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Abstract

A complete univariate Analysis of Variance (ANOVA) of a mixed effects linear model with nested

factors may become extremely complicated when the data justify the use of some terms in the fully

factorial, i.e., unconditional, model while failing to accept others at a given level of significance.

This paper presents an analytical routine (written in elementary ANSI C code) that automatically

calculates the applicable ANOVA table, including the Expected Mean Squares (EMS) expressions,

and exact and Welch-Satterthwaite approximate F tests and statistics, that a given dataset would

present as significant at a given level of Type I error. The output is the Plain TeX code that dis-

plays the ANOVA table and a listing of the intermediate steps taken to calculate the final model.

Also included is a discussion of the possible valid adjustments an analyst may make to non-fully

factorial datasets, or datasets with an unequal number of within-factor observations, to make them

appropriate for use with this code.
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1. Introduction

Embedded systems are becoming more and more critically important towards realizing an

important achievement – automating the fundamental benefits of statistical analyses into

the intelligence of a control system. Rather than focus on statistical analyses that may be

performed once or twice by teams of people over weeks or even years, embedded systems

offer the opportunity to perform thousands or even millions of a variety of modifiable statis-

tical analyses within one second by a single microprocessor. Such a capability may provide

a control system with immediate feedback on changing conditions, thus enabling more pre-

cise and quick-responding control. Inefficient and unproductive characteristics of common

processes, such as vibration, friction, heat loss, and incomplete combustion may be made

ultra-efficient by the use of a control system that has the ability to react to changing condi-

tions and variable boundary values according to assessments and conclusions provided by

a statistical analysis embedded system.

2. Statistical Programming Principles

To achieve this goal of embedding statistical analysis capabilities into the intelligence of

a control system, a radically different approach to numerical programming and hardware

implementation is needed compared to the current dominant computer architecture model.

In particular, the orientation towards compiled programs must be replaced by hardware

systems that implement the analytical methods required for a statistical analysis, with flex-

ibility for alternate methods should circumstances require such diversity.

2.1 Atomic, Modular, Reusable, Hierarchical

The first required principle of statistical programming methods is that all embedded system

statistical analysis functionality be oriented to atomic, modular, reusable, and hierarchical
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structures. These concepts are independent yet cumulative within an embedded system,

i.e., enhancing/degrading one aspect does not enhance/degrade any of the other aspects.

Each of these concepts is equally important with respect to the integrity and effectiveness

of every statistical analysis embedded system.

2.1.1 Atomic

An embedded system structure is said to be atomic if it defines functionality that is not a

combination of other, more basic, functionality. Since the ultimate goal of any embedded

system is to reside completely in a hardware implementation, the atoms of any statistical

analysis embedded system will depend on the particular structures available in the hard-

ware. However, for development purposes, the terms “atoms” will refer to the fundamental

and indivisible units of an intermediate software implementation (see Sections 2.3 – 2.5).

2.1.2 Modular

A module is a narrowly-defined, application-specific, and practical segment of statistical

analysis functionality. It may be oriented towards numerical, database, or signaling aspects

within the context of the entire embedded system. An example of a module is the floating-

point addition of two numbers. Other non-numeric examples would be deleting an entry

from the operator queue, and changing the value of an overflow register.

2.1.3 Reusable

A module is said to be reusable if it may be used in combination with other modules to

perform a more complication calculation, or a more intricate database change, or signal a

more sophisticated status change to the embedded system. The fact that floating-point ad-

dition may be repeatedly used, along with the floating-point division module, to calculated

the average value of a dataset, shows that floating-point addition (and division) are reusable

modules.

2.1.4 Hierarchical

A collection of modules, sometimes called a library, is said to be hierarchical if each mem-

ber of the collection is either atomic, i.e., only defined in terms of lower-level operations,

or is defined in terms of a combination of other modules in the collection. For example,

a variance module might be defined in terms of a module that calculates the mean, and

modules/atoms that perform floating-point subtraction, multiplication, and division.

2.2 Theoretical Foundations

The first step in designing an atomic, modular, reusable, and hierarchical statistical analysis

embedded system is to carefully define and delineate the functionality of each structure. In

this way, minimal changes will be required during the implementation phases of such a sys-

tem since all the pitfalls and deadends that complicated analytical systems may introduce

have been anticipated and avoided. Such theoretical foundations include defining the in-

puts needed to the module, the analytical methods used to make the necessary calculations

(including having the required modules available in the library), and the outputs provided

by the module. Even though these aspects of system design appear to be obvious or trivial,

careful attention to these matters goes a long way to minimize the need for “rework” when

extensions are attempted to system functionality.
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2.3 High-level Language Prototype

A highly effective starting place for designing a statistical analysis embedded system is to

code all modules in terms of a high-level language such as C, UNIX Shell, MAPLE R©,

Mathmatica R© , etc. Note that these examples do not include statistics-oriented soft-

ware such as R, since that type of software is oriented to performing complicated statistical

calculations behind-the-scenes to the user – precisely the sort of thing embedded systems

programming needs to avoid. Rather, symbolic manipulation and programmable mathemat-

ics software provides a general, yet proprietary programming language that is well suited

to the goals of module development. The purpose of starting with a high-level language is

to focus on the functionality involved in the module, rather than the underlying details that

will be explored in the next section.

2.4 Low-level Language Prototype

Once the fundamental functionality of a module has been documented in the high-level

language prototype, this code may be used to translate the same functionality to a low-level

language such as MMIX, which is a generic Reduced Instruction Set Computing (RISC)

64-bit assembly language invented by Dr. Donald E. Knuth of Stanford University. For ex-

ample, the high-level language implementation for the variance module (which essentially

uses floating-point addition, subtraction, multiplication, and division) may be used to code

the low-level language implementation using the MMIX operations FADD, FSUB, FMUL,

and FDIV. The purpose of translating the high-level language version into a low-level ver-

sion is to easily and more intuitively move one step closer to the ultimate goal of hardware

implementation of a statistical analysis embedded system.

2.5 Hardware-level Implementation

Finally, the low-level language implementation of any module is easily translated to a hard-

ware description language at the register-transfer level of abstraction (versus property spec-

ifications) such as documented under the IEEE 1364 standard. It is from this kind of im-

plementation that fabrication masks are created.

2.6 Policies

A library of module policies should be included along with every embedded system code

library, as such documentation is just as critically important as any other embedded system

documentation is to the ultimate success of an embedded system as is the programming

code itself. It provides guidance for analysts to use, extend, and otherwise modify the

functionality of modules (and their interactions within a library). These policies may also

be used to anticipate special cases and particular implementation issues that might arise due

to the particular nature of the statistical analyses involved. They also provide a controlling

reference for enhancements and version branches as the complexity and applicability of the

module library expands.

3. Minimal Instruction Set

An important consideration for defining the modules within the low-level language context

involves the number of instructions available. For example, the MMIX language provides

R© MAPLE is a registered trademark of Maplesoft, Inc., Waterloo, Ontario, Canada.

R© Mathematica is a registered trademark of Wolfram Research, Inc., Champaign, Illinois, USA.
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for 256 instructions (consistent with its 64-bit architecture), yet perhaps only 25 are needed

to implement a particular library of statistical analysis modules. However, this creates the

question: How many instructions is optimal? Are 10 instructions sufficient? Or are 19
the absolute minimum needed? It turns out that for all statistical analyses, regardless of

how complicated and how intricate they might become, only 1 instruction is needed to

implement any module; all other instruction would be defined in terms of repeated uses of

that one instruction. This would be the ultimate “efficient” code.

A practical determination of the absolute minimum number of instructions needed to

complete a module calculation involves the trade-off between the number of instructions,

the number of clock cycles required to perform all of the calculations within the module,

and the requirements of how often such a calculation is needed. With 25 instructions avail-

able, a module may require 300 “oops” (computer science lingo for the number of clock cy-

cles required to complete all instructions), which, on a computer with an effective through-

put rate of 3GHz, would mean the module calculation may be performed 10,000,000 times

per second. However, with 3 instructions available, that same module may require 300,000
oops, which would mean it could only be completed 10,000 times per second. If the ap-

plication addressed by the embedded system required an update every microsecond, i.e.,

1,000,000 times per second, then the 3 instruction version, as elegant as its code might be,

would be insufficient to meet this requirement, whereas the 25 instruction version would

be able to do so.

3.1 Floating-point Operators

By far the most frequently occurring mathematical operations used in any statistical analy-

sis are those than may be accomplished through floating-point calculations. These include

addition and multiplication, and their inverses (subtraction and division), the (positive)

square root, floor and ceiling conversions to integers, and the conversions between integer

and floating-point expressions. Many of these are redundant, e.g., the square root may be

implemented as a module involving only arithmetic operations, so a smaller instruction set

is possible even at this fundamental level.

3.2 Stochastic Functions

Just as the floating-point operators are the most commonly used in any statistical analysis,

the highly-complicated, multiple parameter stochastic functions, such as a χ2 distribution

density function or an F distribution inverse cumulative function, may still be expressed in

terms of a low-level language with a minimal instruction set. The hierarchical nature of

the module library that leads to such functionality is not immediate: Numerical integration

and orthogonal sets of polynomials must be defined before any stochastic function may

be implemented as a module. The primary point here is that such implementation are not

only possible, they are required, regardless of complexity, to maintain the atomic, modular,

reusable, and hierarchical structures that make up any statistical analysis embedded system.

4. Automated ANOVA For Nested Mixed Effects Linear Models

In general, the term “ANOVA” refers to a collection of statistical models used to analyze the

contribution of various sources of variation (depending on the model) to the total variation

found in a dataset. Note how the dataset itself is part of the parameters of an analysis of

variance. In particular, when the statistical model of a univariate dependent value consists

of the linear sum of a set of factors (and their interactions), where these factors may take

on “fixed” values in the dataset, i.e., they are only capable of taking on certain specific
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values, as well as “random” values in the dataset, i.e., they are capable of taking on any of a

continuous range of values (not necessarily the same for each factor), then the ANOVA

refers to a mixed effects linear model. Furthermore, if a factor is “nested” in another

factor, i.e., there is a restriction on the randomization of the treatments to experimental

units that prevents an assessment of the variance contribution due to the interaction of those

factors, then the ANOVA refers to a nested mixed effects linear model. For the purposes of

this paper, the dataset involved in a nested mixed effects linear model is “fully factorial,”

i.e., every estimable combination of factors is represented at least once in the dataset, and

occurs the same number of times as any other estimable combination of factors (see also

Section 6).

The following information documents the functionality of a library of statistical anal-

ysis modules that may be used to implement a nested mixed effects linear model ANOVA

as an embedded system. This library consists of low-level programming modules (not

associated with any particular hardware manifestation) that implement the required math-

ematical and stochastic functions in terms of a subjectively minimal (25-many) instruction

set, i.e., one that does not consider any timing or cycle count requirements — rather only

as a programming convenience. This library will be referred to as “the automated ANOVA

embedded system.”

4.1 Overview Of Functionality

There are three steps in any use of the automated ANOVA embedded system: (1) Reading of

the Configuration File, which contains all the parameter definitions, labels, and values; (2)

The presentation of the Summary Table, which contains the results of all ANOVA calcu-

lations; and (3) The presentation of the Disposition Table, which details the step-by-step

reduction of the original nested mixed effects linear model into its final form based on the

significance of the factors found in the datasets.

For terms in the ANOVA model with an exact F-test statistic, those that are deemed not

significant in the dataset are consolidated into other terms of the current model (starting

with the highest-order interaction term in the model). This determination is based on the

denominator of the F-test statistic as given by the expected mean squares calculation. A

new consolidation pass is made through the model each time a term is consolidated.

For terms in the ANOVA model without an exact F-test statistic, a Welch-Satterthwaite

approximate F-test statistic is calculated in a manner that balances the degrees of freedom

between the numerator and denominator as closely as possible. Such terms are retained in

the final model regardless of significance level, since the consolidation into other signifi-

cance terms is made problematical by the approximating nature of the F-test statistic.

The two output tables (summary and disposition) are actually ASCII-text files con-

sisting of Plain TEX code that produces the graphical presentation of those tables. These

TEX files are produced through the input/output functionality of the low-level program-

ming language that would not be necessary in the hardware version (unless such output

were desirable and affordable in clock cycles).

4.2 The Configuration File

The configuration file for the automated ANOVA embedded system consists of one of five

available statements, one per line, beginning with a backslash escape character (ASCII

92), terminated by a return/linefeed (ASCII 10) character. The available statements are

factordef, nesteddef, errordef, significance, and datafile.
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4.2.1 Factordef

This statement takes three arguments delineated by curly brackets (ASCII 123 and 125): (1)

The name of the factor (a single character); (2) The type of factor – “F” for fixed and “R”

for random; and (3) The number of levels in the dataset. The use of this statement means

the factor is not nested in any other factor (whether yet defined or otherwise), and it is not

the error term of the model. As currently implemented, up to seven factors may be defined

in any single use of the embedded system.

4.2.2 Nesteddef

This statement takes four arguments delineated by curly brackets (ASCII 123 and 125): (1)

The name of the factor (a single character); (2) The type of factor – “F” for fixed and “R”

for random; (3) The number of levels in the dataset; and (4) The term in the model in

which the factor is nested (a single character). The use of this statement means the defined

factor is nested in the given factor (the fourth argument), and it is not the error term of the

model. As currently implemented, up to six factors may be nested in any single use of the

embedded system.

4.2.3 Errordef

This required statement defines the error term of the model and takes three arguments delin-

eated by curly brackets (ASCII 123 and 125 ) – even though only two are at the discretion

of the analyst. The first argument is the name of the factor (a single character), followed by

“R” (the error term must be considered a random factor in every model), followed by the

number of levels in the dataset. The use of this statement means the factor is not the name

of an independent variable in the model.

Note that all terms in the ANOVA model that would otherwise be tested by the error

term would become untestable if the number of levels is set to 1.

4.2.4 Significance

This statement takes one argument delineated in curly brackets (ASCII 123 and 125) and it

defines the minimum level of significance a term in the model must have in the dataset for

that term to be retained in the model, i.e., reported in the summary table. If a term is not

deemed significant in the dataset, then the disposition table will account for its consolida-

tion into other significant terms in the model as explained in Section 4.1. The significance

level may be any number between 0 and 1 (inclusive) expressed as a percentage, to what-

ever precision is available in the calculation environment.

4.2.5 Datafile

This statement defines the name of the file containing the comma-delimited ASCII-text

dataset. Only one such statement may be used in a configuration file, and only one file may

be named, which must have a *.dat filename extension.

4.3 Processing Steps

The automated ANOVA embedded system operates as follows.

1. Process the contents of the configuration file.

2. Load the contents of the dataset file into memory.

3. Calculate the ...
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(a) Sum Of Squares (Orthogonal Partition)

(b) Mean Squares

(c) Expected Mean Squares (EMS)

(d) Exact F-Test Statistics

(e) Approximate F-Test Statistics (When Needed)

(f) Significance Level Of F-Test Statistics

4. Based on the EMS terms, and starting with the highest-level interaction term in the

model, sequentially consolidate the model terms evaluated as not significant.

(a) If consolidation occurs, record the event in the Disposition Table, and restart

the significance evaluation from the beginning.

(b) If consolidation does not occur, continue with the model terms evaluation with-

out writing anything to the Disposition Table.

5. Finish writing the Disposition Table.

6. Write the Summary Table.

4.4 The Summary Table

The summary table presents the final version of the ANOVA model that is deemed signifi-

cant in the dataset. For example, for the following configuration file, where the significance

\factordef{C}{F}{4}

\factordef{M}{F}{2}

\factordef{T}{R}{3}

\errordef{e}{R}{5}

\significance{0.0}

\datafile{FFR.dat}

Figure 1: FFR Dataset Configuration Listing

is set to 0.0 to ensure all terms appear in the summary table, the automated ANOVA embed-

ded system produces the following processed TEX code for the data from file FFR.dat.

The first column in the summary table “Source” gives the name of the term in the model.

Source df SS MS F T∗ (N):D∗∗ Signf EMS

Ci 3 1.725180 0.575060 0.089345 E − : CT 0.036732 σ2
ǫ + 10σ2

CT + 30φC

Mj 1 12.910080 12.910080 4.580857 E − : MT 0.832127 σ2
ǫ + 20σ2

MT + 60φM

Tk 2 25.593945 12.796972 1.750521 E − : ǫ 0.820818 σ2
ǫ + 40σ2

T

CM ij 3 19.793940 6.597980 0.455080 E − : CMT 0.276627 σ2
ǫ + 5σ2

CMT + 15φCM

CT ik 6 38.618534 6.436422 0.880450 E − : ǫ 0.487628 σ2
ǫ + 10σ2

CT

MT jk 2 5.636535 2.818268 0.385516 E − : ǫ 0.318852 σ2
ǫ + 20σ2

MT

CMT ijk 6 86.991104 14.498517 1.983278 E − : ǫ 0.924515 σ2
ǫ + 5σ2

CMT

ǫl(ijk) 96 701.796570 7.310381 σ2
ǫ

* (E) Exact; (A) Approximate – (df); (U) Untestable
** No Numerator Given For Exact Tests

Figure 2: FFR Dataset Summary Table

It is followed by the degrees of freedom “df” for that term, followed by the dataset Sum

of Squares “SS” and Mean Squares “MS” statistics. The “F” column shows the calculated

F-test statistic for each term in the final model that is deemed significant. This statistic is

based on the EMS expressions (last column) for the numerator and denominator test val-

ues. The “T” column lists whether the F-test statistic is Exact, Approximate, or Untestable.

JSM 2013 - Section on Statistical Computing

598



The following column shows the numerator and denominator terms involved in the F-test

statistic, where no numerator term is given for exact tests, and “ǫ” is symbolic for the error

term. Nested factors are signaled by their index symbols in parentheses.

As another more complicated example, for the following configuration file, which

\factordef{C}{F}{4}

\nesteddef{M}{F}{2}{C}

\factordef{T}{R}{3}

\nesteddef{V}{F}{5}{T}

\factordef{W}{R}{2}

\errordef{e}{R}{3}

\significance{90.0}

\datafile{FFRFR.dat}

Figure 3: FFRFR Dataset Configuration Listing

contains five factors, two of which are nested, the automated ANOVA embedded sys-

tem produces the following processed TEX code at 90% significance for the data from file

FFRFR.dat. Note that there is only one surviving term (and factor) in this analysis, since

Source df SS MS F T∗ (N):D∗∗ Signf EMS

Vl(k) 12 188.837753 15.736479 1.891855 E − : ǫ 0.967744 σ2
ǫ + 48φV

ǫn(ijklm) 707 5880.838379 8.318018 σ2
ǫ

* (E) Exact; (A) Approximate – (df); (U) Untestable
** No Numerator Given For Exact Tests

Figure 4: FFRFR Dataset Summary Table

all other terms have been deemed not significant (see the next section).

4.5 The Disposition Table

The disposition table presents the logical flow of F-tests and consolidations performed dur-

ing the analysis that results in the final model presented in the summary table (see the

previous section). For example, for the FFR dataset and configuration file (see Figure 1),

with the significance set to 100% in this example (which means all terms in the model

will be rejected to fully demonstrate the consolidation of terms), the automated ANOVA

embedded system produces the processed TEX code for the disposition table presented in

Figure 5. The first column of the disposition table “Step” is a counter for each separate

F-test or consolidation calculation made by the embedded system. It is followed by the

“#” column which denotes the term number in the fully factorial expansion of the factor

names and their interactions. The next column explicitly lists the term referenced by the

“#” column. The next two columns graphically show whether the term is retained in the

model (“in”), or rejected from the model (“out”), based on the F-test statistic. Once again,

the “E” term in these columns indicates that the decision was made based on an exact F-test

statistic from the EMS expressions. The “EMS Term” column shows the numerator and de-

nominator terms for the F-test statistic, where “ǫ” is symbolic for the error term. The next

column shows the degrees of freedom corresponding to the previous column expression,

which is followed by the explicit F-test ratio values, with the reduced value found in the
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PQICSTAT EMS Table Disposition Report (Section 1 Of 1)*

Model Test Ratio
Step # Term In Out EMS Test df:df F Ratio Value Signf

1 7 CMT E CMT : ǫ 6 : 96 14.498517/7.310381 1.983278 0.924515

Term CMT (#7) Consolidated Into ǫ [New SSE/df = 788.787659/102].

2 6 MT E MT : ǫ 2 : 102 2.818268/7.733212 0.364437 0.304512

Term MT (#6) Consolidated Into ǫ [New SSE/df = 794.424194/104].

3 5 CT E CT : ǫ 6 : 104 6.436422/7.638694 0.842608 0.460101

Term CT (#5) Consolidated Into ǫ [New SSE/df = 833.042725/110].

4 4 CM E CM : ǫ 3 : 110 6.597980/7.573116 0.871237 0.541601

Term CM (#4) Consolidated Into ǫ [New SSE/df = 852.836670/113].

5 3 T E T : ǫ 2 : 113 12.796972/7.547227 1.695586 0.811874

Term T (#3) Consolidated Into ǫ [New SSE/df = 878.430603/115].

6 2 M E M : ǫ 1 : 115 12.910080/7.638527 1.690127 0.802317

Term M (#2) Consolidated Into ǫ [New SSE/df = 891.340698/116].

7 1 C E C : ǫ 3 : 116 0.575060/7.683972 0.074839 0.026588

Term C (#1) Consolidated Into ǫ [New SSE/df = 893.065857/119].

* Created Tuesday, April 02, 2013 at 21:40:32 EDT for configuration/data file prefix EMSwthSSMSwthFTwthK2b.

Figure 5: FFR Dataset Disposition Table

following column. The final column shows the maximum significance level found in the

configuration file that would be needed for this term to be retained in the model (at that

point in the analysis).

Note how each term in the model is eventually consolidated into the error term (the

F-test denominator in each case) since the significance level has been set to 100%.

As another more complicated example, for the FFRFR dataset and configuration file

(see Figure 3), with the significance level set to 90%, the automated ANOVA embedded

system produces the processed TEX code for the disposition tables presented in Figures 6

and 7. Note how the three-way interaction term #23, the “MTW” term, is repeatedly

retained in the model during various re-evaluations after consolidations have occurred, e.g.,

Steps 2, 4, 6, ..., 23, 26, 29 in both figures, yet it is eventually rejected from the model (at

Step 32) since its sum of squares value is consolidated with the “MT” term (#10) at Step

31, and the resulting increase in “MTW” degrees of freedom (from 12 to 20 from the

addition of the 8 from “MT”) no longer results in a significance greater then 90% (at Step

32 it drops under 73%). As the end of the disposition table shows (at Step 35 in Figure 7),

the only term left in the model after all consolidations is term #4, the “V” term, as was

represented in the summary table (Figure 4).

5. Complexity Warning

It is very easy for even “simple” appearing configurations to present highly complicated

summary tables and very long disposition tables. For example, the summary table found

in Figure 8 corresponds to a seven-factor three-nested model configuration file with the

significance level set to 0.0. However, the disposition table for this analysis grows to 1,063
steps consuming 40 pages (for brevity, they are not included here) when the significance

level is set to 90.0. Care must be taken to ensure that a statistical analysis embedded

system does not produce such extensive results that the number of clock cycles is artificially

inflated simply due to extreme reporting duties for routine results.
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PQICSTAT EMS Table Disposition Report (Section 1 Of 2)*

Model Test Ratio
Step # Term In Out EMS Test df:df F Ratio Value Signf

1 24 MVW E MVW : ǫ 48 : 480 8.077482/8.547336 0.945029 0.419515

Term MVW (#24) Consolidated Into ǫ [New SSE/df = 4490.440430/528].

2 23 MTW E MTW : ǫ 8 : 528 15.270254/8.504622 1.795524 0.924583
3 21 CVW E CVW : ǫ 36 : 528 8.597583/8.504622 1.010931 0.545995

Term CVW (#21) Consolidated Into ǫ [New SSE/df = 4799.953613/564].

4 23 MTW E MTW : ǫ 8 : 564 15.270254/8.510556 1.794272 0.924516
5 20 CTW E CTW : ǫ 6 : 564 7.716419/8.510556 0.906688 0.510435

Term CTW (#20) Consolidated Into ǫ [New SSE/df = 4846.251953/570].

6 23 MTW E MTW : ǫ 8 : 570 15.270254/8.502196 1.796036 0.924876
7 15 VW E VW : ǫ 12 : 570 10.012615/8.502196 1.177650 0.704460

Term VW (#15) Consolidated Into ǫ [New SSE/df = 4966.403320/582].

8 23 MTW E MTW : ǫ 8 : 582 15.270254/8.533339 1.789482 0.923677
9 14 TW E TW : ǫ 2 : 582 6.282489/8.533339 0.736229 0.520638

Term TW (#14) Consolidated Into ǫ [New SSE/df = 4978.968262/584].

10 23 MTW E MTW : ǫ 8 : 584 15.270254/8.525631 1.791100 0.923994
11 11 MV E MV : ǫ 48 : 584 7.974335/8.525631 0.935337 0.400820

Term MV (#11) Consolidated Into ǫ [New SSE/df = 5361.736328/632].

12 23 MTW E MTW : ǫ 8 : 632 15.270254/8.483760 1.799939 0.925852
13 9 CW E CW : ǫ 3 : 632 1.997460/8.483760 0.235445 0.128326

Term CW (#9) Consolidated Into ǫ [New SSE/df = 5367.728516/635].

14 23 MTW E MTW : ǫ 8 : 635 15.270254/8.453116 1.806465 0.927078
15 8 CV E CV : ǫ 36 : 635 5.395785/8.453116 0.638319 0.048458

Term CV (#8) Consolidated Into ǫ [New SSE/df = 5561.976562/671].

16 23 MTW E MTW : ǫ 8 : 671 15.270254/8.289086 1.842212 0.933534
17 7 CT E CT : ǫ 6 : 671 8.013901/8.289086 0.966802 0.553234

Term CT (#7) Consolidated Into ǫ [New SSE/df = 5610.060059/677].

18 23 MTW E MTW : ǫ 8 : 677 15.270254/8.286647 1.842754 0.933646
19 5 W E W : ǫ 1 : 677 2.888000/8.286647 0.348513 0.444165

Term W (#5) Consolidated Into ǫ [New SSE/df = 5612.948242/678].

20 23 MTW E MTW : ǫ 8 : 678 15.270254/8.278685 1.844527 0.933946

* Created Tuesday, April 02, 2013 at 21:41:09 EDT for configuration/data file prefix EMSwthSSMSwthFTwthK4a.

Figure 6: FFRFR Dataset Disposition Table Part 1

6. Enhancements

The following enhancements to the functionality of an automated ANOVA embedded sys-

tem might be considered by an implementing analyst.

1. Incomplete Factorial Models

It is common in practical datasets for some combination of factor levels to be under-

represented and some to be over-represented. This means the dataset presents an

incomplete factorial model in the ANOVA that must also be present in the analyti-

cal calculations. An embedded system that compensates for an incomplete factorial

model, such as using averaged data, the elimination of factors, the unconditional

consolidation of terms, subgroup sampling, etc., would have to sense the nature and

extent of the deviation from a fully factorial model, and adjust the calculations ac-

cordingly, each time the statistical analysis is performed. This issue is also related to

the general concept of “missing data,” especially when there are more missing data

cells than populated data cells.
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PQICSTAT EMS Table Disposition Report (Section 2 Of 2)*

Model Test Ratio
Step # Term In Out EMS Test df:df F Ratio Value Signf

21 4 V E V : ǫ 12 : 678 15.736479/8.278685 1.900843 0.968675
22 3 T E T : ǫ 2 : 678 3.913201/8.278685 0.472684 0.376469

Term T (#3) Consolidated Into ǫ [New SSE/df = 5620.774414/680].

23 23 MTW E MTW : ǫ 8 : 680 15.270254/8.265845 1.847392 0.934436
24 4 V E V : ǫ 12 : 680 15.736479/8.265845 1.903796 0.969008
25 1 C E C : ǫ 3 : 680 7.935525/8.265845 0.960038 0.588882

Term C (#1) Consolidated Into ǫ [New SSE/df = 5644.581055/683].

26 23 MTW E MTW : ǫ 8 : 683 15.270254/8.264394 1.847716 0.934498
27 4 V E V : ǫ 12 : 683 15.736479/8.264394 1.904130 0.969053
28 12 MW E MW : MTW 4 : 8 10.894315/15.270254 0.713434 0.394438

Term MW (#12) Consolidated Into MTW (#23) [New SS/df = 165.739288/12].

29 23 MTW E MTW : ǫ 12 : 683 13.811607/8.264394 1.671218 0.931191
30 4 V E V : ǫ 12 : 683 15.736479/8.264394 1.904130 0.969053
31 10 MT E MT : MTW 8 : 12 3.496434/13.811607 0.253152 0.029869

Term MT (#10) Consolidated Into MTW (#23) [New SS/df = 193.710754/20].

32 23 MTW E MTW : ǫ 20 : 683 9.685538/8.264394 1.171960 0.727969

Term MTW (#23) Consolidated Into ǫ [New SSE/df = 5838.291992/703].

33 4 V E V : ǫ 12 : 703 15.736479/8.304825 1.894860 0.968074
34 2 M E M : ǫ 4 : 703 10.636625/8.304825 1.280777 0.723981

Term M (#2) Consolidated Into ǫ [New SSE/df = 5880.838379/707].

35 4 V E V : ǫ 12 : 707 15.736479/8.318018 1.891855 0.967744

* Created Tuesday, April 02, 2013 at 21:41:09 EDT for configuration/data file prefix EMSwthSSMSwthFTwthK4a.

Figure 7: FFRFR Dataset Disposition Table Part 2

2. Non-linear Models

Many other ANOVA models may be used in a statistical analysis embedded sys-

tem besides linear models. Nesting becomes problematical in these cases since the

nature of the factors moves from a simple combination of factors to functions of mul-

tiple factors. Furthermore, the orthogonalization of the sum of squares partition of

the dataset variation requires significantly different calculations in non-linear mod-

els compared to linear models. This issue pertains to the independent and covariate

variables in the model, and not to the dependent variable (which may be arbitrar-

ily transformed without materially affecting the analytical nature of the embedded

system calculations).

3. Confounding

Covariates may be introduced into ANOVA models to assess the extent of spurious

relationships that may be found in a given dataset. Designating a factor as a covari-

ate to another particular factor, or groups of factors, in the configuration file, and

processed accordingly within the correct analytical structures, may help explain the

relationship between the primary factors and the dependent variable of interest.

4. Consolidation Policies

When an F-test statistic if formed based on the EMS terms, and that ratio is deemed

not significant in the dataset, then alternate methods are possible for consolidating

the sum of squares of the not-significant factor into those that are deemed significant.

These other procedures could be based on other statistics or on non-analytical poli-

cies. The consolidation of model terms based on approximate F-test statistics may

also be defined.
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Source df SS MS F T∗ (N):D∗∗ Signf EMS

Ci 1 1.270020 1.270020 0.173464 A C +CTW (2) : CT + CW (2) 0.147822 σ2
ǫ + 64σ2

CTW + 128σ2
CW + 128σ2

CT + 256φC

Hj 1 11.556028 11.556028 1.334421 A H +HTW (2) : HT +HW (2) 0.571628 σ2
ǫ + 64σ2

HTW + 128σ2
HW + 128σ2

HT + 256φH

Mk(j) 2 34.051479 17.025740 7.352680 A M +MTW (4) : MT +MW (4) 0.960432 σ2
ǫ + 32σ2

MTW + 64σ2
MW + 64σ2

MT + 128φM

Tl 1 0.196095 0.196095 0.004164 E − : TW 0.040964 σ2
ǫ + 128σ2

TW + 256σ2
T

Vm(l) 2 18.027029 9.013515 0.408761 E − : V W 0.290156 σ2
ǫ + 64σ2

VW + 128φV

Wn 1 9.105778 9.105778 0.193355 E − : TW 0.263330 σ2
ǫ + 128σ2

TW + 256σ2
W

Zo 1 0.124376 0.124376 2.083245 A Z + TWZ (2) : TZ +WZ (2) 0.675667 σ2
ǫ + 64σ2

TWZ + 128σ2
WZ + 128σ2

TZ + 256φZ

CHij 1 20.034451 20.034451 0.675036 A CH +CHTW (2) : CHT + CHW (2) 0.402998 σ2
ǫ + 32σ2

CHTW + 64σ2
CHW + 64σ2

CHT + 128φCH

CM ik(j) 2 11.592288 5.796144 0.719985 A CM +CMTW (4) : CMT + CMW (4) 0.378978 σ2
ǫ + 16σ2

CMTW + 32σ2
CMW + 32σ2

CMT + 64φCM

CT il 1 5.938320 5.938320 9.260131 E − : CTW 0.795068 σ2
ǫ + 64σ2

CTW + 128σ2
CT

CV im(l) 2 14.278725 7.139362 0.606677 E − : CVW 0.377597 σ2
ǫ + 32σ2

CVW + 64φCV

CW in 1 5.080078 5.080078 7.921802 E − : CTW 0.780074 σ2
ǫ + 64σ2

CTW + 128σ2
CW

CZio 1 51.447830 51.447830 4.995749 A CZ + CTWZ (2) : CTZ +CWZ (2) 0.833215 σ2
ǫ + 32σ2

CTWZ + 64σ2
CWZ + 64σ2

CTZ + 128φCZ

HT jl 1 9.010013 9.010013 11.838619 E − : HTW 0.816764 σ2
ǫ + 64σ2

HTW + 128σ2
HT

HV jm(l) 2 2.852114 1.426057 0.170341 E − : HVW 0.145548 σ2
ǫ + 32σ2

HVW + 64φHV

HW jn 1 0.220282 0.220282 0.289437 E − : HTW 0.313726 σ2
ǫ + 64σ2

HTW + 128σ2
HW

HZjo 1 1.500778 1.500778 0.614077 A HZ +HTWZ (2) : HTZ +HWZ (2) 0.380451 σ2
ǫ + 32σ2

HTWZ + 64σ2
HWZ + 64σ2

HTZ + 128φHZ

MT k(j)l 2 4.381854 2.190927 0.093627 E − : MTW 0.085612 σ2
ǫ + 32σ2

MTW + 64σ2
MT

MV k(j)m(l) 4 9.397420 2.349355 0.557530 E − : MVW 0.292669 σ2
ǫ + 16σ2

MVW + 32φMV

MWk(j)n 2 6.614473 3.307236 0.141332 E − : MTW 0.123831 σ2
ǫ + 32σ2

MTW + 64σ2
MW

MZk(j)o 2 53.019146 26.509573 2.345424 A MZ +MTWZ (4) : MTZ +MWZ (3) 0.745184 σ2
ǫ + 16σ2

MTWZ + 32σ2
MWZ + 32σ2

MTZ + 64φMZ

TW ln 1 47.093513 47.093513 5.839737 E − : ǫ 0.981077 σ2
ǫ + 128σ2

TW

TZ lo 1 10.620288 10.620288 0.273042 E − : TWZ 0.306058 σ2
ǫ + 64σ2

TWZ + 128σ2
TZ

V Wm(l)n 2 44.101646 22.050823 2.734368 E − : ǫ 0.933800 σ2
ǫ + 64σ2

VW

V Zm(l)o 2 4.363565 2.181783 2.129573 E − : VWZ 0.680467 σ2
ǫ + 32σ2

VWZ + 64φV Z

WZno 1 8.110378 8.110378 0.208513 E − : TWZ 0.272279 σ2
ǫ + 64σ2

TWZ + 128σ2
WZ

CHT ijl 1 26.028112 26.028112 362.883667 E − : CHTW 0.949044 σ2
ǫ + 32σ2

CHTW + 64σ2
CHT

CHV ijm(l) 2 1.766320 0.883160 0.132420 E − : CHVW 0.116936 σ2
ǫ + 16σ2

CHVW + 32φCHV

CHW ijn 1 3.757226 3.757226 52.383198 E − : CHTW 0.905922 σ2
ǫ + 32σ2

CHTW + 64σ2
CHW

CHZijo 1 19.422028 19.422028 3.790019 A CHZ +CHTWZ (2) : CHTZ + CHWZ (2) 0.791233 σ2
ǫ + 16σ2

CHTWZ + 32σ2
CHWZ + 32σ2

CHTZ + 64φCHZ

CMT ik(j)l 2 17.825098 8.912549 1.992833 E − : CMTW 0.665869 σ2
ǫ + 16σ2

CMTW + 32σ2
CMT

CMV ik(j)m(l) 4 26.480011 6.620003 2.119655 E − : CMVW 0.757620 σ2
ǫ + 8σ2

CMVW + 16φCMV

CMW ik(j)n 2 10.698954 5.349477 1.196135 E − : CMTW 0.544655 σ2
ǫ + 16σ2

CMTW + 32σ2
CMW

CMZik(j)o 2 30.373911 15.186955 0.625301 A CMZ +CMTWZ (4) : CMTZ + CMWZ (3) 0.322638 σ2
ǫ + 8σ2

CMTWZ + 16σ2
CMWZ + 16σ2

CMTZ + 32φCMZ

CTW iln 1 0.641278 0.641278 0.079520 E − : ǫ 0.221574 σ2
ǫ + 64σ2

CTW

CTZilo 1 5.990126 5.990126 0.178607 E − : CTWZ 0.254164 σ2
ǫ + 32σ2

CTWZ + 64σ2
CTZ

CVW im(l)n 2 23.535971 11.767985 1.459265 E − : ǫ 0.766307 σ2
ǫ + 32σ2

CVW

CV Zim(l)o 2 14.288625 7.144312 1.101904 E − : CVWZ 0.524241 σ2
ǫ + 16σ2

CVWZ + 32φCVZ

CWZino 1 11.021512 11.021512 0.328627 E − : CTWZ 0.330849 σ2
ǫ + 32σ2

CTWZ + 64σ2
CWZ

HTW jln 1 0.761070 0.761070 0.094375 E − : ǫ 0.240791 σ2
ǫ + 64σ2

HTW

HTZjlo 1 3.251250 3.251250 0.828660 E − : HTWZ 0.469292 σ2
ǫ + 32σ2

HTWZ + 64σ2
HTZ

HVW jm(l)n 2 16.743515 8.371758 1.038123 E − : ǫ 0.644889 σ2
ǫ + 32σ2

HVW

HV Zjm(l)o 2 0.479770 0.239885 0.262338 E − : HVWZ 0.207819 σ2
ǫ + 16σ2

HVWZ + 32φHVZ

HWZjno 1 5.581976 5.581976 1.422703 E − : HTWZ 0.554723 σ2
ǫ + 32σ2

HTWZ + 64σ2
HWZ

MTW k(j)ln 2 46.800991 23.400496 2.901732 E − : ǫ 0.943866 σ2
ǫ + 32σ2

MTW

MTZk(j)lo 2 28.061979 14.030990 0.736428 E − : MTWZ 0.424105 σ2
ǫ + 16σ2

MTWZ + 32σ2
MTZ

MVW k(j)m(l)n 4 16.855438 4.213860 0.522531 E − : ǫ 0.280767 σ2
ǫ + 16σ2

MVW

MVZk(j)m(l)o 4 21.815788 5.453947 0.680911 E − : MVWZ 0.359337 σ2
ǫ + 8σ2

MVWZ + 16φMVZ

MWZk(j)no 2 1.077110 0.538555 0.028267 E − : MTWZ 0.027489 σ2
ǫ + 16σ2

MTWZ + 32σ2
MWZ

TWZlno 1 38.896198 38.896198 4.823246 E − : ǫ 0.968787 σ2
ǫ + 64σ2

TWZ

V WZm(l)no 2 2.049033 1.024516 0.127043 E − : ǫ 0.119267 σ2
ǫ + 32σ2

VWZ

CHTW ijln 1 0.071726 0.071726 0.008894 E − : ǫ 0.074978 σ2
ǫ + 32σ2

CHTW

CHTZijlo 1 2.650753 2.650753 0.108854 E − : CHTWZ 0.202577 σ2
ǫ + 16σ2

CHTWZ + 32σ2
CHTZ

CHVW ijm(l)n 2 13.338731 6.669365 0.827021 E − : ǫ 0.561872 σ2
ǫ + 16σ2

CHVW

CHV Zijm(l)o 2 5.163595 2.581798 0.088222 E − : CHVWZ 0.081070 σ2
ǫ + 8σ2

CHVWZ + 16φCHVZ

CHWZijno 1 8.898926 8.898926 0.365437 E − : CHTWZ 0.345593 σ2
ǫ + 16σ2

CHTWZ + 32σ2
CHWZ

CMTW ik(j)ln 2 8.944601 4.472301 0.554579 E − : ǫ 0.425227 σ2
ǫ + 16σ2

CMTW

CMTZik(j)lo 2 61.080589 30.540295 2.934711 E − : CMTWZ 0.745852 σ2
ǫ + 8σ2

CMTWZ + 16σ2
CMTZ

CMVW ik(j)m(l)n 4 12.492604 3.123151 0.387280 E − : ǫ 0.182255 σ2
ǫ + 8σ2

CMVW

CMVZ ik(j)m(l)o 4 74.679626 18.669907 1.880092 E − : CMVWZ 0.722050 σ2
ǫ + 4σ2

CMVWZ + 8φCMVZ

CMWZik(j)no 2 0.314332 0.157166 0.015103 E − : CMTWZ 0.014878 σ2
ǫ + 8σ2

CMTWZ + 16σ2
CMWZ

CTWZilno 1 33.538052 33.538052 4.158819 E − : ǫ 0.955543 σ2
ǫ + 32σ2

CTWZ

CVWZim(l)no 2 12.967214 6.483607 0.803987 E − : ǫ 0.551706 σ2
ǫ + 16σ2

CVWZ

HTWZjlno 1 3.923501 3.923501 0.486526 E − : ǫ 0.513291 σ2
ǫ + 32σ2

HTWZ

HVWZjm(l)no 2 1.828828 0.914414 0.113390 E − : ǫ 0.107168 σ2
ǫ + 16σ2

HVWZ

MTWZk(j)lno 2 38.105530 19.052765 2.362600 E − : ǫ 0.904457 σ2
ǫ + 16σ2

MTWZ

MVWZk(j)m(l)no 4 32.039116 8.009779 0.993237 E − : ǫ 0.588937 σ2
ǫ + 8σ2

MVWZ

CHTWZijlno 1 24.351477 24.351477 3.019656 E − : ǫ 0.914931 σ2
ǫ + 16σ2

CHTWZ

CHVWZijm(l)no 2 58.529305 29.264652 3.628905 E − : ǫ 0.972540 σ2
ǫ + 8σ2

CHVWZ

CMTWZik(j)lno 2 20.813154 10.406577 1.290447 E − : ǫ 0.723662 σ2
ǫ + 8σ2

CMTWZ

CMVWZik(j)m(l)no 4 39.721260 9.930315 1.231389 E − : ǫ 0.703022 σ2
ǫ + 4σ2

CMVWZ

ǫp(ijklmno) 384 3096.699219 8.064321 σ2
ǫ

* (E) Exact; (A) Approximate – (df); (U) Untestable
** No Numerator Given For Exact Tests

Figure 8: Example Of A Complex Summary Table

5. Alternate Approximate F-Test Formation

When an exact F-test is not available, the Welch-Satterthwaite and balanced degrees

of freedom approaches to form approximate F-test statistics may be replaced by other

methods that may be conditional and dependent on other aspects of a statistical anal-

ysis besides the EMS terms. Each of these approaches have its own analytical charac-

teristics that would be addressed in the theoretical formulation and planning stages.

6. Multiple And Dependent Significance Levels

The significance level used with any dataset may not only depend on the model used,

but also consolidation policies, interaction levels, the history of the test results, etc.

Dependent significance levels and multiple levels that change as the analysis pro-

ceeds would dramatically increase the intelligence of the data analyst build into the

embedded system.
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7. Anomalous Data Detection And Defense

“There is always something wrong with the data” is a common wisdom among data

analysts. Anomalous data detection and policies for defending against their effects

within statistical analyses would be a significantly powerful value-added feature of

any such embedded system. The utility of including data quality filtering, repair,

and compensation methods within the embedded system must be balanced against

the advantages of performing such screening on the dataset prior to its use in the

embedded system.

8. Process Signaling

Every embedded system operates in the context of a control system that is in turn

part of a larger operational system. An automated ANOVA embedded system may be

defined to not only make calculations related to the variability contributions of terms

in a model, but also signaling to the control system and to the operating system the

presence of precursors, occurrences, and effects of analytical situations encountered

during its operation that might otherwise not be sensed by those other systems.

9. Dynamic Display Of Summaries And Reports

Static displays of the summary and disposition tables do not allow a data analyst

the advantages of dealing with analytical situations of interest as they occur during

a statistical analysis. A dynamic display of these reports, changing in real time with

opportunities for interrupts from parallel processes, would provide the data analyst

advanced methods for fine-tuning the analytical methods implemented in the embed-

ded system.

10. Use Of Non-numeric Datasets

An advanced use of embedded systems goes beyond the strict use of numeric datasets.

Non-numeric information in the form of Unicode characters, images, reductions of

datasets, state symbols, etc., would provide for arbitrarily complex embedded system

functionality.

11. Recalculation Triggers In Pipelining Processors

Just as databases have triggers, so may embedded systems have triggers that operate

only under particular circumstances or after a specific set of actions from parallel pro-

cesses. Pipelining processes would require this sort of interaction capability. In fact,

defining so-called “micro-operations” at the processor level is an analogy to casting

a statistical calculation as a sequence of minimal instructions. This allows the con-

trolling parallel processor to perform at the processing rate of the most rudimentary

micro-operation, thereby allowing for a net higher processing rate as compared to

processing one complete instruction at a time.

12. Updates Upon Annexing And/Or Deleting Data

To reduce the inefficiencies and redundancies commonly found in statistical analyses,

many such calculations may be completed more effectively and efficiently by simply

updating previously calculated values when new data is annexed to existing datasets

and/or old data is deleted from them. This would be especially useful for embedded

systems that monitor a process and react to a data stream rather than a static dataset.

Embedded systems involving datasets with moving windows and snapshots of states

would also benefit from this capability.
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7. For More Information

The full documentation of a high-level programming implementation of the automated

ANOVA embedded system described in this paper consists of four copyrighted PQI Con-

sulting technical memoranda using the CWEB literate programming documentation sys-

tem. Those memoranda and the high-level ANSI C implementation code are available un-

der the GNU General Public License Version 3 (GNU GPLv3) by request from the author

at info@pqic.com or at the PQI Consulting mailing address.
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