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Abstract 
Processes that arise naturally, e.g., from manufacturing or the environment, often exhibit 
complicated autocorrelation structures.  When monitoring such a process for changes in 
variance, accounting for that autocorrelation structure is critical.  While charts for 
monitoring the variance of processes of independent observations and some specific 
autocorrelated processes have been proposed in the past, the chart presented in this article 
can handle any general stationary process. The performance of the proposed chart was 
examined through simulations for AR(1) processes and demonstrated with an example.  
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1. Introduction 
 
Statistical process control charts have been widely used to monitor changes in a process 
mean and variance. Traditionally, control charts are based on a fundamental assumption 
that process data are statistically independent. Process data, however, are often not 
statistically independent; this is especially the case in continuous industries such as the 
chemical industry. Various control charts have been  proposed to monitor process data 
from an autocorrelated process. Zhang (1998) and (2000) proposed to monitor the 
process mean with a variant of the EWMA chart, called the EWMAST chart, which can 
be used for any general stationary process. A related chart was proposed by Jiang et al. 
(2000). 

To monitor process variability, MacGregor and Harris (1993) proposed the exponentially 
weighted mean square (EWMS) chart. Other charts related to the EWMS chart have also 
been proposed to monitor the process variance, e.g., Castagliola (2005).The EWMS and 
exponentially weighted moving variance (EWMV) charts were discussed by Eyvazian et 
al. (2008) and Huwang et al. (2009), which focus on the case that the process data are 
independent. Although, MacGregor and Harris (1993) discussed the applications of the 
EWMS chart to autocorrelated observations, but their discussion was limited to AR(1) 
plus white noise processes.  In this article, we extend the EWMS chart to general 
stationary processes. 
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2. The EWMS Chart for a stationary process 
 
Assume that { , 1,2...}nX n =  is a stationary process with mean µ  and variance 2

Xσ . 
Namely, E[ ]nX µ= , 2Var[ ]n XX σ=  for 1,2,...n = , and the autocovariance at lag m  is 
given by 

           Cov[ , ]m n n mR X X += ,                                                                                (1)              

where mR only depends on the lag m . MacGregor and Harris (1993) defined the 
exponential weighted moving mean square by 

          2 2 2
1(1 ) ( )n n nS r S r X µ−= − + −     1,2,...n = ,                                                (2)    

where r (0 1)r< ≤ is the weighting parameter. We take 2 2
0 XS σ= , the process variance. 

From (2), it is clear that 2
nS  is an estimator of the process mean square error at time n . 
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= − −∑ . MacGregor and Harris (1993) proposed to use 2
nS to 

monitor the process mean square error (MSE) and called the corresponding chart the 
EWMS chart. Obviously, when the process mean is a constant, 2

nS  is an estimator of the 
process variance and the EWMS chart can be used to monitor the process variance. 
MacGregor and Harris (1993) initially proposed the EWMS chart for independent 
sequences. Applying the EWMS chart to autocorrelated observations was also discussed 
in that article. Specifically, an AR(1) process with additional white noise was discussed. 
The process is described by 

                                    n n nX eη= + ,                                                                               (4)                  

where { }ne is a white noise process and nη is an AR(1) process with zero mean given by  

                                 1n n nη φη α−= + ,                                                                              (5)                  

where nα is a white noise process that is independent of ne  and | | 1φ < , which guarantees 
the stationarity of { }nη  and thus { }nX . However, we need to emphasize that although the 
AR(1) plus white noise processes is popular and reasonably realistic, it is a special case 
of general stationary processes.  

Let j jY X µ= − , 1,...,j n= . We express the quadratic form 2
nT  in matrix notation by  
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                                                                                                                  (6)              

We assume that the jX , 1,...,j n=  are jointly normally distributed with the correlation 
matrix P  . Since M  is non-singular, Theorem 2.1 of Box (1954) gives us,  

                   2 2 2

1

~ (1)
n

n X j j
j

T σ ξ χ
=

∑ ,                                                                                      (7)                  

where jξ  are the n  non-zero eigenvalues of U = PM .  Recall that P is the correlation 
matrix of { , 1..., }jX j n= , i.e.,  
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where mρ  is the autocorrelation of { }nX  at lag m  , i.e., 0m mR Rρ = . When { }nX is 
jointly normally distributed, Box (1954) proposed that 2

nT is approximately distributed (in 
the sense of the two moments approximation) as  

          2 2 2~ ( )n X n nT gσ χ ν                                                                                      (9)       

with  
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It can be shown that  
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From (3) and (9), we get the following approximate distributional relationship:  

                
2

2
2 ~ ( ) (1 )nn

n n
X

S g rχ ν
σ

+ − ,                                                                              (13)      

where ng  and the degrees of freedom nν  are functions of n , r , and mρ , the 
autocorrelation function of { }nX . For a given confidence level α , the upper and lower 
control limits are given by         

        ( )2 2
1 2 ( ) (1 )n

n X n nU g rασ χ ν−= + −                                                                      (14) 

and 

              ( )2 2
2 ( ) (1 )n

n X n nL g rασ χ ν= + − .                                                                        (15) 

The central line for the chart of plotted 2
nS  is at 2

Xσ . When { }nX  is an i.i.d. sequence, 

2

1 2

n

j
j

r
r

ξ
=

≈
−∑ leading (2 )ng r r≈ − and (2 )n r rν ≈ − as indicated in MacGragor and 

Harris (1993).   

3. Simulation Study 
 
The intention of this simulation study is to explore choices of the tuning parameter r that 
lead to good performance of the chart.  We use the average run length (ARL) to measure 
the performance. MacGregor and Harris (1993) used simulations to compare ARLs for 
different r  for independent sequences. Their results showed that r = 0.05 is a good 
choice. In this simulation study, AR(1) processes were considered.   

The definition of a stationary AR(1) process is found in (5).  That is,  { , 1,2...}nX n = is an 
AR(1) process with the parameter φ  and mean µ  given by 

  
                      1( )n n nX X aµ φ µ−− = − + ,                                                                       (16)                                                              

where { }na  is a white noise process. Generating realizations from such a process when it 
is stationary is easily done with existing software, e.g., the function arima.sim of the 
R (R Core Team, 2012) package stats (R Core Team, 2012).  However, since we must 
generate processes with variance shifts, i.e., nonstationary AR(1) processes, this section 
is broken into two parts. The first part describes how realizations of an AR(1) process 
were generated, and the second presents the results. 

 
3.1 Generating Realizations 
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Without loss of generality, take 0=µ  and the variance of }{ nX , 2
Xσ , before time 0n , 

to be one.  Denote the variance of the white noise process, }{ na   at time n as )(2 naσ .  Let 

kk X =2σ  be the variance of }{ nX  at time 0n  and after.  Namely, the process variance 
shifts from 1 to k  starting at 0n . From (16), we have 

).()(Var)(Var 2
1

2 nXX ann σφ += −   

Thus, when 0nn < , 22 1)( φσ −=na , when 0nn = , 2 2( )a n kσ φ= −  and when 0nn > , 

)1()( 22 φσ −= kna .  Note that it is possible for 2φ−k  to be negative, and when that is 
the case, the corresponding AR(1) process does not exist. 

Given this information, the following algorithm is used to generate an AR(1) process 
with parameter φ  and whose variance shifts from 1 to k at time 0n : 

1. Specify the total length of the process and the length of the warm-up period, 
10 +≥ nT  and 2≥B , respectively 

2. 01 =+−Bx ; note that nx  denotes a realization of the random variable nX  

3. While 02 nnB <≤+− , 1n n nx x aφ −= +  where )1 ,0(N ~ 2φ−iidan  

4. When 0nn = , if 02 >−φk , then 
0 0 01n n nx x aφ −= + , where ) ,0(N~ 2

0
φ−kan  

5. When Tnn ≤<0 , 1n n nx x aφ −= + , where 2~ N(0,  (1 ))na k φ−  

6. The realization of the process is then { , 1,..., }nx n T= . 

 
3.2 Results 
 
For each combination of the parameter values 501} 51, 21, 11, 6, ,3{0 ∈n , 

0.9} 0.75, 0.5, 0.25, 0,{∈φ , 2} 1.5, 1.25, 1, 0.75, 0.5, 0.25,{∈k  and 
0.3} 0.2, 0.1, 0.05,{∈r , when possible, the RL of 50,000 AR(1) processes was 

calculated.  Of course, for example, when 9.0=φ  and 25.0=k  such a process does not 
exist.  Note that 0n  affects the run length because the bounds in Equations (15) and (16) 
are functions of n.  From each set of 50,000 RLs, the average was calculated, which is 
depicted graphically in Figure 1 for 510 =n .  The actual average run length changes for 
the other values of 0n , but the general pattern is nearly identical. 

From Figure 1, we see that r  = 0.05 is a good choice for an AR(1) process since it is the 
only choice presented for which k = 1 leads to the highest average run length for all 
values of φ .  It is well known that as a general rule for performance of a control chart, 
larger in-control (i.e., k = 1in our case) ARL is desired. This implies that for r  = 0.05 the 
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chart is unbiased in the language of Huwang et al. (2009), but that for the other choices of 
r the chart is biased.  Also note that for r  = 0.05 as the variance shift gets larger (k > 1) 
or smaller (k < 1), the average run length decreases monotonically, an important and 
desirable property. 

Another interesting observation is that when the process is highly autocorrelated, such as 
when φ  = 0.9, the performance of the chart degrades with larger out-of-control ARL . 
This is observed from Figure 1 by comparing the ARLs for 75.0=φ  to 9.0=φ , which 
are substantially longer.  This degradation in performance is expected because when φ  is 
near 1, the process is nearly nonstationary. 

Figure 1. The ARL plotted against k, the variance jump, for several values of φ  the 
AR(1) parameter, and r  the weight in the EWMS chart. 
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4. Constructed Example 
 
To demonstrate the EWMS chart, we use a constructed example.  In practice, if the 
EWMS chart should be used to detect a change in the process variance, a chart to look for 
changes in the process mean should be applied first because as indicated earlier, the 
EWMS chart monitors the mean square error of a process. When the process mean is 
stable, it will demonstrate possible shifts in the process variance. However, when the 
process mean is unstable, the EWMS chart will show changes in the mean square error of 
the process even if the process variance does not change.  Zhang (1998) proposed to use 
the EWMA chart for monitoring changes in the process mean when the process is 
autocorrelated and stationary. The chart is called the EWMAST chart. Therefore, we can 
apply both the EWMAST and EWMS charts in that order to a stationary process. When 
an EWMAST chart signals no mean shifts, an EWMS chart can be applied to the data to 
monitor the process variance. 

We generated a realization from an AR(1) process.  The process mean is µ = 0, the 
dependence parameter is 0.5φ =  and the process variance is 2

Xσ = 1 from t  = 1 to t  = 
150, 2

Xσ = 0.5 from t  = 151 to t  = 300, 2
Xσ = 2 from t = 301 to t  = 450,  and 2

Xσ = 1.5 
from t  = 451 to t  = 600.  The observed process is displayed in Figure 2. 

An EWMAST chart is applied to the simulated data with the chart parameter λ = 0.2. The 
standard deviation of the EWMA statistic in the EWMAST chart based on (10) in Zhang 
(1998) is 0.51. The chart, with 3-sigma control limits, shown in Figure 3, demonstrates 
that the process mean is essentially stable. 

For the EWMS chart, we choose r = 0.05 and α = 0.05, which give the asymptotical 
lower and upper control limits to be 0.52 and 1.64, respectively. Decreases in mean 
square error were detected at  t  = 167 to 302 and increases at t = 314 to 470, t  = 497 to 
530 and other points as shown in Figure 4. Since it is shown in Figure 3 that the process 
mean is stable, we conclude that the process vairance changed. 
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Figure 2. The realization of the AR(1) process used to illustrate the EWMS procedure 
where the process mean is fixed at 0, but the process variance changes 3 times, 1 to 0.5 to 
2 to 1.5. 

 

Figure 3. The EWMAST chart, with control limits for the time series displayed in Figure 
2. 
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Figure 4. The EWMS chart, with control limits, for the time series displayed in Figure 3. 

 

5. Conclusions 
 
Processes that arise naturally, e.g., from manufacturing or the environment, often exhibit 
complicated autocorrelation structures. When monitoring such a process for changes in 
variance, accounting for that autocorrelation structure is critical.  While charts for 
monitoring the variance of processes of independent observations and some specific 
autocorrelated processes have been proposed in the past, the chart presented in this article 
can handle any general stationary process, which is the major contribution of the work. 
The performance of the EWMS chart (in terms of ARL) was examined for AR(1) 
processes through simulation.   

The chart was demonstrated with one example.  The example was based on an underlying 
AR(1) process with the dependence parameter 5.0=φ , process mean 0=µ , and three 
changes of variance. All three true changes in variance were found.   
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