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Abstract
Significance testing is commonly taught to introductory students as a data analytical tool for deter-
mining when a scientific hypothesis can be accepted as the true state of nature. Despite its popular-
ity, however, the significance testing approach is ill-equipped for handling the problem of quantify-
ing evidence. In this paper, we illustrate how the use of significance testing for providing a measure
of belief in a hypothesis test result is contradictory to good scientific principles.
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1. Significance Testing

Consider, for simplicity, the most basic of hypothesis testing problems. We observe data
X1, . . . , Xn distributed iid N

(
µ, σ2

)
for the purpose of testing a point null hypothesis

Ho : µ = µo against a two-sided alternative HA : µ ̸= µo. It is often the case that the
null value µo represents some historical control so that the null hypothesis is the currently
accepted state of knowledge. Then the alternative hypothesis, representing a difference
from the status quo, would establish a new state of knowledge and constitute a scientific
finding. Statistics students, and future scientists, are taught significance testing as a method
for using data to formally reach a conclusion that the new knowledge hypothesized in the
alternative is indeed the true state of nature.

The logic behind significance testing leads one to reject Ho if the experimental data is
unlikely to have been observed if the null hypothesis were true. Under the null hypothesis,
the test statistic Z∗ =

√
n
(
X − µ

)
/σ follows the standard normal distribution. At a

significance level α, the critical region for rejecting the null hypothesis is determined by
the inequality |Z∗| > z (α/2) , where z (α/2) is the upper 100(α/2) th percentile of the
standard normal distribution. Scientific writing is often based on the belief that observing
data which led to the rejection of a null hypothesis is sufficient evidence to conclude a new
scientific finding as real. Interpretations of significance testing presented in many statistical
textbooks do little to dispel this notion.

The significance level is used to provide a measure of belief in the results from a sig-
nificance test. Smaller levels of significance constitute data more unlikely under the null,
translating into a stronger belief against the null and in favor of the alternative. The p-value,
or observed significance level, is defined to be the minimum significance level at which ob-
served data can lead to a reject Ho conclusion. Some prefer to use the p-value, rather than
a fixed significance level, for specifying a measure of belief in a testing result.

Unfortunately, the use of significance testing for quantifying a level of belief against
the null suffers from a deadly flaw in probabilistic thinking. Significance testing and p-
values quantify belief by measuring P (data |Ho) , the probability of the data conditional
on the null hypothesis. A proper measure of belief must be based on P (Ho | data) ,
the probability of the null hypothesis conditional on the observed data. Quite clearly,
P (Ho | data) ̸= P (data |Ho) . The significance testing approach offers an invalid mea-
sure of belief. Ziliak and McCloskey (2008) refer to this error in reasoning as the ”fallacy
of the transposed conditional”. In the next section, we illustrate how significance testing
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can give a very misleading accounting of the degree to which the data contradicts the null
hypothesis. Our development is based closely on the ideas found in Berger and Sellke
(1987).

2. Quantifying Measure of Belief

Let Z∗ = z denote the observed statistic for testing Ho : µ = µo. Rather than relying
on the significance level, a proper measure of belief is based on the posterior probabil-
ity P (Ho | z) . For this calculation, we require Bayes Theorem. However, a frequentist
interpretation may still hold here. The false discovery rate, for example, is an important
frequentist measure that is mathematically equivalent to a posterior probability on the null.

For the calculations in this section, consider a well-designed experiment where a sam-
ple size / power analysis has been performed prior to data collection. Suppose that at level
α = .05, a test of Ho : µ = µo has power .80 at a specific alternative µA. The specific
alternative is determined from prior knowledge, such as from previous experimentation or
scientific experience. As this is the same information that goes into specifying a prior dis-
tribution, our setup fits naturally into both the frequentist and Bayesian frameworks. Test
statistic Z∗ follows a N (∆A, 1) distribution under the specific alternative µA, where

∆A =

√
n (µA − µo)

σ
.

In order for the test to attain power .80 at the specific alternative, it can be derived that ∆A

must equal either 2.8 or −2.8. So, let’s define |∆A| = 2.8.
It may be prudent to allow for some uncertainty in specifying the alternative. A Bayesian

would proceed by defining a prior distribution on ∆, conditional on tests where the alter-
native hypothesis is true. As a prior, let’s consider a normal distribution ∆ ∼ N (0, k) .
Such a prior gives equal weight to both directions in the two-sided alternative. The in-
formation used in determining the specific alternative ∆A can be used in determining the
prior variance k. Let’s define k by solving E |∆| = |∆A| . Per the specification for a
level .05 test with power .80 at alternative |∆A| = 2.8, we find

√
2k/π = 2.8, so that

k = (π/2) (2.8)2 = 12.315.
The prior is completed by determining a prior probability πo on the null hypothesis. Al-

though construction of a prior is typically thought to be exclusive to the Bayesian paradigm,
we can easily imagine a frequentist interpretation which holds under this framework. Con-
sider a sequence of scientific experiments / tests within a particular field. For experimental
studies within this field, πo represents the proportion for which the currently accepted state
of knowledge is true, and 1−πo represents the proportion for which the proposed new the-
ory is true. For those studies in which the truth differs from the current belief, ∆ ∼ N (0, k)
represents the distribution over the size of the difference (i.e., the effect size).

Under the prior specification described above, we can derive the posterior probability
on the null as

P (Ho | z) =
[
1 +

(
πo

1− πo
· n (z; 0, 1)

n (z; 0, k + 1)

)−1
]−1

(1)

where n
(
.;µ, σ2

)
denotes the pdf for a N

(
µ, σ2

)
distribution. The ratio of normal densities

in expression (1) is known as the Bayes factor. The numerator is the null density evaluated
at the observed test statistic. The marginal distribution of the test statistic Z∗ under the
alternative hypothesis is N (0, k + 1) , reflecting both the test statistic variance and the
effect size variance. The Bayes factor B is analogous to the likelihood ratio statistic, a
familiar frequentist concept. When the Bayes factor (likelihood ratio) decreases, support

JSM 2013 - Section on Statistical Education

502



Table 1: Posterior null probabilities at observed significance levels under prior probabilities
on the null. The prior on the effect size was derived to match that of a test with 80 percent
power.

|z| = 1.645 |z| = 1.96 |z| = 2.576 |z| = 3.29 |z| = 3.89
p = .10 p = .05 p = .01 p = .001 p = .0001

πo = .99 .990417 .983905 .943793 .707646 .248197
πo = .90 .903808 .847500 .604193 .180359 .029138
πo = .50 .510761 .381757 .145014 .023866 .003324
πo = .25 .258158 .170695 .053511 .008084 .001110

for the null decreases and support for the alternative increases. Support is measured based
only on the statistic z observed. Contrast this idea with a p-value that measures evidence
based on unobserved hypothetical data in the tail of the null distribution, more extreme than
that observed.

Table 1 displays computed posterior probabilities on the null hypothesis. The rows of
Table 1 correspond to the prior belief in the null. It is helpful to think of πo as quantifying
the scientific context for an experiment. High belief in the null, such as πo = .99, describes
an early stage of testing, possibly for an experiment involving a large number of alternative
hypotheses where it is not yet clear which potential effects are in need of further explo-
ration. This may be for a multivariable observational study, or perhaps a large scale testing
problem involving genomic data. Lower belief in the null, such as πo = .25, describes a
later stage of testing where a potential effect has been observed in previous studies. This
choice of prior may be appropriate for a well established field of scientific inquiry, perhaps
a confirmatory meta analysis of high quality medical trials. The scientific context of an ex-
periment is a concept known to statisticians. For instance, the null hypothesis of no effect
will naturally have a higher degree of belief for drugs in the early phases of clinical trials
than for drugs nearing an approval phrase. It is reasonable for belief in a null effect to de-
crease as the number of studies reporting a positive finding on this potential effect increase.
The use of πo is a natural way of quantifying the key scientific principle of replication into
a statistical analysis.

The columns of Table 1 correspond to observed test statistics at significance levels
traditionally associated with rejection of a null hypothesis. In all cases, the observed sig-
nificance level understates the degree of belief in the null. In many of these cases, a signifi-
cance test would report a positive finding when there remains substantial belief that the null
hypothesis is, in fact, the truth. For example, an observational study (πo = .99) presenting
a highly significant result (p = .0001) still gives about a 25% chance that the null hypoth-
esis is true. A late stage clinical trial (πo = .25) presenting a marginally significant result
(p = .05) still gives about a 17% chance that the null hypothesis is true. An early stage
clinical trial (πo = .90) with a significant test result (p = .01) still gives greater belief in
favor of the null than the alternative. Results with an observed significance level of .10 are
seen to actually increase the probability on the null. That is, data which may traditionally
be seen to support rejection of a null hypothesis actually provides support in favor of the
null.

The moral of this section is that a significance level provides a poor measure of belief
in the validity of a positive research finding. Our demonstration involved a prior developed
to match the thinking behind the design of a test with adequate power. Berger and Sellke
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(1987) are even more damning to the use of significance testing. There it is shown that
whenever πo > .5, the observed significance level understates the posterior probability on
the null for any choice of a prior distribution on the effect size. So, an experimenter must
have an a priori preference for the alternative in order for the observed significance level
to match with the posterior probability. The thought that significance testing provides an
objective approach to scientific discovery simply is not born out when a proper measure of
belief is considered. We will take up this issue further in the applications section.

Although the theory in our development assumes normally distributed data, the frame-
work is a bit more general. Since the posterior probability is computed conditional on
observing Z∗ = z, we require only that the standardized test statistic be (approximately)
distributed as a normal random variable. This can include asymptotic normal distributions,
such as in binomial testing.

3. An Application

Focht et al. (2002) present a study comparing the use of duct tape for removing warts
against a standard cryotherapy treatment. The null hypothesis in this application corre-
sponds to the case of no difference between the duct tape group and the cryotherapy group.
The duct tape group achieved 22 successes in 26 patients while the cryotherapy group
achieved only 15 successes in 25 patients. The standardized test statistic for comparing the
two binomial populations computes as z = 1.97 (p = .049) in favor of the superiority of
duct tape over cryotherapy for wart removal. The result is statistically significant at the 5%
level. The authors follow their statistical training and determine that sufficient evidence
exists to conclude that duct tape is the preferred therapy.

We have seen, however, the danger in using a significance level to measure belief in the
validity of a research finding. Let’s reassess the belief one is able to place on the conclusion
that a duct tape therapy beats the standard cryotherapy. The study provides no indication
that a power analysis was performed, so the direct use of Section 3 may not be appropriate.
Instead, we will turn the problem around by determining how much prior weight must be
placed in favor of the duct tape group in order for the posterior probability on the null to
match the observed significance level p.

In order for our demonstration to avoid any bias toward the null, the prior on the effect
size will be chosen as the one most favorable to the directed alternative, based on the data
observed. The choice of prior variance most in favor of the directed alternative is found by
minimizing (1) with respect to k. For |z| > 1, it can be shown that the minimum occurs at
k∗ = z2 − 1. Thus, we can derive the minimum on the posterior probability as

P (Ho | z) =

1 + ( πo
1− πo

· exp
(
−z2/2

)
|z|

√
e

)−1
−1

. (2)

Let’s investigate expression (2) before returning to the application. Table 2 displays
the minimum posterior probabilities on the null hypothesis for the same collection of null
prior beliefs and observed significance levels as in the previous section. The entries repre-
sent lower bounds on the null posterior probabilities for normally distributed effect sizes.
Nevertheless, as was seen in Table 1, the observed significance level understates a proper
degree of belief in the null. The similarity of the entries in Tables 1 and 2 indicate that the
message from section 3 is not overly influenced by the development of a prior on the effect
size.

We now return to our analysis of the duct tape study. Next we solve P (Ho | z) = p
for πo to determine the prior weight necessary for attaining the same measure of belief as
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Table 2: Minimum posterior null probabilities at observed significance levels under prior
probabilities on the null. The prior on the effect size was derived as the one most favorable
to the alternative, so the entries represent lower bounds.

|z| = 1.645 |z| = 1.96 |z| = 2.576 |z| = 3.29 |z| = 3.89
p = .10 p = .05 p = .01 p = .001 p = .0001

πo = .99 .985795 .979108 .938397 .705568 .247401
πo = .90 .863179 .809901 .580682 .178882 .029017
πo = .50 .415105 .321289 .133351 .023634 .003310
πo = .25 .189404 .136288 .048788 .008004 .001106

that from the significance testing approach. With z = 1.97 and p = .049, we compute
πo = .1014 as the necessary prior probability on the null. Let’s summarize the analysis.
It is required that one use a prior probability of only .1 on the null in order to match the
observed significance level as a measure of belief. Putting this answer in a frequentist con-
text, the current experiment comparing duct tape to cryotherapy must be from a sequence
of experiments for which the proposed new knowledge is true in 90% of the cases. Further-
more, the prior distribution on the effect sizes is chosen to be the one that is most favorable
to the directed alternative in the current experiment. This involves placing zero probability
on the chance that duct tape is actually inferior to the standard. Rather than providing an
objective measure of belief, the observed significance level requires a prior far more biased
toward the alternative than would be acceptable to a principled scientist. The true weight
of belief one may place on the validity of this research finding is not properly indicated
by traditional significance testing measures. The final verdict on a new state of knowledge
is not determined from the result of a single study. Good science calls for replication; a
principle that fits naturally with the understanding of scientific context.

4. Conclusion

There is growing concern in the scientific community over the large number of positive
research findings that fail upon attempts at replication. See, for instance, Siegfried (2011)
who writes for a general audience, Ioannides (2005) who focuses primarily on medical
research, and Young and Karr (2011) who focus on observational studies. The current
practice of teaching significance testing and p-values as a direct line to a measure of belief
is just not mathematically or scientifically valid. Statistics educators should understand
how the context of a scientific study influences the data analysis. In particular, we can do
a better job of explaining how science progresses only when positive research findings are
replicated.

There are many other articles on the topic of significance testing and quantifying belief
available for the interested reader. See, for instance, Neath (2010), Sellke, Bayarri, and
Berger (2001), Lee and Zelen (2000), and Goodman (1999ab).
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