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Abstract
Additive manufacturing, or 3D printing, is a promising manufacturing technique. Material solid-

ification in the printing process leads to product deformation, which reduces the utility of printed
products. Control of product deformations can be achieved by compensation plans. However, lit-
tle attention has been paid to interference in compensation, which is thought to result from the
inevitable discretization of a compensation plan. We investigate interference with an experiment
involving the application of discretized compensations to cylinders. Our treatment illustrates a prin-
cipled framework for detecting interference, and for addressing complications in modeling defor-
mations under discretized compensations, which facilitates the study of printing processes. Properly
defining experimental units and understanding interference are critical for quality control in com-
plex engineering processes. Our work ultimately provides a step in that direction for 3D printing.
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1. Interference in Shrinkage Compensation

Additive manufacturing, or 3D printing, refers to a class of technologies for the direct fab-
rication of physical products from 3D Computer-Aided Design (CAD) models. In contrast
to material removal processes in traditional machining, the printing process adds material
layer by layer. This technique enables direct printing of products with complex geometry
(e.g., complicated gear structures), without affecting building efficiency. No extra effort is
necessary for molding construction or fixture tooling design, making 3D printing a promis-
ing manufacturing technique (Hilton and Jacobs, 2000; Gibson, Rosen, and Stucker, 2009;
Melchels, Feijen, and Grijpma, 2010; Campbell, Williams, Ivanova, and Garrett, 2011).
Despite these promising features, control of a product’s printed dimensions (i.e., dimen-
sional accuracy control) remains a major bottleneck. Material solidification during layer
formation leads to product deformation, or shrinkage (Wang, Cheah, Fuh, and Lu, 1996).
Shrinkage control is crucial to overcome the accuracy barrier in 3D printing.

To control detailed features along the boundary of a printed product, Tong, Lehtihet,
and Joshi (2003) and Tong et al. (2008) used polynomial regression models to analyze
shrinkage in different directions separately, and compensate for product deformation by
changing the original CAD design accordingly. Unfortunately, their predictions of shrink-
age are independent of the product’s geometry, which is not consistent with the manufac-
turing process. Huang, Zhang, Sabbaghi, and Dasgupta (2012) built on this work, using
polar coordinates to develop a physically consistent approach to model and compensate
shrinkage. Validation experiments suggest that this approach achieves greater accuracy.

An important issue not yet addressed is how the application of compensation to one
section of a product will affect the deformation of neighboring sections. Technically, com-
pensation plans are always discretized (according to the tolerance of the 3D printer), in the
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Figure 1: A discretized compensation (dashed-line) to the nominal boundary (solid line).

sense that sections of the CAD design are altered by a single amount, as, for example, in
Figure 1. Furthermore, when planning an experiment to assess the effect of compensations
on product deformation, it is natural to discretize the quantitative “compensation” factor
into a finite number of levels, which also leads to a product having a more complex bound-
ary. Ultimately, such changes to a product’s boundary may introduce interference between
different sections of the printed product. Interference is defined to occur when one section’s
deformation depends not only on its assigned compensation, but also on compensations ap-
plied to its neighbors (Rubin, 1980). For example, in Figure 1, the deformation for points
that lie at the boundary of two neighboring sections should depend on compensations ap-
plied to both sections. By the same logic, interference becomes a practical issue when
printing products with complex geometry. Therefore, to better understand dimensional ac-
curacy control of 3D printed products, it is of broad importance to formally investigate
complications introduced by interference, which result from the inevitable discretization
in compensation plans. We take the first step with an experiment involving a discretized
compensation plan for a simple geometric shape, or profile.

We begin in Section 2 with a review of interference, models for shape shrinkage, and
the effect of compensation. Adoption of the Rubin Causal Model (RCM, Holland, 1986) is
a significant and novel feature of our investigation in direct 3D printing, and greatly facili-
tates discussions on interference. Section 3.1 summarizes the basic model for shape shrink-
age of cylinders given by Huang et al. (2012). Our analyses are in Sections 3.2 - 3.5: we
first describe an experimental design hypothesized to generate interference, then proceed
with posterior predictive checks to demonstrate the existence of interference, and finally
conclude with a model that captures interference. A statistically significant idea arising in
Section 3.3 is that, in experiments explicitly making a distinction between units of analysis
and units of interpretation (Cox and Donnelly, 2011, p. 18–19), the posterior distribu-
tion of model parameters, constructed using “benchmark” data, naturally leads to a simple
assessment and inference for interference similar to that suggested by Sobel (2006) and
Rosenbaum (2007). Analyses in Sections 3.4 and 3.5 demonstrate how discretized compen-
sations complicate dimensional accuracy control along a product’s boundary through the
introduction of interference. This illustrates the fact that in complex engineering processes,
a proper definition of experimental units and understanding of how units may interfere with
each other are critical to quality control.
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2. Potential Outcomes and Interference

2.1 Definition of Experimental Units and Potential Outcomes

Suppose a product has intended shape ψ0, and observed shape ψ. Shape deformation is
informally described as the difference between ψ and ψ0, where we can represent both
either in the Cartesian coordinate system (x, y, z) or cylindrical coordinate system (r, θ, z).
Cylindrical coordinates greatly facilitate modeling of shrinkage, and are used throughout.

For illustrative purposes, we define terms for two-dimensional products (notation for
three dimensions follow immediately). Improved product accuracy requires an understand-
ing of what happens when different regions of the CAD model receive different amounts of
compensation. We therefore define a finite number N points on the boundary of the prod-
uct, corresponding to specific angles θ1, . . . , θN , as the experimental units. The desired
boundary of a product, dictated by the CAD model, is represented by a function r0(θ) de-
noting the nominal radius at angle θ. We consider only one (quantitative) treatment factor,
compensation to the CAD model, defined as changing the CAD model to either increase or
decrease the nominal radius by xi units at θi. The potential radius for θi under the appli-
cation of treatments x = (x1, . . . , xN ) to units θ1, . . . , θN is a function of θi, CAD model
r0(·), and x, denoted by r(θi, r0(·),x). The difference between the potential and nominal
radius at θi defines deformation at θi. Therefore, we define

∆r(θi, r0(·),x) = r(θi, r0(·),x)− r0(θi) (1)

as our potential outcome for θi. For now, potential outcomes are fixed numbers. Random-
ness is introduced in Section 2.3 in our general model for the potential outcomes.

This definition of the potential outcome is convenient for visualizing shrinkage. For
example, suppose the desired shape of the product is the solid-line, and the manufactured
product when x = 0 = (0, . . . , 0) is the dashed-line, in Figure 2(a)). Plotting the shrinkage
at each angle leads to a visualization (Figure 2(b)) amenable to analysis. Orientation is
fixed: we match the coordinate axes of the printed product with those of the CAD model.
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Figure 2: (a): Ideal shape vs. printed shape. (b): Shrinkage visualization.
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2.2 Interference

A unit θi is said to be affected by interference if

∆r(θi, r0(·),x) 6= ∆r(θi, r0(·),x′)

for at least one pair of distinct treatment vectors x,x′ ∈ RN with xi = x′i (Rubin, 1980).
If there is no interference, then

∆r(θi, r0(·),x) = ∆r(θi, r0(·), xi).

As the experimental units reside on a connected boundary, the deformation of one unit
may depend on compensations assigned to its neighbors when the compensation plan is
discretized (according to the tolerance of the 3D printer). Perhaps less plausible, but equally
serious, is the leakage of assigned compensations across units. All these considerations
explain the presence of the vector x, containing treatment assignments for all units, in the
potential outcome notation (1). Practically, accommodations made for interference should
reduce bias in compensation plans for complex products.

2.3 The General Deformation Model

Potential outcomes under treatment assignment x = 0 are decomposed into

∆r(θi, r0(·),0) = f1(r0(·)) + f2(θi, r0(·),0) + εi. (2)

Function f1(r0(·)) represents average deformation of a given nominal shape r0(·) inde-
pendent of location θi, and f2(θi, r0(·),0) is the additional location-dependent shrinkage,
geometrically and physically related to the CAD model r0(θ). We can also interpret f1(·)
as a lower order component and f2(·, ·,0) as a higher order component of shrinkage. The
εi are random variables representing high frequency components that add on to the main
trend, with expectation E(εi) = 0 and Var(εi) < ∞ for all i = 1, . . . , N . In all that fol-
lows, the εi are assumed to be independent and identically distributed. Correlation among
the εi can be addressed in various ways (e.g., (Colosimo, Semeraro, and Pacella, 2008)),
and is the focus of our future work.

Figure 2 demonstrates model (2), with r0(θ) = r0, so f1(·) is a function of r0, and
f2(0, r0,0) = f2(2π, r0,0). Decomposition of shrinkage reduces (2) to

∆r(θi, r0,0) = cr0 +
∑
k

{ar0,k cos(kθi) + br0,k sin(kθi)}+ εi, (3)

where f1(r0) = cr0 , and {ar0,k, br0,k} are coefficients of a Fourier expansion of f2(·, ·,0).
The {ar0,k, br0,k} with large k represent surface roughness, and is not of primary interest.

2.4 General Compensation and Interference Models

Under the polar coordinate system, a compensation of xi units at θi can be thought of as an
extension of the product’s radius by xi units in that specific direction. Bearing this in mind,
we now extend (2) to accommodate compensations.

Let r(θi, r0(·), (xi, . . . , xi)) = r(θi, r0(·), xi) denote the potential radius for θi under
application of xi units of compensation to all units. Assuming that the manufacturing and
deformation dynamics remain the same under compensation, we note that

r(θi, r0(·), xi)− {r0(θi) + xi} = ∆r(θi, r0(·) + xi,0).
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Consequently, the potential outcome for θi is

∆r(θi, r0(·), xi) = r(θi, r0(·), xi)− r0(θi)
= ∆r(θi, r0(·) + xi,0) + xi. (4)

If xi is small relative to r0(θi), then the expectation of (4) can be approximated using the
first and second terms of the Taylor expansion of E {∆r(θi, r0(·) + xi,0)} at r0(θi):

∆r(θi, r0(·), xi) ≈ E {∆r(θi, r0(·),0)}

+ (xi − 0)

[
d

dx
E {∆r(θi, r0(·) + x,0)}

]
x=0

+ xi + εi (5)

= ∆r(θi, r0(·),0) + {1 + h(θi, r0(·),0)}xi,

where h(θi, r0(·),0) =
[

d
dxE {∆r(θi, r0(·) + x,0)}

]
x=0

. When a parametric model is
specified, this expansion is performed conditional on the model parameters.

Interference can then be incorporated into (5) in a simple manner for a treatment as-
signment x. Specifically, although unit θi is assigned compensation xi, we do not use only
xi to model the potential outcome for θi. Instead, we alter (5) to

∆r(θi, r0(·),x) ≈ ∆r(θi, r0(·),0) + {1 + h(θi, r0(·),0)}gi(x), (6)

where the effective treatment gi(x) is a function of xi and compensations applied to neigh-
bors of θi (with the definition of neighboring units naturally dependent on the specific
product), hence potentially a function of the entire vector x. This change from xi to gi(x)
in (5) and (6) is based on the belief that the physical logic ultimately leading to (5) holds
true on some level for general compensation plans. The simplest way to introduce inter-
ference in the potential outcomes model is to allow the treatment effect for θi to not be a
function solely of xi, but to depend on treatments assigned to neighboring units as well. As
we shall see in the analysis of our experiment, this modification of the potential outcomes
model effectively incorporates interference in a meaningful manner.

3. Experimental Design and Analysis for Interference

3.1 Compensation Model for Cylinders

Huang et al. (2012) constructed four cylinders with r0 = 0.5, 1, 2, and 3 inches, and used
N0.5 = 749, N1 = 707, N2 = 700, and N3 = 721 equally-spaced units from each, dis-
played in Figure 3(a). They fitted

∆r(θi, r0,0) = x0 + α(r0 + x0)
a + β(r0 + x0)

b cos(2θi) + εi (7)

to the data, according to the reasoning in Section 2.3, with εi ∼ N(0, σ2) independently,
and parameters α, β, a, b, x0, and σ independent of r0. Independent errors were used be-
cause the correlation of the εi was not substantial enough to merit being modeled.

They specified

a ∼ N(1, 22), b ∼ N(1, 12), log(x0) ∼ N(0, 12),

and placed flat priors on α, β, and log(σ), with all parameters independent a priori. Pos-
terior draws of the parameters were obtained by Hamiltonian Monte Carlo (HMC, Duane,
Kennedy, Pendleton, and Roweth, 1987), with 1000 draws after a burn-in of 500 (summa-
rized in Table 1. A simple comparison of the posterior predictive distribution of product
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Figure 3: (a): Observed deformation for r0 = 0.5, 1, 2, and 3 inches, when no compensa-
tion is applied. (b): Comparison of observed data with posterior predictions of deformation
when no compensation is applied. Bold solid lines denote posterior means, and dashed lines
denote the 2.5% and 97.5% posterior quantiles of shrinkage for each angle.

Table 1: Summary of posterior draws of parameters when no compensation is applied.

Mean SD Median 95% Credible Interval ESS
α −1.34× 10−2 1.6× 10−4 −1.34× 10−2 (−1.37, −1.31) ×10−2 8198
β 5.7× 10−3 3.1× 10−5 5.71× 10−3 (5.65, 5.8) ×10−3 9522
a 8.61× 10−1 7.33× 10−3 8.61× 10−1 (8.47, 8.75) ×10−1 8223
b 1.13 5.46× 10−3 1.13 (1.12, 1.14) 9424
x0 8.79× 10−3 1.5× 10−4 8.79× 10−3 (8.5, 9.07) ×10−3 8211
σ 8.7× 10−4 1.18× 10−5 8.7× 10−4 (8.5, 8.9) ×10−4 9384

deformation to the observed data (Figure 3(b)) demonstrates the good fit, and so we proceed
with this specification.

Substituting ∆r(θi, r0,0) from (7) into the general model (4), we have

∆r(θi, r0, xi) = x0 + xi + α(r0 + x0 + xi)
a + β(r0 + x0 + xi)

b cos(2θi) + εi. (8)

Further approximation by the Taylor expansion at r0 + x0, as in (5), yields

∆r(θi, r0, xi) = x0 + α(r0 + x0)
a + β(r0 + x0)

b cos(2θi)

+
{

1 + aα(r0 + x0)
a−1 + bβ(r0 + x0)

b−1 cos(2θi)
}
xi + εi. (9)

We incorporate interference by changing xi in (9) to gi(x), with the functional form of
gi(x) derived by exploratory means in Section 3.3.

3.2 Experimental Design for Interference

Under a discretized compensation plan, the boundary of a product is divided into sections,
with all units in one section assigned the same compensation and neighboring sections hav-
ing different compensations. In the terminology of Cox and Donnelly (2011, p. 18–19),
these sections constitute units of analysis, and individual angles are units of interpretation.
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Figure 4: Experimental designs: dashed lines represent assigned compensations.

We then expect interference for angles near neighboring sections. Interference should be
substantial for large differences in neighboring compensations, and should become negli-
gible as the differences in compensations decrease.

This reasoning led to the following restricted Latin square design to study interfer-
ence. We apply compensations to four cylinders of radius 0.5, 1, 2, and 3 inches, with each
cylinder divided into 16 equal-sized sections of π/8 radians. One unit of compensation
is 0.004, 0.008, 0.016, and 0.03 inch for each respective cylinder, and there are only four
possible levels of compensation, −1, 0,+1, and +2 units. Two blocking factors are con-
sidered. The first is the quadrant, and the second is the “symmetry group” consisting of
units in π/8-radian sections that are reflections about the coordinate axes from each other.
Symmetric sections form a meaningful block: if compensation x is applied to all units, then
we have from (9) that for 0 ≤ θ ≤ π/2,

E {∆r(θ, r0, x) | α, β, a, b, x0, σ} = E {∆r(π − θ, r0, x) | α, β, a, b, x0, σ}
= E {∆r(π + θ, r0, x) | α, β, a, b, x0, σ}
= E {∆r(2π − θ, r0, x) | α, β, a, b, x0, σ} ,

suggesting a need to control for this symmetry in the experiment. Finally, based on prior
concerns about the possible severity of interference and resulting scope of inference from
our Taylor-expansion model (5), treatments were randomly assigned to the 16 sections
under a further constraint that the absolute difference in assigned treatments between two
sections cannot exceed two levels of compensation.

Our restricted Latin square design blocks on two factors suggested by the previous
deformaton model (and yet is model robust to a certain extent) to form a discretized com-
pensation plan, as desired. The chosen experimental designs are in Figure 4, and results
of this experiment are in Figure 5. There are N0.5 = 6159, N1 = 6022, N2 = 6206,
and N3 = 6056 equally-spaced observations used for the four cylinders of nominal radius
r0 = 0.5, 1, 2, and 3 inches throughout.
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Figure 5: Observed deformations in the experiment. Dashed lines represent sections, and
numbers at the bottom of each represent applied compensations.
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3.3 Assessing the Structure of Interference

If a unit θi has negligible interference under treatment assignment x = (x1, . . . , xN ), then

∆r(θi, r0,x) = ∆r(θi, r0, (xi, . . . , xi)) = ∆r(θi, r0, xi).

Our first task is to assess which units have negligible interference. To do so, we use the
suggestions of Sobel (2006) and Rosenbaum (2007), who describe when interest exists in
comparing a treatment assignment x to a baseline.

We have in Section 3.1 data on cylinders that receive no compensation, and a model (7)
that provides a good fit. Furthermore, we have a hypothesized model (9) when interference
is negligible, which is a function of parameters in (7). If the manufacturing process is in
control, posterior inferences made conditional on the no-compensation data in Section 3.1
(denoted by Dn) then yield, by (9), predictions for the experiment. In the absence of any
other information, units in the experiment with observed outcomes deviating strongly from
their predictions can be argued to have substantial interference. This suggests the following
procedure to assess interference:

1. Calculate the posterior distribution of the parameters conditional on Dn, which we
denote by π(α, β, a, b, x0, σ |Dn).

2. For every angle in the four cylinders, form the posterior predictive distribution of
the potential outcome corresponding to the observed treatment assignment (Figure
4) using model (9) and π(α, β, a, b, x0, σ |Dn).

3. Compare the posterior predictive distributions to the experiment.

• If a unit’s observed outcome falls within the 99% central posterior predictive
interval and follows the posterior predictive mean trend, it is deemed to have
negligible interference.

• Otherwise, we conclude that the unit has substantial interference.

This is similar to the construction of control charts (Box et al., 2009). When an observed
outcome lies outside the 99% posterior predictive interval, we suspect existence of a special
cause. As the product is constructed simultaneously, the assignable cause is interference.

We implemented this procedure and observed that approximately 70%− 80% of units
have negligible interference, primarily in the central regions of sections. This is clearly
seen with another graph that assesses effective treatments, which we proceed to describe.
Taking expectations in (9), the treatment received by θi is

E {∆r(θi, r0,x) | α, β, a, b, x0, σ} − x0 − α(r0 + x0)a − β(r0 + x0)bcos(2θi)

1 + aα(r0 + x0)a−1 + bβ(r0 + x0)b−1cos(2θi)
. (10)

We then use (10) to gauge gi(x), i.e., the effective treatment for θi, by plugging observed
data from the experiment and posterior draws of the parameters based on Dn into this
equation. These calculations, summarized in Figure 6, again suggest that central angles in
each section have negligible interference: estimates of their effective treatments correspond
to their assigned treatments. There is a slight discrepancy between assigned treatments nd
posterior predictive quantities for some central angles, but this is likely due to different
parameter values for the two data sets. Of more importance is the observation that the
effective treatment of a boundary angle θi is a weighted average of treatments assigned to
its section and its nearest neighboring section, with the weights a function of the distances
(in radians) between θi and the midpoint angle of its section, θi,M , and the midpoint angle
of its nearest neighboring section, θi,NM . All these observations correspond to the intuition
that interference should be substantial near section boundaries, and negligible in the middle.
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Figure 6: Gauging effective treatments gi(x) using (10). Four horizontal lines in each
subfigure denote the possible compensations for the cylinders, and the dots denote estimates
of treatments that these units effectively received in the experiment.

3.4 A Simple Interference Model

We first alter (9) to

∆r(θi, r0,x) = x0 + α(r0 + x0)
a + β(r0 + x0)

b cos(2θi)

+
{

1 + aα(r0 + x0)
a−1 + bβ(r0 + x0)

b−1 cos(2θi)
}
gi(x) + εi, (11)

where

gi(x) = {1 + exp(−λr0 |θi − θi,NM |+ λr0 |θi − θi,M |)}
−1 xi,M

+ {1 + exp(λr0 |θi − θi,NM | − λr0 |θi − θi,M |)}
−1 xi,NM , (12)

with θi,M , θi,NM denoting midpoint angles for the π/8-radian sections containing and
neighboring nearest to θi, respectively, and xi,M , xi,NM treatments assigned to these sec-
tions. Effective treatment gi(x) is a weighted average of the unit’s assigned treatment
xi = xi,M and the treatment xi,NM assigned to its nearest neighboring section. Although
the functional form of the weights is chosen for computational convenience, we recognize
that (12) belongs to a class of models agreeing with prior subject-matter knowledge that in-
terference may be negligible if the implemented compensation is sufficiently “continuous”,
in the sense that the compensation plan is a continuous function of θ and the tolerance of
the 3D printer is sufficiently fine so that discretization of compensation is negligible.

We fit the model in (11), (12), having 10 total parameters, to the experiment data. The
prior specification remains the same, with log(λr0) ∼ N(0, 42) independently a priori for
r0 = 0.5, 1, 2, and 3 inches. A HMC algorithm was used to obtain 1000 draws from the
joint posterior distribution after a burn-in of 500, and these are summarized in Table 2.
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Table 2: Summary of posterior draws for simple interference model.

Mean SD Median 95% Credible Interval ESS
α −1.06× 10−2 1.53× 10−4 −1.06× 10−2 (−1.09,−1.03)× 10−2 8078
β 5.79× 10−3 3.69× 10−5 5.79× 10−3 (5.72, 5.86)× 10−3 8237
a 9.5× 10−1 9.46× 10−3 9.5× 10−1 (9.31, 9.69)× 10−1 8150
b 1.12 6.64× 10−3 1.12 (1.0, 1.13) 8504
x0 7.1× 10−3 1.43× 10−4 7.1× 10−3 (6.82, 7.39)× 10−3 8404
σ 3.14× 10−3 1.36× 10−5 3.14× 10−3 (3.11, 3.17)× 10−3 8924
λ0.5 32.66 2.05 32.62 (28.69, 36.76) 8686
λ1 48.24 2 48.12 (44.5, 52.6) 8666
λ2 76.83 1.78 76.78 (73.42, 80.44) 8770
λ3 86.08 0.83 86.06 (84.49, 87.68) 8385

This model provides a good fit to the observed data for 0.5 and 1 inch cylinders. How-
ever, predictions for the other cylinders are not as good. As an example, in Figure 7(a) the
posterior mean trend does not capture the observed transition across sections.

The problem appears to reside in (12). This specification for the weights implies that
effective treatments for units θi = kπ/8 (k ∈ Z>0) are averages of compensations applied
to units kπ/8 ± π/16. To assess the validity of this implication, we use the posterior dis-
tribution of the parameters to calculate, for each θi, the inferred effective treatment in (10).
An example of these calculations, Figure 7(b), shows that the inferred effective treatment
for θi = π is nearly 0.06 inch, the compensation applied to its neighboring section. Thus,
specification (12) is invalidated by the experiment.

Another posterior predictive check helps clarify the problem. From (12),

gi(x) = wixi,M + (1− wi)xi,NM .

We solve for wi to obtain

wi =
gi(x)− xi,NM

xi,M − xi,NM
. (13)

Plugging in the inferred effective treatments, calculated from (10), into (13), we then diag-
nose how to modify (12) to better model interference in the experiment.

This calculation was made for all cylinders, and the results for r0 = 3′′ are summarized
in Figure 8 as an example. Rows in this figure show the weights for each of the four quad-
rants, and we focus on the behavior of the weights in neighborhoods of integral multiples
of π/8. Neither the decay in the weights (represented by λr0 in (12)) nor the weight for
integral multiples of π/8 remain constant across sections. In fact, these figures suggest that
λr0 is a function of θi,M , θi,NM , and that a location term is required.

3.5 A Refined Interference Model

Our refined effective treatment model is of the same functional form as (12), with λr0
replaced by λr0(θi,M , θi,NM ), and |θi − θi,M | and |θi − θi,NM | replaced by |θi − θi,M −
δr0(θi,M , θi,NM )| and |θi−θi,NM−δr0(θi,M , θi,NM )|, respectively. Here, δr0(θi,M , θi,NM )
represent location shifts across sections suggested by our posterior predictive checks.

Our specific model is

δr0(θi,M , θi,NM ) = δr0,0 +

3∑
k=1

{
δcr0,kcos(kθi,B) + δsr0,ksin(kθi,B)

}
, (14)
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Figure 7: (a): An example of the type of erroneous predictions made by model (11), (12)
for the 3 inch cylinder. The vertical line is drawn at θ = π, marking the boundary between
two sections, with units to the left given +1 compensation, and units to the right given 0.
(b): Corresponding inferred effective treatment for 15π/16 ≤ θ ≤ 17π/16.
(c): Refined posterior predictions for r0 = 3′′, 15π/16 ≤ θ ≤ 17π/16.
(d): Comparing inferred effective treatments (solid line) with refined effective treatment
model (dashed line) for the 3 inch cylinder.
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Figure 8: Inferring weights in the interference model for the r0 = 3′′ cylinder, using effec-
tive treatments calculated from equation (10) and the posterior distribution of parameters
from Section 3.4. Vertical lines are drawn at θ = kπ/8 for k = 1, . . . , 16.
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λr0(θi,M , θi,NM ) = I(|xi,M − xi,NM | = 1)λr0,1 + I(|xi,M − xi,NM | = 2)λr0,2, (15)

where θi,B = (θi,M + θi,NM )/2 and |xi,M − xi,NM | is measured in absolute units of
compensation here, not inches. From the location shift pattern in Figure 8, and the fact that

δr0(θi,M , θi,NM ) = δr0(θi,M + 2π, θi,NM + 2π),

we believe location shifts should be modeled using a harmonic function, as in (14). Param-
eters λr0,1 and λr0,2 correspond to absolute differences of 1 and 2 assigned compensations.

This model provides a better fit. Comparing Figure 7(c), which displays posterior pre-
dictions from the refined model (based on one chain of posterior draws using a standard
random walk Metropolis algorithm), with the previous model’s predictions in Figure 7(a),
we immediately see that the refined model better captures the posterior mean trend and
interference. Similar improvements in prediction exist in the other sections and cylinders.

3.6 Summary of the Experimental Design and Analysis

Three key ingredients relating to the data, model, and experimental design have made our
series of analyses possible. First is the availability of benchmark data, e.g., every unit on
the cylinder receiving zero compensation. Second is the potential outcomes model (9) for
the effect of compensation, defined in terms of a fixed number of parameters that do not
depend on the vector of treatment assignments x. These two ingredients enable one to form
the posterior predictive distribution of potential outcomes under the assumption of negligi-
ble interference. The final ingredient is the distinction between units of analysis and units
of interpretation, made explicit in our choice of design, which provides the means to assess
and model interference in the experiment. Comparing observed outcomes from the exper-
iment to posterior predictions allows one to infer the structure of interference, which can
ultimately be validated by further experimentation. These considerations suggest that our
approach and methodology can be generalized and applied to other experimental situations
in the physical sciences having units residing on connected surfaces. In general, when ex-
perimenting with units on a connected surface, a principled and step-by-step analysis using
the three ingredients above can ultimately shed more light on the question of interest.

4. Conclusion: Interference Inhibits Improvements

To construct 3D printed products satisfying manufacturing demands on dimensional accu-
racy, it is important to consider the problem of interference and address it in a principled
manner. Huang et al. (2012) recognized that continuous compensation plans implemented
on printers with a sufficiently fine tolerance can effectively control a product’s printed di-
mensions, without inducing additional complications through interference. Their models
for product deformation motivated our experimental design that introduces interference
through the application of a discretized compensation plan to the boundary of a cylinder.
Combining this experiment’s data with inferences based on data for which every unit re-
ceived no compensation led to an assessment of the overall structure of interference in
terms of how treatments across units effectively differed from that physically assigned.

It is important to note that the refined interference model’s location and scale param-
eters (14), (15) are also a function of the compensation plan. For example, reflecting the
assigned compensations across the y axis would accordingly change the location shifts. The
implication of this and all our previous observations for manufacturing is that severely dis-
cretized compensation plans inhibit improved dimensional accuracy control for 3D printed
products, and so should not be used for manufacturing.
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