estimatex + e(x) andv(x) by

x + ê(x) =
∑

xi>x,δi=1

xidF̂ (xi)

1 − F̂ (x)
,

v̂(x) =
∑

xi>x,δi=1

x2
i dF̂ (xi)

1 − F̂ (x)
− ê(x)2.

It appears to be helpful to forcêF (·) to be a proper distribution, by settinĝF (x) = 1 for
x ≥ max(x1, . . . , xn).

Estimates ofα andβ may now be obtained by iteratively weighted least squares. The
asymptotic distributions of these estimates remains to be investigated. The general context
is that of a regression problem where measurement of the predictor variable is subject to
small but highly correlated errors. The limiting limiting behavior of the procesŝe(x) was
presented in Yang (1978).

Bantis (2013) presents an alternative approach that uses splines for nonparametric esti-
mation of the distribution ofT .

7. An Illustrative Simulation

We performed a simple simulation under our selected model using 100 repetitions with a
sample sample size of 1000. Values of the mean and standard deviation of the estimated
slope were as follows:

(i)Regression on all the ti........................................ 1.022(0.0343)

(ii)Regression on the uncensored ti.......................... 1.004(0.0600)

(iii)Weighted Least Squares : True Weights.............. 1.007(0.0423)

(iv)Weighted Least Squares : Estimated Weights..... 1.020(0.0516)

In (iii) the true distributions and parameter values were used to calculate the conditional
expectationse(x) and the variancesv(x). In (iv) e(x) andv(x) were estimated nonpara-
metrically and a preliminary estimate ofβ was calculated from the observations witht
uncensored.
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The numerical values of the standard deviations for (i), (ii) and (iii) are consistent with
the calculated asymptotic variance calculations.

The results suggest that all methods yield consistent estimates ofβ, that appreciable
recovery of information from observations with censored predictors is possible when the
distribution F (·) of these is known and that some information recovery is possible even
whenF (·) must be estimated nonparametrically.

8. Discussion

Gomez et al. (2003) present a joint estimation procedure in the context of interval censored
data which, in our notation, combines nonparametric estimation of the distributionF (t) of
T , with a parametric model for the regression ofY aroundT . The investigators propose
an EM type of approach to maximize thejoint (semi-parametric) likelihood inF and the
regression parameters. They did not specifically address the special case of right-censored
data.

Tsimikas et al. (2012) and Bantis (2013) discuss the extension to logistic regression
and other generalized linear models (GLM’s). Iteratively weighted least squares estimators
are derived which reduce to the usual ones in the absence of censoring. The computations
involve calculation of the conditional expectations such as

E

{

g−1(α + βT )

∣

∣

∣

∣

T > x

}

,

and

E

{

dg−1(α + βT )

dβ

∣

∣

∣

∣

T > x

}

,

whereg(·) is the link function for the GLM. Parametric models will rarely yield explicit
forms for these conditional expectations, but there appears to be no special difficulty in
applying the nonparametric approach.

Situations with multiple predictors are more difficult to address, for example with two
predictorsT1, T2, both subject to censoring, the weighted least squares approach requires
calculation of the conditional expectationsE(T p

1
T q

2
|T1 > x1, T2 = t2) andE(T p

1
T q

2
|T1 >

x1, T2 > x2) for (p, q) = (1, 0), (2, 0), (0, 1), (0, 2), (1, 1). A fully non-parametric ap-
proach would require use of a bivariate survivor function estimator, for example that of
Dabrowska (1978).
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