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Abstract
This study presents a variable selection procedure in Bayesian adaptive design of Phase I clinical

trials. For the Phase I dose-finding problem, besides the dose level, the dose-limiting toxicity (DLT)
may depend on other covariates. The variable selection procedure presented is designed to involve
the proper covariates in the model and use the selected model to predict the maximum tolerated
dose (MTD). This variable selection procedure can be applied in a large range of Bayesian adaptive
designs.
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1. Introduction

In Phase I clinical trials, a major goal is to find a safe dose at the target toxicity level (TTL).
The model based designs assume there is a monotonic function describing the relation
between dose level and the probability of DLT. Under the Bayesian framework, after each
cohort of patients are treated, the parameters in the model will be estimated adaptively
based on the posterior distribution. Then the updated functional curve will be used to
update the current estimate of MTD and suggest the dose level for the next cohort.

The continual reassessment method (CRM) by O’Quigley et al. (1990) is the first
Bayesian model-based phase I design appearing in the literature (see Berry et al. 2010).
However, when an improper model is assumed, CRM may leads to overdosing. Due to
safety considerations, modifications are added on the CRM to make the process safer,
though at the cost of algorithm efficiency. For more details of the modifications, see Korn
et al. (1994), Faries (1994), Goodman et al. (1995), Piantadosi et al. (1998), Heyd and
Carlin (1999) and Berry et al. (2010).

The feature that the CRM relies on the binary outcomes indicated that this method does
not use the information efficiently. This leads to another direction of extension. Cheung &
Chappell (2000) introduced the modified CRM method based on the time-to-event (TITE)
outcomes. This TITE-CRM not only uses the binary outcome recording whether the patient
meets a DLT, but also includes the time to this toxicity event. This method is based on
censored time and can accelerate the dose-finding process. For more discussion about the
TITE-CRM, see also Thall et al. (2005) and Cheung et al. (2006).

In addition, another extension is to include covariates in the function characterising
the relation between the probability of DLT and the dose level. For example, Bailey et al.
(2009) described a case study using the model with covariates to study the combination
therapy problem. The covariates introduced are indicator variables of the dose level of the
second drug. Also see Cheung et al. (2006) for studies on the TITE-CRM with covariates.

Some works have been done on the model selection approach in the Bayesian adaptive
design. Wathen & Thall (2008) studied Bayesian model selection method for optimizing
group sequential Phase III clinical trials. Yin & Yuan (2009) introduced Bayesian model
averaging CRM in Phase I clinical trials, which worked on multiple parallel CRM models,
each with a different skeleton of prespecified toxicity probabilities.
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This study proposed a variable selection method for Bayesian adaptive methods with
covariates in Phase I clinical trials. This procedure will be illustrated on the CRM frame-
work, but it is straightforward to be applied on a large range of modified versions of CRM,
including TITE-CRM. This article will be arranged as follows: Section 2 first reviews the
CRM procedure with covariates and then describes the CRM with Bayesian variable se-
lection (BVS-CRM). Section 3 illustrates the BVS-CRM algorithm in a simulation study.
Section 4 discusses limitations and extensions.

2. Methods

2.1 Contimual Reassessment Method with Covariates

Suppose the probability of the DLT is a monotonic function of the dose level (given other
parameters are fixed), then after the TTL is defined, there is a unique dose level correspond-
ing to the TTL, which is defined as the MTD. The primary goal of the CRM is to identify
the MTD. A parametric model will be developed to characterise the relationship between
the probability of the DLT and the dose level. Generally there are 20 − 80 patients partic-
ipating in the Phase I clinical trails. The patients will be divided into several cohorts, each
with equal or unequal number of patients. After setting the initial dose, the first cohort will
be treated at this dose level. After observing the binary outcome which indicates whether
the DLT occurs for each patient, the parameters in the model will be updated based on the
posterior distribution. Then the dose level for the next cohort will be assigned based on
the updated model. After each cohort is treated, the parameter values are updated and the
updated model will give the final estimate for the MTD and dose suggestions for the next
phase clinical trial.

For modeling the relationship between the probability of the DLT and the dose level,
Berry et al. (2010) stated three popular models: hyperbolic tangent model, logistic model,
and power model. In practice, the model will be selected based on historical data or the
expert opinions. This study will focus on the logistic model, but the idea can be extended
to other models as well. Note that the characteristics of the patients and the other drugs
taken at the same time may also have effect on the toxicity behavior of the drug investi-
gated. Covariates can be introduced in the model to represent these effects. For example,
Bailey et al. (2009) use the covariates to indicate the dose level of the second drug under
investiagation.

Suppose there are Nt patients in the tth cohort and T cohorts in total, then the total
patient number is N =

∑T
t=1Nt. Let i ∈ {1, 2, ..., N} denote the index of the patient,

and the it̃th (it̃ ∈ {1, 2, ..., Nt̃}) patient in the t̃th cohort will have the index number of
i =

∑
t≤t̃−1Nt + it̃. In this way, each patient will have a unique identification number. Let

D0 denote the dose escalation grid set. The algorithm of the CRM with covariates can be
summarized as follows:

• Step 1: Charaterize the relationship between dose and toxicity by a parametric model,
for example (Bailey et al. 2009):

logit(p(d, α, β, γ, x)) = log(α) + βlog(
d

d∗
) +

J∑
j=1

γjxj ,

where α and β are two unknown parameters, d∗ is a fixed reference dose, {xj}Jj=1

denote covariates and {γj}Jj=1 are corresponding covariate coefficients.

• Step 2: Assume a vague or fully non-informative prior for the parameters: p(α, β, γ)
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• Step 3: Treat the tth cohort of patients at the current dose level. The initial value of
t is 1 and the initial dose for the first cohort of patients is set at a low and safe level.

• Step 4: Observe the toxicity outcome. For the patients in the current cohort, the
range of the index number will be

∑
t′≤t−1Nt′ + 1 ≤ i ≤

∑
t′≤tNt′ . If a DLT is

observed for the ith patient, then record Yi = 1, otherwise let Yi = 0. Also record
the covariate values {Xij}Jj=1 for the ith patient.

• Step 5: Compute the posterior distribution of (α, β, γ). This calculation will use all
data available up to the current step. The total number of patients who have been
treated is Ñ =

∑
t′≤tNt′ The likelihood after treating n patients is given by

L(α, β, γ; d,X, Y ) =
Ñ∏
i=1

p(di, α, β, γ,Xi·)
Yi [1− p(di, α, β, γ,Xi·)]

1−Yi ,

where di is the dose level for patient i, and Xi· = (Xi1, Xi2, ..., XiJ) is the covariate
for patient i. Then the posterior density is known up to a normalizing constant:

p(α, β, γ|X,Y ) ∝ L(α, β, γ; d,X, Y )p(α, β, γ).

• Step 6: Update the values of (α, β, γ) by the posterior mean (ᾱ, β̄, γ̄). This step can
be done by the MCMC method.

• Step 7: Let p∗ denote the desired toxicity level and then select the dose d∗ =
argmind∈D|p(d, ᾱ, β̄, γ̄, X̄) − p∗| as the dose level for the next cohort, where X̄
denotes the sample average covariate values.

• Step 8: Repeat Steps 3 − 7 until a sufficiently precise estimate of the parameters is
achieved or the maximum sample size is reached.

One drawback of the original CRM approach is that it may lead to overdosing in the
first few steps when the model is not estimated accurately. For instance, if no one meets the
DLT at the initial level, then the updated model tends to give a high dose level for the next
cohort. Certain protections can be made to make this process safer. For example, we can
increase the dose by at most one prespecified level at one time. Another modification is to
select p∗ in Step 7 properly. At the original form, p∗ is a fixed value which is the same as the
TTL, so each time the model will set the dose closest to the current estimate of MTD for the
next cohort. One modification is to start with a low p∗ at the beginning, and then increase
p∗ as the process goes. For example, if the TTL is set as 25%, then we can start with a
p∗ = 10% and gradually increase it at each step; in the end, at the final few steps, when we
believe the model to be accurate, we set p∗ to be 25%. See Berry et al. (2010) for more
discussions on modifications to the CRM. However, these safety considerations will not
affect the variable selection procedure described below, hence without loss of generality,
we will continue to use the original form of the CRM in the following sections.

2.2 Contimual Reassessment Method with Bayesian Variable Selection

There are two main motivations to introduce the variable selection into the CRM. First,
this procedure will help us better interprete the data and the model. At the beginning,
there might be many covariates proposed. The variable selection procedure will rule out
the nuisance covariates and only keep the important covariates in the model. So we can
know which covariates have remarkable impact on the toxicity behavior while the other
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are neglectable. Second, the variable selection procedure can alleviate the effect of the so-
called “curse of dimensionality”. When the number of parameters in the model is reduced
by the variable selection procedure, a more accurate estimation of the paramters can be
expected, which will lead to a more accurate estimate of the MTD.

Regarding the variable selection methods, there are plenty available. See O’Hara and
Sillanpää(2009) and Dellaportas et. al. (2002) for an overview of different Bayesian model
selection techniques. Here we adopt the reversible jump MCMC method, introduced by
Green (1995). The reasons are that (1) it is straigtforward to be applied to different situa-
tions; (2) it can be well integrated with the CRM procedure.

To introduce the idea of the reversible jump MCMC, consider the logistic model with
covariates described in the section above. Suppose there are J covariates proposed, then
there will be 2J possible models, each including certain covariates while excluding the
other. Let Im denote the model indicator vector: if the jth covariate xj (1 ≤ j ≤ J)
is included in the model m, then the jth component of the indicator vector will be 1, i.e.
Ijm = 1; otherwise, set Ijm = 0. Let Jm denote the covariate index set for model m,
defined as Jm = {j : Ijm = 1, j = 1, 2, ..., J}. At each step, a model and its associated
parameters (m′, α′, β′, {γ′j : j ∈ Jm}) will be proposed according to a specified proposal
distribution. Then an acceptence probability is calculated to decide whether or not to accept
the move from the current state to the proposed state. The outcome of the reversible jump
MCMC algorithm is a posterior sample of different model and the parameters associated.
The model with the highest frequency in the sample will be selected. The feature of the
reversible jump MCMC is that it enables the Markov chain jump between models with
parameter spaces of different dimensions.

The BVS-CRM procedure can be summarized as follows:

• Step 1: Consider the model class (includes 2J models):

logit(p(d, α, β, γ, x)) = log(α) + βlog(
d

d∗
) +

∑
j∈Jm

γjxj

• Step 2: Set priors for (m,α, β, γ), where γ = {γj : j ∈ Jm}.

• Step 3: Treat 1 cohort of patients at the level closest to the current estimate of the
MTD. The initial value is set at a low dose level. Denote the current dose level as dt.

• Step 4: For each patient in the current cohort, record the covariate value and outcome:
(Xi, Yi). Also record the dose level used for each patient Di = dt.

• Step 5: Variable Selection Step. Run the reversible jump MCMC algorithm.

– Set initial values for the model and parameters. Suppose the current state is
(m,α, β, γ).

– Propose a model m′ and the jump probability from the current model m to
model m′ is j(m,m′). Generate (α′, β′) from proposal distributions which
has density q(α′, β′|m′,m, α, β). Generate u from a specified proposal distri-
bution: q(u|γ,m,m′).

– Set (γ′, u′) = gm,m′(γ, u) where γ′ = {γ′j : j ∈ Jm′} and gm,m′ is a invertible
function, which has the property gm,m′ = g−1m′,m.
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– Accept the proposed move to (α′, β′,m′, γ
′
) with probability

min(1,
L(α′, β′, γ′;D,X, Y )p(α′, β′, γ′|m′)p(m′)j(m′,m)

L(α, β, γ;D,X, Y )p(α, β, γ|m)p(m)j(m,m′)

×q(α, β|m,m
′, α′, β′)q(u′|γ′,m′,m)

q(α′, β′|m′,m, α, β)q(u|γ,m,m′)
× |

∂gm,m′(γ, u)

∂(γ, u)
|)

– Repeat this procedure until the desirable sample size is obtained or the speci-
fied accuracy is reached.

• Step 6: Select the model with the highest frequency in the sample and denote it
as m∗. Select the subsample of the MCMC sample which includes m∗ as model
component. Update the values of (α, β, γ) by the posterior mean of the subsample,
denoted as (ᾱ, β̄, γ̄). To get better accuracy, another MCMC can be conducted to
calculate the posterior mean of (α, β, γ) conditional on the model m∗.

• Step 7: Let p∗ denote the desired toxicity level and then select the dose d∗ =
argmind|p(d, ᾱ, β̄, γ̄, X̄)−p∗| as the dose level for the next cohort, where X̄ denotes
the sample average covariate values.

• Step 8: Repeat Steps 3 − 7 until a sufficiently precise estimate of the parameters is
achieved or the maximum sample size is reached.

Green (1995) suggested to use a local proposal distribution for the model and parameter
values. That is, at each step, the proposed model either includes one additional covariate
or reduces one current covariate compared with the current model. If the proposed model
has one more covariate, then a covariate coefficient will be proposed for this covariate
according to a proposal distribution; the remaining parameters of the proposed model will
take the same value as those in the current model. Otherwise, if the proposed model reduces
one covariate compared with the current model, then all the parameters in the proposed
model will keep the same values as those in the current model.

3. Simulation Study

In this study, let us consider 10 cohorts with 10 patients per cohort. The dose escalation
grids are defined as D0 = (0.05, 0.1, 0.2, 0.3, 0.5, 0.7). Suppose there are four covariates
interested: x = (x1, x2, x3, x4). Set the reference dose level as d∗ = 0.3. Assume the true
model only includes two covariates (x1, x2), which is set as

logit(p(d, α0, β0, γ0, x)) = log(α) + βlog(
d

d∗
) + γ01x1 + γ02x2,

where α0 = 0.3, β0 = 1, and γ0 = (−1, 1.2). Each covariate x is generated according to
a Bernoulli distribution with parameter 0.5. Under this setting, if we set the target toxicity
level (TTL) as p0 = 0.2, then the maximum tolerated dose (MTD) will be d0 = 0.226 and
0.2 is the closest dose level available in the escalation grids.

The simulation procedure of this BVS-CRM is proceeded as follows:

• Step 1: Consider the model class (includes 16 models):

logit(p(d, α, β, γ, x)) = log(α) + βlog(
d

d∗
) +

∑
j∈Jm

γjxj
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• Step 2: Priors:
p(log(α)) ∼ N(0, 1)

p(β) ∼ N(0, 1)

p(γj |Im[j] = 1) ∼ N(0, 1)

and
p(m) ∼ Uniform

• Step 3: Treat 1 cohort of patients at the level closest to the current estimate of the
MTD. The initial value is taken as the lowest dose level. Denote the current dose
level as dt.

• Step 4: For each patient in the current cohort, generate a covariate vector x and sub-
stitude x and dt into the true model to calculate the probability of DLT: p(dt, α0, β0, γ0, x).
Then generate a binary outcome y from a Bernoulli distribution with probability
p(dt, α0, β0, γ0, x). Record the value of (x, y) for each patient.

• Step 5: Variable Selection Step. Run the reversible jump MCMC algorithm.

– Starting values: (α, β, γ) = (0.1, 0.1, 0, 0, 0, 0) and m = (0, 0, 0, 0).

– Proposal distribution:
q(α′) ∼ U [0, 5]

q(β′) ∼ U [0, 5]

j(m,m′): Simulate j∗ from U{1, 2, 3, 4} and then let m′j∗ = 1−mj∗ .

Let γ′−j∗ = γ−j∗ , which means set the covariate coefficients in the proposed
model the same value as the current model, except the j∗th component.

If m′j∗ = 1, which means the proposed model includes one more covariate,
then define q(u′) = 1 and simulate u from q(u) as γ′j∗ . Let N(0, 1) be the
proposal distribution for u, so q(u) is the standard normal density.

Otherwise set m′j∗ = 0 and γ′j∗ = 0 , then define q(u) = 1 and calculate q(u′)
where u′ = γj∗ and q is then density of the standard normal.

– Accept the proposed move to (α′, β′,m′, γ
′
) with probability

min(1,
L(α′, β′, γ′;D,X, Y )p(α′, β′, γ′|m′)p(m′)j(m′,m)

L(α, β, γ;D,X, Y )p(α, β, γ|m)p(m)j(m,m′)

×q(α, β|m,m
′, α′, β′)q(u′|γ′,m′,m)

q(α′, β′|m′,m, α, β)q(u|γ,m,m′)
× |

∂gm,m′(γ, u)

∂(γ, u)
|),

which can be simplified as

min(1,
L(α′, β′, γ′;D,X, Y )p(α′, β′, γ′|m′)q(α)q(β)q(u′)

L(α, β, γ;D,X, Y )p(α, β, γ|m)q(α′)q(β′)q(u)
)

– For each of the first 9 cohorts, repeat this procedure 5, 500 times and drop the
initial 500 samples to get 5, 000 valid samples in the end. For the last (10th)
cohort, repeat this procedure 33, 000 times and drop the initial 3, 000 samples
to get 30, 000 valid samples.
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• Step 6: Select the model with the highest frequency in the sample and denote it
as m∗. Select the subsample of the MCMC sample which includes m∗ as model
component. Update the values of (α, β, γ) by the posterior mean of the subsample,
denoted as (ᾱ, β̄, γ̄).

• Step 7: Let p∗ = 0.2 and then select the dose d∗ = argmind|p(d, ᾱ, β̄, γ̄, X̄) − p∗|
as the dose level for the next cohort, where X̄ denotes the sample average covariate
values.

• Step 8: Repeat Steps 3 − 7 until a sufficiently precise estimate of the parameters is
achieved or the maximum sample size is reached.

The simulation results for the models with high posterior probabilities are given in
Table 1. The standard error is calculated by dividing the 30000 MCMC samples at the last
step into 10 batches and computing the standard error of the model posterior probability
accross batches. Figure 1 and Figure 2 compare the two optimal models with the model
with no covariate and full covariates. Figure 3 shows the dose levels assigned for patients
in the cohorts, which are also the estimated MTD in each step. Note that the the final MTD
suggested by the optimal model using the full set of data is also 0.2. Parameter estimates
of the optimal model are:

(α, β, γ) = (0.520, 1.023,−0.707, 0.820, 0, 0)

Table 1: Top 5 models selected
Model (x1, x2) (x1, x2, x3) (x1) (x2) (x1, x2, x4)

Posterior
Probability

0.156 0.103 0.100 0.082 0.076

Standard Error 0.020 0.018 0.026 0.026 0.012

As shown in table 1, the optimal model selected is exact the true model. Also, the
optimal model suggests the right MTD in the end, and is the closest to the true functional
curve in Figure 1 and 2. However, we can also note that the posterior probability of se-
lecting the true model is not very high. There are two possible reasons: (1) The data size
is not large, considering there are 16 possible models in total. In addition, the information
contained in the binary outcome is limited. (2) The optimal model has no large difference
with other models with high posterior probabilities given the data set. As we can see, the
optimal model and the second optimal model perform similarly in Figure 1 and 2. The
limited information problem also lead to rough estimates of the parameters, and as a result,
all estimated models are away from the true models. However, though the estimates are
rough, the optimal model (or the true model) still performs the best among all models, and
gives the correct MTD in the end. In this study, a flat prior is used for models. The purpose
is to examine the procedure without preference on models. In practice, a informative prior
can be assigned to state preference.

4. Disccusion and Extensions

Considering the small sample size of the dose-finding procedure and the limited informa-
tion contained in the binary outcome, the number of covariates proposed can not be too
many in the BVS-CRM. To get over this difficulty, more information is required. One pos-
sible solution is to apply this covariate selection approach on TITE-CRM. If the time for
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the occurence of DLT is well modeled, then this model will offer extra information, which
means it is able to include more covariates in the Bayesian variable selection procedure, as
well as produce parameter estimates with higher accuracy.

Another extension of this approach is to assign dose to individuals, rather than the
cohort. The benefit of this modification is to protect patients who are easy to encounter the
DLT from overdosing. This also indicates we could suggest different MTD’s for different
scenarios or patient groups in the end of the dose-finding study.
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[10] O’Hara, R.B. and Sillanpää, M. J. (2009) A Review of Bayesian Variable Selection Methods: What,
How and Which. Bayesian Analysis. 4, 1,85-118

[11] O’Quigley, J., Pepe, M., and Fisher, L. (1990). Continual reassessment method: a practical design for
phase I clinical trials in cancer. Biometrics, 46, 33-48.

[12] Piantadosi, S., Fisher, J.D., and Grossman, S. (1998). Practical implementation of a modified continual
reassessment method for dose-nding trials. Cancer Chemother. Pharmacol., 41, 429-436.

[13] Thall, P.F., Wooten, L., and Tannir, N. (2005). Monitoring event times in early phase clinical trials: some
practical issues. Clinical Trials, 2, 467-478.

[14] Wathen, J.K. and Thall P.F.(2008) Bayesian adaptive model selection for optimizing group sequential
clinical trials. Statist. Med. 27:55865604

[15] Guosheng Yin and Ying Yuan (2009): Bayesian Model Averaging Continual Reassessment Method in
Phase I Clinical Trials, Journal of the American Statistical Association, 104:487, 954-968

[16] Dellaportas P., Forster, J.J. and Ntzoufras, I. (2002). On Bayesian model and variable selection using

MCMC. Statistics and Computing 12:27-36

JSM 2013 - Section on Statistical Computing

569



Figure 1: Model comparison given covariate x = (0, 1, 0, 1)

Figure 2: Model comparison given covariate x = (1, 0, 1, 0)
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Figure 3: Dose level assigned to patients
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