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Abstract 
In terms of competing risks Mixture Long-term Survival Models are widely used for the 
analysis of individuals may never suffer the considered cause of failure. Under condition 
of a cured fraction, some individuals will be treated as immune to a specific cause of 
failure or be defined as long-term survivors. In case of multi- or bivariate cause-specific 
survival data different dependence structures can be suited with different copula 
functions. There are two main methodical aspects for the marginal distributions need to 
account for: first the maximum of flexibility and second the application in case of masked 
causes. We proposed a bivariate mixture long-term model based on the Farlie-Gumbel- 
Morgenstern (FGM) copula. Data simulations will be provided with SEER Breast Cancer 
Data. Otherwise we will discuss optional ideas for this approach in a semi-competing risk 
setting. 
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1. Background 
 
Competing Risks Models are popular in medical and public health studies. One 
challenging problem will be the application of cause-specific survival models in case of 
missing and misclassification in cause of death. Masking is almost present if the 
information of the considered cause of failure or cause of death is incomplete or only 
partial identifiable (Flehinger et al. 2002 , Craiu and Lee, 2005, Lu and Liang, 2008 Sen 
et al. 2010, Roman et al. 2012).  
The Mixture Long-term Survival Models have been applied for the analysis of 
individuals may never suffer the cause of failure under consideration. Under the 
condition of an unobserved prognostic factor, some individuals will be treated as immune 
to a certain cause of failure or be defined as long-term survivors (Maller and Zhou, 1996, 
Roman et al. 2012, Louzada et al. 2012). 
 
The also applied parametric or semi-parametric versions of the Proportional Hazard 
Model (PH) or the Mixed Proportional Hazard Model (MPH) will be also used in 
advance on practice. The structure of the properties for these models seems easily to 
explored but their application to real data is mostly inconvenient. The assumption on the 
marginal distributions of the latent variables and their dependence structure is restrictive, 
under some condition not adequate. To prevent such condition researchers assuming 
indepence structure for their latent variables. 
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Avoiding independence assumption one can also model the joint dependence structure by 
means of a copula function (e.g. Escalera and Carrière, 2003, Lo and Wilke, 2009, 
Wienke, 2011). Many different families of copulas, the model allows for flexible 
specification of the dependence structure between competing random variables (Nelsen, 
2006). 
 
 

2. The Model 
 

The considered model based on two components mixture model according to Maller and 
Zhou (1996) with the distinction of one component representing the failure or the 
survival time of susceptible individuals to a certain and with the other component 
presenting the not susceptible individuals (see also Francisco et al. 2012, Roman, 2012). 
                                                              

𝑆𝑝𝑜𝑝𝑗�𝑡𝑗� = 𝑝𝑗𝑆𝑗�𝑡𝑗� + �1 − 𝑝𝑗  �𝑆0 �𝑡𝑗� 
 
with Sj as the Survival function for the non-susceptible (or cured) individuals, S0 as the 
Survival function for susceptible (or non-cured) individuals and pj the probability (or 
cured fraction) of an individual to belong to the non-susceptible group. 
 

𝑖𝑓 𝑆𝑗�𝑡𝑗� = 𝑃(𝑇 > 𝑡) = 1,∀𝑡 ≥ 0, 𝑡ℎ𝑒𝑛 𝑆𝑝𝑜𝑝𝑗 �𝑡𝑗� 𝑐𝑎𝑛 𝑏𝑒 𝑟𝑒𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑎𝑠:     

𝑆𝑝𝑜𝑝𝑗�𝑡𝑗� = 𝑝𝑗 + �1 − 𝑝𝑗  �𝑆0 �𝑡𝑗� 

Follow the bivariate Archimedean copula with a single parameter  
 

𝐶 �𝑆𝑝𝑜𝑝1(𝑡1),𝑆𝑝𝑜𝑝2(𝑡2)� =  𝑆𝑝𝑜𝑝1(𝑡1) + 𝑆𝑝𝑜𝑝2(𝑡2)− 1 + �̃� �
1 − 𝑆𝑝𝑜𝑝1(𝑡1),
1 − 𝑆𝑝𝑜𝑝2(𝑡2) � 

 
can be also applied for Clayton (1978), Ali-Mikhail-Haq (1978), or Frank copula (1979). 
 
In comparison to the alternate mixture approach the bivariate long-term survival model 
with Farlie-Gumble-Morgenstein distribution (FGM) Copula Model (Conway, 1983) will 
be defined with the joint survival function  of the copula 𝐶𝜑 with the density function 𝑐𝜑  
[0,1]2 for 𝜑 ∈ 𝑅. Then, let �𝑇1,𝑇2� denoted as the paired failure 𝑆𝑝𝑜𝑝𝑗 and  𝑓𝑝𝑜𝑝𝑗  denote 
the marginal long-term survival functions and the marginal long-term density function of 
𝑇𝑗,𝑗 = 1,2 (see also Maller and Zhou, 1996, Roman et al. 2012, Louzada et al. 2012) 
 
 

𝑆𝑝𝑜𝑝�𝑡1,𝑡2,� = 𝐶𝜑�𝑆𝑝𝑜𝑝1(𝑡1),𝑆𝑝𝑜𝑝2(𝑡2) �, 𝑡1,𝑡2, > 0 

𝑓𝑝𝑜𝑝�𝑡1,𝑡2,� = 𝑐𝜑�𝑆𝑝𝑜𝑝1(𝑡1),𝑆𝑝𝑜𝑝2(𝑡2) �,  𝑓𝑝𝑜𝑝1 (𝑡1)𝑓𝑝𝑜𝑝2(𝑡2)𝑡1,𝑡2, > 0 

Using the Farlie-Gumble-Morgenstern copula (FGM) was first considered by Conway 
(1983) the application to a Bayesian approach estimates the effect of three copula 
structures by modeling the dependence effect on the prevalence and performance test 
parameters (Bairamov and Kotz, 2002, Fisher and Klein, 2007, Amblard and Girard, 
2008 and Tovar Cuevas and Archor, 2011). 
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𝐶𝜑(𝑢, 𝑣) = 𝑢𝑣[1 + 𝜑(1 − 𝑢)(1 − 𝑣)] 

 
where 0 ≤ 𝑢, 𝑣 ≤ 1 𝑎𝑛𝑑 − 1 ≤ 𝜑 ≤ 1, for 𝜑 > 0 if dependence structure for 𝑢 𝑎𝑛𝑑 𝑣 
is positive and 𝜑 < 0 if depence structure for 𝑢 𝑎𝑛𝑑 𝑣 is negative 
 
Consider �𝑇1,𝑇2,� for FMG copula the joint long-term survival of �𝑇1,𝑇2,� will be given 
with  

𝑆𝑝𝑜𝑝�𝑡1,𝑡2,� = 𝑆𝑝𝑜𝑝1(𝑡1),𝑆𝑝𝑜𝑝2(𝑡2) �1 + 𝜑 �1 − 𝑆𝑝𝑜𝑝1(𝑡1)� �1 − 𝑆𝑝𝑜𝑝2(𝑡2)�� 
 
 
Then 𝜑 parameter measures the intensity of the dependence between the lifetimes.  

If 𝜑 = 0, 𝑆𝑝𝑜𝑝1(𝑡1) = 𝑆𝑝𝑜𝑝2(𝑡2) is valid then the random variables 𝑇1 and 𝑇2 are 
independent 
 
 
Copula functions rely on sophisticated methodical advances because their focus will not 
be on correlation coefficients but more over on scale invariant measures of association. 
These measures of association are functions of a measure of dependence between 
marginals. Then the association parameter can be defined with different values specified 
on the copula. In comparison to that measures of associations like the Pearson’s 
correlation coefficient are bounded. 
Modeling copulas will be arranged with the Gibbs Sampler belonging to the class of the 
Markov Chain Monte Carlo (MCMC) methodology.  
For 𝑇𝑗  we assume a Weibull mixture distribution with the parameters 𝛼𝑗 and 𝛾𝑗 and    
 𝑝𝑗 = 𝑒𝑥𝑝�𝛽0𝑗 + 𝛽1𝑗𝑥�/ �1 + 𝑒𝑥𝑝�𝛽0𝑗 + 𝛽1𝑗𝑥�� 

 
with 𝛾𝑗~𝐺𝑎𝑚𝑚𝑎 �𝑎𝑗, 𝑏𝑗� and 𝛼𝑗~𝐺𝑎𝑚𝑚𝑎 �𝑐𝑗 ,𝑑𝑗� 
 
 

3. Data 
 
The mixture long-term survival approach will be applied for Breast Cancer Data provided 
by the SEER Cancer Statistic Data Base National Cancer Institute, DCCPS, Surveillance 
Research Program, and Cancer Statistics Branch was released in April 2013.  
Information on the incidence by race, gender and age for different period of time are 
available. We use causespecific mortality data including all cancer. The SEER public use 
dataset includes the vital status of breast cancer patients from 1992-2010 includes 
(n=69,990 in Situ). 
The mixture cure model define 𝑆0for susceptible (non-cured) individuals will be 
identified as breast cancer case and with 𝑆𝑗 will be non-breast cancer including all 
masking cases. 
 
Simulation will be done with OpenBUGS.  For more details: see Spiegelhalter et al. 2007 
 
The results from the parameter estimates are presented in table1. 
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4. Results 
 
Table 1:   SEER Breast Cancer Data,   
Summary results from the posterior distribution, mean, 
standard deviation (SD)  and HPD (95%) interval for the FGM copula 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Conclusion 
 

The major gains of this approach yield on the high flexibility to account for different 
dependence structure. The minor computation problems can be neglected. 

      
     The estimates should be realized on a hierarchial two-step procedure:  
      First the marginals have to be estimated, then in a second step the copula to perform  
      the joint  distribution. On the other hand the identification problem of the joint  
      distribution is still present.  
 
      Misclassification in cause of failure should be account for because the bias    
      have serious effects on the for  estimates and determine lower statistical power type  
      of misclassification also drives the bias: Nondifferential 
      misclassifications have  less impact on  the estimation bias than systematic  
      misclassification  (Sarfati et al. 2010)  
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