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Abstract

In terms of competing risks Mixture Long-term Survival Models are widely used for the
analysis of individuals may never suffer the considered cause of failure. Under condition
of a cured fraction, some individuals will be treated as immune to a specific cause of
failure or be defined as long-term survivors. In case of multi- or bivariate cause-specific
survival data different dependence structures can be suited with different copula
functions. There are two main methodical aspects for the marginal distributions need to
account for: first the maximum of flexibility and second the application in case of masked
causes. We proposed a bivariate mixture long-term model based on the Farlie-Gumbel-
Morgenstern (FGM) copula. Data simulations will be provided with SEER Breast Cancer
Data. Otherwise we will discuss optional ideas for this approach in a semi-competing risk
setting.
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1. Background

Competing Risks Models are popular in medical and public health studies. One
challenging problem will be the application of cause-specific survival models in case of
missing and misclassification in cause of death. Masking is almost present if the
information of the considered cause of failure or cause of death is incomplete or only
partial identifiable (Flehinger et al. 2002 , Craiu and Lee, 2005, Lu and Liang, 2008 Sen
et al. 2010, Roman et al. 2012).

The Mixture Long-term Survival Models have been applied for the analysis of
individuals may never suffer the cause of failure under consideration. Under the
condition of an unobserved prognostic factor, some individuals will be treated as immune
to a certain cause of failure or be defined as long-term survivors (Maller and Zhou, 1996,
Roman et al. 2012, Louzada et al. 2012).

The also applied parametric or semi-parametric versions of the Proportional Hazard
Model (PH) or the Mixed Proportional Hazard Model (MPH) will be also used in
advance on practice. The structure of the properties for these models seems easily to
explored but their application to real data is mostly inconvenient. The assumption on the
marginal distributions of the latent variables and their dependence structure is restrictive,
under some condition not adequate. To prevent such condition researchers assuming
indepence structure for their latent variables.
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Avoiding independence assumption one can also model the joint dependence structure by
means of a copula function (e.g. Escalera and Carriére, 2003, Lo and Wilke, 2009,
Wienke, 2011). Many different families of copulas, the model allows for flexible
specification of the dependence structure between competing random variables (Nelsen,
20006).

2. The Model

The considered model based on two components mixture model according to Maller and
Zhou (1996) with the distinction of one component representing the failure or the
survival time of susceptible individuals to a certain and with the other component
presenting the not susceptible individuals (see also Francisco et al. 2012, Roman, 2012).

Spopj () = p;Si(&) + (1 = p; )So ()

with S; as the Survival function for the non-susceptible (or cured) individuals, S, as the
Survival function for susceptible (or non-cured) individuals and p; the probability (or
cured fraction) of an individual to belong to the non-susceptible group.

if Sj(tj) =P(T >t) =1,Vt = 0,then S,,p; (tj) can be rewritten as:

Spopj(t;) =pj + (1= p; )So (1))

Follow the bivariate Archimedean copula with a single parameter

1- Spopl@l);)

C (Spopl(tl)rspopz (tz)) = Spopl(tl) + Spopz(tz) -1+ C~ <1 _ Spopz (tz)

can be also applied for Clayton (1978), Ali-Mikhail-Haq (1978), or Frank copula (1979).

In comparison to the alternate mixture approach the bivariate long-term survival model
with Farlie-Gumble-Morgenstein distribution (FGM) Copula Model (Conway, 1983) will
be defined with the joint survival function of the copula C,, with the density function ¢,
[0,1]? for ¢ € R. Then, let (T1,T2) denoted as the paired failure S,,p,; and fp,0p; denote
the marginal long-term survival functions and the marginal long-term density function of
T; j = 1,2 (see also Maller and Zhou, 1996, Roman et al. 2012, Louzada et al. 2012)

Spop(tl,tz,) = C(p(Spopl(tl):SpopZ(tz) ): t1tp, > 0

fpop(tl,tz,) = C(p(Spopl(tl)'Spopz(tz) )v fpopl (tl)fpopz(tz)tl,tz, >0

Using the Farlie-Gumble-Morgenstern copula (FGM) was first considered by Conway
(1983) the application to a Bayesian approach estimates the effect of three copula
structures by modeling the dependence effect on the prevalence and performance test
parameters (Bairamov and Kotz, 2002, Fisher and Klein, 2007, Amblard and Girard,
2008 and Tovar Cuevas and Archor, 2011).
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Co(u,v) =uv[l+ (1 —-—w( —v)]

where0 < u,v <land —1 < ¢ <1, for ¢ > 0if dependence structure for u and v
is positive and ¢ < 0 if depence structure for u and v is negative

Consider (T1,T2,) for FMG copula the joint long-term survival of (T1,T2,) will be given
with

Spop(t,t2,) = Spop1(t1), Spopz (t2) [1 +o (1 - Spopl(tl)) (1 - Spopz(tz))]

Then ¢ parameter measures the intensity of the dependence between the lifetimes.

If o =0, Spop1(t1) = Spopz(tz) is valid then the random variables Ty and T, are
independent

Copula functions rely on sophisticated methodical advances because their focus will not
be on correlation coefficients but more over on scale invariant measures of association.
These measures of association are functions of a measure of dependence between
marginals. Then the association parameter can be defined with different values specified
on the copula. In comparison to that measures of associations like the Pearson’s
correlation coefficient are bounded.

Modeling copulas will be arranged with the Gibbs Sampler belonging to the class of the
Markov Chain Monte Carlo (MCMC) methodology.

For T; we assume a Weibull mixture distribution with the parameters «; and y; and

p; = exp(Bo; + Pijx)/ (1 + exp(Bo; + ﬂ1jx))

with y;~Gamma (aj, bj) and aj~Gamma (cj, d]-)

3. Data

The mixture long-term survival approach will be applied for Breast Cancer Data provided
by the SEER Cancer Statistic Data Base National Cancer Institute, DCCPS, Surveillance
Research Program, and Cancer Statistics Branch was released in April 2013.

Information on the incidence by race, gender and age for different period of time are
available. We use causespecific mortality data including all cancer. The SEER public use
dataset includes the vital status of breast cancer patients from 1992-2010 includes
(n=69,990 in Situ).

The mixture cure model define Syfor susceptible (non-cured) individuals will be
identified as breast cancer case and with §; will be non-breast cancer including all
masking cases.

Simulation will be done with OpenBUGS. For more details: see Spiegelhalter et al. 2007

The results from the parameter estimates are presented in tablel.
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Table 1: SEER Breast Cancer Data,

4. Results

Summary results from the posterior distribution, mean,
standard deviation (SD) and HPD (95%) interval for the FGM copula

Parameter Mean SD HPD (95%)

Time 1 o 1.457 0.158  (1.1089; 1.589)
M 0.052 0.018  (0.031; 0.073)

Boi -2.134 0.993  (-4.534; -0.675)

B11 0.754 0.976  (-1.452;2.871)

Time 2 (V) 1.564 0.176  (1.286; 1.834)
A 0.052 0.019  (0.030; 0.074)

Boz -0.781 0.511  (-1.547; 1.034)

B2 0.843 0.574  (0.641; 0.984)

Copula Q@ 0.673 0.345  (0.031; 0.978)

5. Conclusion

The major gains of this approach yield on the high flexibility to account for different
dependence structure. The minor computation problems can be neglected.

The estimates should be realized on a hierarchial two-step procedure:
First the marginals have to be estimated, then in a second step the copula to perform
the joint distribution. On the other hand the identification problem of the joint

distribution is still present.

Misclassification in cause of failure should be account for because the bias

have serious effects on the for estimates and determine lower statistical power type
of misclassification also drives the bias: Nondifferential
misclassifications have less impact on the estimation bias than systematic
misclassification (Sarfati et al. 2010)
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