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Abstract 

We review and compare a new proposed test with well-known existing tests for detecting 

randomness in time series data, with special emphasis on stock market index data. By 

comparing popular variance ratio and traditional statistical tests plus a new proposed 

procedure, we have the most extensive simulation comparison of such tests.  The 

investigated tests are compared over a diverse group of distributions, models, and stock 

market index applications.  This study provides a useful guide to practical use of such 

testing for randomness procedures. We found that when evaluating common US stock 

market indices, the choice of data transformation can have a pronounced effect on test 

results.   
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1. Introduction 

 

In this paper we compare multiple tests for detecting randomness in time series data with 

special emphasis on stock market index data.  Several methods exist for detecting 

randomness in time series data.  We do not attempt to compare all possible and 

appropriate tests, instead, we focus on comparing the most commonly used reliable tests 

for this purpose. We have found that variance ratio tests, especially the ones considered 

in this paper, are the most commonly used methods for testing deviations from 

randomness in financial studies.  Therefore, our comparison will include the popular 

variance ratio tests from Lo and MacKinlay (1988), Chow and Denning (1993) and 

Wright (2000) plus classical methods by Durbin and Watson (1950), and Ljung and Box 

(1978), along with a promising new method by Strandberg and Iglewicz (2013a).  These 

tests will be compared over a diverse group of popular distributions, models, and 

applications to better understand the strengths and weaknesses of each considered test.  

By comparing popular variance ratio and traditional statistical tests plus a new proposed 

procedure, we have the most extensive simulation comparison of such tests.   

 

In our comparisons differences between tests exists.  For example, variance ratio tests are 

based on random walk models, thus not sensitive to changes in variance, while other 

considered tests are based on a random sample null hypothesis. Regardless, we will still 

consider these tests competitors. Varied sample sizes and distributional models will be 

considered in our comparisons. Since in practice most practitioners will not know the true 

distribution of their data, methods that perform well for a variety of distributions are 

preferred.  This study will give researchers and practitioners added information about 

each considered test, so that they may make better informed decisions when deciding 

between methods.    
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2. Description of Tests 

 

A brief overview of each considered test is given in this section. Please see the referenced 

sources for more detailed information. 

 

A number of the tests considered in this section are of the variance ratio type.  To 

determine lack of randomness of a times series, Y1, Y2, ...,YN, they compare the variance 

of the k-period return with k times the variance of the one-period return, that is Var(Yt – 

Yt-k) = k Var(Yt – Yt-1).  Often test statistics are constructed based on a ratio estimator,  
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1̂ , such that when VR(k) = 1 observations are serially uncorrelated.  

Likewise when VR(k) ≠ 1some autocorrelations between observations exist. 

 

Variance Ratio tests have the potential advantages of being robust under 

homoscedasticity and heteroscedasticity, and have reasonable power against a wide range 

of alternative hypotheses.  However most variance ratio tests are based on an asymptotic 

normal distribution, but the sampling distribution of the test statistic can be skewed for 

small sample sizes. In addition, Variance ratio tests can be sensitive to the value chosen 

for k. Often low values, such as k = 2 are used as large values of k make the test statistic 

biased – since the variance ratio defined in (1) has a lower bound of zero.  In practice, an 

individual test, designed to test only one value of k, may be repeated multiple times with 

different values of k.  This can lead to an over rejection of the null hypothesis and an 

increased type I error.  To address this issue, tests using multiple comparison procedures 

were created, see Chow and Denning (1993).   

 

2.1 Lo and MacKinlay (1988) 

Lo and MacKinlay (1988) developed a popular variance ratio test. Under the null 

hypothesis, the relation between observations is a random walk, 

ttt YY   1          (2) 

where Yt is the value of a return at time t,   is an unknown arbitrary drift parameter and 

εt is a disturbance term with Var(εt) = 
2

 . Although, Lo and MacKinlay developed two 

variance ratio tests, M1 and M2, our simulation investigation, using the vrtest package of 

R (Kim 2010), showed that the simpler test, M1, performs slightly better than M2. As a 

result, our simulation results will only be reporting for M1. Under the null hypothesis M1 

assumes εt in (2) are i.i.d. N(0, σε
2
). The test statistic for M1 is 
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observations are serially uncorrelated; likewise when VR(k) ≠ 1some autocorrelations 
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between observations exist (Lo and MacKinlay 1988, Charles and Darné  2009). Under 

the null hypothesis, M1 follows asymptotically the standard normal distribution.   

 

2.2 Wright (2000) 

Wright (2000) created four nonparametric variance ratio tests using ranks and signs with 

exact sampling distributions. For each test Wright uses a martingale difference sequence 

rather than a random walk to define the null hypothesis, such that for a time series of 

asset returns, Y1, Y2, ..., YN,   

Yt = µ + Zt          (4) 

where Zt = σtεt. For the two rank-based tests, R1 and R2, Zt is i.i.d. but with no additional 

distributional assumptions. R1 and R2 do not allow for conditional heteroscedasticity and 

are comparable to the assumptions of M1.  While two sign-based tests, S1 and S2, allow 

for conditional heteroscedasticity under the null hypothesis, they require conditional 

symmetry of εt from (4) given {Yt, Yt-1, ..., Y2, Y1}, with mean equal to zero (Wright 

2000).  Our investigation of R1 and R2 using the vrtest package of R (Kim 2010) showed 

that R1 performs slightly better than R2, so only simulation results for R1 will be reported. 

Likewise in simulation studies S2 was very conservative with low power and size 

distortion, see Wright (2000).  Therefore only S1 is considered here. 

 

The rank-based test statistic, R1, is defined 

as
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observations among the series Y1, Y2, ..., YN, such that under the null hypothesis r(Y) is a 

random permutation of the numbers 1, ..., N (Wright 2000).  The sign-based test statistic, 

S1, is defined as 
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.  S1 is a driftless model, therefore in addition to 

the requirements of its null hypothesis, µ = 0 in (4). The critical values of both tests can 

be obtained by simulating their exact distribution. 

 

2.3 Chow and Denning (1993) 

Chow and Denning (1993) apply theory from Hochberg’s (1974) multiple comparison 

procedure to Lo and MacKinlay (1988) test statistics.  This allows multiple values of k to 

be considered but results in only one test statistic properly adjusted for test size. They 

consider a set of m test statistics where m is the number of values of k.  Consistent with 

other results, our simulations showed that the procedure based on M1 performed better 

than the procedure based on M2.  Therefore, we will only report results for the multiple 

comparison test based on M1 in our simulation summary.  The test statistic for this 
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multiple joint hypothesis is )(max 1
1

1 i
mi

kMMV


 , where M1(k) is defined in (3). To test 

the joint null hypothesis for a set of m test statistics, the null hypothesis is rejected if any 

of the estimated variance ratio tests is significantly different from one (Chow and 

Denning 1993).   

 

2.4 Durbin and Watson (1950) 

Durbin and Watson (1950) developed a very popular, traditional test for non-randomness 

in the residuals of an ordinary least squares regression equation using the test statistic, 
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where et is the t
th
 residual and N is the number of observations.  This test assumes i.i.d. 

N(0, σ
2
) errors.  The test statistic, d, is asymptotically normal with mean of 2 and 

variance of 4/N (Harvey 1990).  When data are positively (negatively) serially correlated, 

d will have a value that tends to zero (four).  Although this test was designed for residuals 

of least squares regression, it can be used to test time series data such as Y1, Y2, Y3, ..., YN,  

by substituting Yt = et in (5), assuming the assumption of i.i.d. N(0, σ
2
) is valid.   

 

2.5 Ljung and Box (1988)  

The Ljung and Box (1988) test is another popular traditional statistics method.  This test 

is used to determine if a specific ARIMA model fits. The test statistic is  
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, et is the residual associated with the observation at time t 

and h is the number of lags being used.  For large N, Q is distributed as
2

h  for εt i.i.d. 

N(0, σ
2
). This test can also be used to test time series data by replacing the residuals with 

corresponding time series data in (6), as long as the i.i.d. N(0, σ
2
) assumption holds. 

 

2.6 Strandberg and Iglewicz (2013a) 

Strandberg and Iglewicz (2013a) consider a time series, Y1, Y2, ..., YN consisting of N 

observations, such that under the null hypothesis  

tttY            (7) 

where εt is i.i.d.(0,
2 ), 

2][  tVar  and  t  for all t.  No additional distributional 

assumptions are made on εt in (7).  To test that these observations constitute a random 

sample, the set Y = {Y1, Y2, …., YN} is separated into Y* and Y**, such that Y* ={Yt : 

Yt   [Y0.025 , Y0.975]} where Yp is the p
th
 percentile, and Y** is the complement of  Y*, 

Y** ={Yt : Yt   [Y0.025 , Y0.975]},  and P(YtY**) = π. 

 

The series of N observations is subdivided into M non-overlapping intervals each 

containing an equal number of K observations, where K is an integer that is small relative 

to N.  For example, in our stock market example, complete weeks consisting of K = 5 

days will be considered. Within each interval, counts of observations in Y** are 

measured such that Wj is the number of observations in interval j that are members of 

Y**, j = 1, 2, ..., M and L denotes the number of the M groups where Wj > 0.  Under the 
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null hypothesis Wj is distributed as a binomial (K, π).  The binomial test statistics is 

based on comparing the number of cases out of L, call it L1, where W = 1, with LP(W = 

1| W > 0), where D
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c
 is a useful correction factor.  As suggested by 

Strandberg and Iglewicz, we use c = 0.5 in this study.  For moderate to large values of N, 

Z ~ N(0, 1). 

 

3. Simulation Results 

 
Here, we consider random samples of N = 300, and 10,000 observations each generated 

from different distributional cases to verify appropriate test size.  While a larger variety 

of distributional cases and sample sizes are given in Strandberg and Iglewicz (2013b), we 

consider only a few of these here. Null cases are considered first followed by alternative 

cases.    

 

Using Tukey’s g- and -h distributions – see Tukey (1977), Martinez and Iglewicz (1984), 

and Hoaglin (1985) – we approximate the standard normal distribution (Z), Student’s t 

distribution with three degrees of freedom (t3), and the chi-square distribution with four 

degrees of freedom (
2

4 ). The 
2

4  distribution is standardized.  Other null cases can be 

found in Strandberg and Iglewicz (2013b).   

 

For each simulation we generated 10,000 random samples of N = 300, and 10,000 for the 

given distribution or model.  The rejection rate is the percentage of tests out of 10,000 

where the p-value < 0.05.  Each individual variance ratio test is evaluated with k = 2, 5, 

and 10, likewise, each multiple variance ratio test is evaluated with m = 3, at k = 2, 5, and 

10.  The Ljung and Box test is evaluated at h = 2, and 5.  A third value of h ≈ ln(N) is 

also evaluated as suggested by Tsay (2001).  Although the variance ratio tests are 

designed not to be sensitive to variance changes, we will still consider the studied tests 

comparable. 

 

Simulation results for these distributional cases are listed in Table 1.  Since these cases 

are expected to meet the required test size for the null hypothesis, we expect table entries 

to be close to 5.00%. Although some tests are slightly conservative when N = 300, in 

general most of the considered tests meet this requirement.  There is one exception that 

should be noted, namely S1, which exhibits high values for
2

4 . Additionally, the Chow 

and Deming (1993) MV1 test is overly conservative. In general, all other considered tests 

work reasonably well at meeting test-size requirements for null cases. 
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A fair number of alternative cases are considered in Strandberg and Iglewicz (2013b), 

with four selected in this paper. These are changing variance, changing mean, and two 

correlated cases C1 and C4. To create a model with constant mean and changing variance 

or constant variance and changing mean, let 30% of observations follow f1(y), then 40% 

follow f2(y), and the remaining 30% follow f3(y).  A model with constant mean and 

changing variance is created by letting, f1(y) be N(0, 0.5625), f2(y) be N(0, 1), and f3(y) be 

N(0, 1.5625), while a model with constant variance and changing mean is created by 

letting f1(y) be N(-2, 1), f2(y) be N(0, 1), and f3(y) be N(2, 1).   

 

Table 1  Simulation Rejection Rates Comparisons for Null Cases  

 

SI DW 

 

LB MV1 

 

M1 R1 S1 

Distribution Cases from the g  and h distribution when N = 300 

Z 4.21% 5.12% h = 2 4.75% 3.02% k=2 5.18% 4.83% 3.98% 

   
h = 5 5.13% 

 
k=5 4.64% 5.32% 4.56% 

   
h ≈ ln(n) 5.11% 

 
k=10 4.13% 5.10% 4.75% 

t3 4.06% 4.94% h = 2 5.05% 3.52% k=2 4.85% 4.78% 3.75% 

   
h = 5 4.89% 

 
k=5 4.74% 4.94% 4.53% 

   
h ≈ ln(n) 5.14% 

 
k=10 3.98% 5.33% 4.97% 

X
2
4  Standardized 4.22% 4.78% h = 2 4.76% 3.30% k=2 4.90% 4.62% 7.94% 

   
h = 5 5.00% 

 
k=5 4.61% 4.36% 18.11% 

      h ≈ ln(n) 4.91%   k=10 3.91% 4.93% 31.22% 

Distribution Cases from the g  and h distribution when N = 10,000  

Z 5.29% 4.86% h = 2 4.78% 3.73% k=2 5.21% 5.04% 5.11% 

   
h = 5 4.55% 

 
k=5 4.74% 5.00% 4.96% 

   
h ≈ ln(n) 5.21% 

 
k=10 5.01% 5.24% 4.99% 

t3 4.96% 4.93% h = 2 5.27% 3.44% k=2 5.07% 4.80% 5.17% 

   
h = 5 5.15% 

 
k=5 5.06% 5.44% 4.41% 

   
h ≈ ln(n) 5.24% 

 
k=10 4.80% 5.68% 4.89% 

X
2
4  Standardized 4.91% 4.92% h = 2 5.03% 3.86% k=2 4.96% 5.27% 92.93% 

   h = 5 4.65%  k=5 5.15% 5.74% 100.00% 

      h ≈ ln(n) 5.19%   k=10 4.84% 5.37% 100.00% 
SI = Strandberg and Iglewicz (2013a) test, DW = Durbin and Watson (1950) test, LB = Ljung and Box (1978) test, MV1 = the Chow 

and Denning (1993) MV1 test, M1 = the Lo and MacKinlay (1988) M1 test, R1 and S1 are tests from Wright (2000) 

Correlated cases are also considered.  Here we will only discuss two.  A total of four 

correlated cases are considered in Strandberg and Iglewicz (2013b). Each correlated 

model is motivated by stock market data and designed such that 90% of full trading 

weeks have observations that are i.i.d. N(0,1) while a correlation structure exists for the 

remaining 10% of  weeks.  Consider a typical member of the 10% correlated weeks.  For 

the first case, Let Y
M

 be the Monday value coming from N(0, 4). The other generated 

values are Y
j
, j = T, W, Th, F.  Then Y

T
 = ρY

M
 + ε where ε is N(0,1) and the remaining 

three days are from i.i.d. N(0, 1).  This model will be labeled C1 since it is the first 

considered correlated model from Strandberg and Igelwicz (2013b).  Next consider a 

correlation structure present over two weeks, such that Y
M

 in the first week, Y1
M

, has a 

value from N(0, 4).  Then two days are correlated observations, such that Y
j
 = ρY

M
 + ε, 

where j is randomly chosen twice with replacement from T1, W1, Th1, F1, M2, T2, W2, 

Th2, F2, while the remaining days are generated from i.i.d. N(0, 1).   This model will be 

labeled C4 since it is the fourth considered correlated model from Strandberg and 

Igelwicz (2013b).   

JSM 2013 - Business and Economic Statistics Section

586



 

 

 

 

Results for alternative data models are included in Table 2.  Simulations are generated as 

described in the null cases.  As expected, greater power is generally seen in this table 

when N = 10,000.  However, as can be seen, power can differ considerably across 

alternatives and considered methods.  For example, when considering changing 

variances, only the Strandberg and Iglewicz (2013a) test (SI), is able to show power. It 

should be noted that this is not surprising, as the null hypothesis for variance ratio tests 

allows for changes in variance and conditional heteroscedasticity.  

 

Table 2:  Simulation Rejection Rates Comparisons for Alternative Cases 

  SI DW   LB MV1   M1 R1 S1 

Distribution Cases with N = 300 

Changing 13.81% 6.87% h = 2 6.94% 4.87% k=2 6.53% 5.55% 3.56% 

Variance 
  

h = 5 8.30% 
 

k=5 6.24% 5.60% 4.63% 

   
h ≈ ln(n) 8.36% 

 
k=10 5.59% 5.55% 4.72% 

Changing 15.83% 100.00% h = 2 100.00% 100.00% k=2 100.00% 100.00% 100.00% 

Mean 
  

h = 5 100.00% 
 

k=5 100.00% 100.00% 100.00% 

   
h ≈ ln(n) 100.00% 

 
k=10 100.00% 100.00% 100.00% 

C1 17.43% 22.81% h = 2 15.09% 12.96% k=2 18.40% 7.25% 3.98% 

   
h = 5 14.94% 

 
k=5 11.47% 6.67% 4.33% 

   
h ≈ ln(n) 14.40% 

 
k=10 7.80% 6.35% 4.98% 

C4 8.18% 7.01% h = 2 7.25% 5.54% k=2 6.11% 5.20% 3.71% 

   
h = 5 7.72% 

 
k=5 7.08% 5.31% 4.63% 

   
h ≈ ln(n) 8.24% 

 
k=10 6.90% 5.83% 4.84% 

Distribution Cases with N = 10,000 

Changing 95.32% 6.89% h = 2 7.27% 5.52% k=2 7.43% 5.35% 5.42% 

Variance   h = 5 8.38%  k=5 7.14% 5.89% 5.21% 

   h ≈ ln(n) 9.94%  k=10 6.98% 5.86% 5.00% 

Changing 99.24% 100.00% h = 2 100.00% 100.00% k=2 100.00% 100.00% 100.00% 

Mean   h = 5 100.00%  k=5 100.00% 100.00% 100.00% 

   h ≈ ln(n) 100.00%  k=10 100.00% 100.00% 100.00% 

C1 99.83% 100.00% h = 2 100.00% 99.97% k=2 100.00% 83.84% 27.70% 

   h = 5 99.93%  k=5 99.26% 57.17% 17.25% 

   h ≈ ln(n) 99.80%  k=10 86.99% 34.74% 11.08% 

C4 65.96% 26.80% h = 2 34.48% 64.71% k=2 25.40% 8.94% 5.98% 

   h = 5 47.92%  k=5 55.90% 16.53% 7.01% 

   h ≈ ln(n) 52.78%  k=10 75.48% 25.03% 8.63% 

SI = Strandberg and Iglewicz (2013a) test, DW = Durbin and Watson (1950) test, LB = Ljung and Box (1978) test, MV1 = the Chow and 

Denning (1993) MV1 test, M1 = the Lo and MacKinlay (1988) M1 test, R1 and S1 are tests from Wright (2000) 

More consistent results are seen for the changing means case.  Here, all tests do well with 

the exception of SI, which does poorly when N = 300 but gains power as N increases.  

Also for the first correlated case, C1, all considered tests show high power when N = 

10,000, expect S1 and to a lesser degree R1.  Differences are noticed with the other 

correlated case, C4.  When N = 10,000 only SI maintains high power for C4 with MV1 

providing reasonable power.   
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In summary, when N is small, all considered procedures, excluding SI, have high power 

to detect changes in mean, while all tests have low power for other cases.  As N becomes 

large, SI is the only test with high power for all considered alternative cases.  In 

particular, if detecting changes in variance is a concern, the SI test should be used.  In 

addition, for both correlated cases, especially C4, SI has high power and MV1 does 

reasonably well.   

 

4. Stock Market Analysis 

 

Randomness of daily closing values of stock market indices are evaluated using the Dow 

Jones Industrial Average (DJIA), the Standards & Poor's 500 (S&P 500), and the 

National Association of Securities Dealers Automated Quotation System (Nasdaq). Data 

for full 5 day weeks were considered ending on December 18, 2009.  These data were 

also analyzed by Strandberg and Iglewicz (2013a, 2013b).  Using these data, three 

transformations are included - two common transformations and a newly proposed 

transformation by Strandberg and Iglewicz (2013a).  The transformations are:  lag 1 

closing daily stock market index differences, Yt – Yt-1; daily percentage change defined 

as 
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, were, as 

suggested by Strandberg and Iglewicz (2013a) , q = 10. It is reasonable to test whether 

these transformed observations constitute a random sample. Results are included in Table 

3. To assist in the readability of Table 3, after each test statistics * is added if significance 

is at the 10% level, ** if significance is at the 5% level and *** if significance is at the 

1% level.  Extremely high test statistic values contain only *** with blanks for associated 

numbers 

 

In Table 3, test results can differ depending on the transformation used.  For example, S1 

is significance at 1% for all cases when k = 2, but can be non-significant at 10% for other 

values of k. The latter is not entirely surprising since S1 is based on signs. Other 

individual variance ratio tests similarly show different results depending on the chosen 

value of k. R1 and S1 often show high rejection levels but can have conflicting 

conclusions depending on the chosen value of k, this is true to a lesser degree for M1. 

This is also true for the Ljung and Box test with respect to the chosen value of h.  The 

only test that shows consistent results among each transformation is the SI test. SI is 

significance at the 1% level for all indices and transformations. Notice that each of these 

stock market data sets consists of a fairly large number of observations. Consequently, 

the conclusions of this table could have been quite different if the data sets were 

considerably smaller. 
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Among transformations, only the third transformation, the MMPC, results in consistently 

rejecting the null hypothesis at the 1% significant level, while the other two 

transformations show inconsistent rejection levels among tests and indices.   

 

In summary, when dealing with financial data, the test procedure used and choice of 

transformation can play a key role in resulting conclusions. The only test that does not 

show different results depending on the transformation used is Strandberg and Iglewicz 

(2013a).  While the MMPC transformation is the only considered transformation with all 

test results significant at the 1% level.  
 

 

 

 

 

 

Table 3:  Tests and Transformation Comparisons for Stock Market Index Data 

DJIA  SI DW   LB MV1   M1 R1 S1 

Yt - Yt -1   -34.47*** 2.11*** 

h = 2 

*** 

   

8.12*** k=2   -7.44***    3.14***    5.04*** 

   

h = 5 *** 

 

k=5   -8.12*** 0.30000 1.09000 

   

h ≈ ln(N) *** 

 

k=10   -6.67*** -0.26000 0.70000 

100((Yt/ Yt -1) -1) 

   -

16.79*** 1.99    

h = 2 

5.85*** 0.7000)) k=2 0.70000    6.76***    5.04*** 

   

h = 5 10.64*** 

 

k=5 0.09000    2.49**0 1.09000 

   

h ≈ ln(N) 24.62*** 

 

k=10 0.31000 1.42000 0.70000 

100((Yt /MA)-1) 

   -

36.64*** 0.07*** 

h = 2 

*** *** k=2 *** *** *** 

   

h = 5 *** 

 

k=5 *** *** *** 

   

h ≈ ln(N) *** 

 

k=10 *** *** *** 

S&P 500 

Yt - Yt -1 

   -

28.01*** 2.11*** 

h = 2 

69.06*** 

   

7.55*** k=2    -6.23***     2.21**0   7.69*** 

   

h = 5 73.17*** 

 

k=5    -7.45*** -0.84000   3.88*** 

   

h ≈ ln(N) *** 

 

k=10    -7.55***    -1.76*00   3.17*** 

100((Yt/ Yt -1) -1) 

   -

11.93*** 1.94** 

h = 2 

29.16*** 

   

3.00*** k=2   3.00***    8.97***   7.69*** 

   

h = 5 29.72*** 

 

k=5 0.00000    4.44***   3.88*** 

   

h ≈ ln(N) 59.78*** 

 

k=10 -1.11000     2.34**0   3.17*** 

100((Yt /MA)-1)   -30.85*** 0.08*** h = 2 *** *** k=2 *** *** 97.00*** 

   

h = 5 *** 

 

k=5 *** *** *** 

   

h ≈ ln(N) *** 

 

k=10 *** *** *** 

Nasdaq 

Yt - Yt -1   -18.71*** 1.98 h = 2 1.2700   2.62**0 k=2 1.03000    8.99***   12.97*** 

   

h = 5 12.17** 

 

k=5 0.60000    7.79***   13.22*** 

   

h ≈ ln(N) *** 

 

k=10    -2.62***    7.29***   13.90*** 

100((Yt/ Yt -1) -1)   -14.59*** 1.87*** 

h = 2 

32.55*** 

   

5.68*** k=2     5.68***   13.94***   12.97*** 

   

h = 5 42.89*** 

 

k=5     5.39***   12.34***   13.22*** 

   

h ≈ ln(N) 57.91*** 

 

k=10     3.48***   10.79***   13.90*** 

100((Yt /MA)-1)   -26.34*** 0.06*** h = 2 *** *** k=2   89.22***   89.19***   80.29*** 

   

h = 5 *** 

 

k=5 *** 155.39*** *** 

   

h ≈ ln(N) *** 

 

k=10 *** *** *** 

The test statistics show *** if significant at the 1% level, ** if significant at the 5% level and * if significant at the 10% level.   

Test statistics greater than 100 or less than -100 are not shown since they are highly significant at the 1% level:  SI = Strandberg and  

Iglewicz (2013a) test, DW = Durbin and Watson (1950) test, LB = Ljung and Box (1978) test, MV1 = the Chow and Denning (1993) 

MV1 test, M1 = the Lo and MacKinlay (1988) M1 test, R1 and S1 are tests from Wright (2000) 
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5. Conclusion 

 

In this paper we summarize and compare popular tests for detecting randomness in time 

series data.  Simulated distributions, alternative models and a practical stock market data 

 

 

application are included in our study for all considered tests. When deciding among tests, 

consideration must not only be given to meeting size requirements for the null 

hypothesis, but also possible alternative hypotheses as power can differ considerably 

across alternatives. In our simulation study all tests met the size requirement over the 

varied considered null cases, except S1 which exhibits high values for the
2

4 distribution.  

In the alternative hypotheses, all tests perform well for changes in mean, except SI, which 

has noticeably lower power when N = 300.  When N is large, only SI has power to detect 

changes in variance. In the first correlated case, C1, all procedures did well for larger 

samples, except S1 which has low power for this case.  In the other correlated case, C4, 

only SI has high power when N = 10,000, with MV1 showing respectable power. 

 

For our stock market index data analysis we additionally review and compare three 

transformations and demonstrate that the choice of transformation can have a noticeable 

effect on test results. Only the MMPC transformation results in consistent rejection of the 

null hypothesis with high power for all tests and stock market indices, while the test by 

Strandberg and Iglewicz, SI, is the only test that is able to strongly reject the null 

hypothesis for all three studied indices and considered transformations. We note with 

interest that for most other considered tests, results can differ greatly depending on the 

transformation used.   

 

In summary, this paper provides a simulation study that considers a number of null and 

alternative cases along with a useful analysis using stock market data to show the 

advantages and disadvantages of each studied test. These extensive comparisons and 

results are valuable, especially when dealing with financial data and tests of randomness.   
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